Ultrabroadband wavelength-swept source based on total mode-locking of an Yb:CaF_2 laser
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Ultrabroadband wavelength-swept source based on total mode-locking of an Yb:CaF_2 laser
  • 作者:MACIEJ ; KOWALCZYK ; TADEUSZ ; MARTYNKIEN ; PAWE? ; MERGO ; GRZEGORZ ; SOBO? ; JAROS?AW ; SOTOR
  • 英文作者:MACIEJ KOWALCZYK;TADEUSZ MARTYNKIEN;PAWE? MERGO;GRZEGORZ SOBO?;JAROS?AW SOTOR;Laser & Fiber Electronics Group,Faculty of Electronics,Wroclaw University of Science and Technology;Department of Optics and Photonics,Faculty of Fundamental Problems of Technology,Wroclaw University of Science and Technology;Laboratory of Optical Fiber Technology,Maria Curie-Sklodowska University;
  • 中文刊名:GZXJ
  • 英文刊名:光子学研究(英文版)
  • 机构:Laser & Fiber Electronics Group,Faculty of Electronics,Wroclaw University of Science and Technology;Department of Optics and Photonics,Faculty of Fundamental Problems of Technology,Wroclaw University of Science and Technology;Laboratory of Optical Fiber Technology,Maria Curie-Sklodowska University;
  • 出版日期:2019-02-25
  • 出版单位:Photonics Research
  • 年:2019
  • 期:v.7
  • 基金:Narodowe Centrum Nauki(NCN)(2015/18/E/ST7/00296);; Narodowe Centrum Badańi Rozwoju(NCBR)(POIR.04.01.01-00-0037/17);; Politechnika Wroc?awska(PWr)(0402/0121/17);; Fundacja na rzecz Nauki Polskiej(FNP)
  • 语种:英文;
  • 页:GZXJ201902012
  • 页数:5
  • CN:02
  • ISSN:31-2126/O4
  • 分类号:85-89
摘要
We present an ultrabroadband, high-speed wavelength-swept source based on a self-modulated femtosecond oscillator. Photonic crystal fiber was pumped by a mode-locked Yb:CaF2 laser, resulting in a strong spectral broadening from 485 to 1800 nm. The pump laser cavity could be realigned in order to achieve total mode-locking of the longitudinal and transverse TEM00 and TEM01 electromagnetic modes. This led to spatial oscillations of the output beam, which induced modulation of the coupling efficiency to the fiber. Due to the fact that nonlinear spectral broadening was intensity dependent, this mechanism introduced wavelength sweeping at the fiber output. The sweeping rate could be adjusted between 7 and 21.5 MHz by changing the geometry of the pump cavity. By controlling the ratio of the transverse mode amplitudes, we were able to tune the sweeping bandwidth, eventually covering both the 1300 nm and 1700 nm bioimaging transparency windows. When compared with previously demonstrated wavelength-swept sources, our concept offers much broader tunability and higher speed. Moreover,it does not require an additional intensity modulator.
        We present an ultrabroadband, high-speed wavelength-swept source based on a self-modulated femtosecond oscillator. Photonic crystal fiber was pumped by a mode-locked Yb:CaF2 laser, resulting in a strong spectral broadening from 485 to 1800 nm. The pump laser cavity could be realigned in order to achieve total mode-locking of the longitudinal and transverse TEM00 and TEM01 electromagnetic modes. This led to spatial oscillations of the output beam, which induced modulation of the coupling efficiency to the fiber. Due to the fact that nonlinear spectral broadening was intensity dependent, this mechanism introduced wavelength sweeping at the fiber output. The sweeping rate could be adjusted between 7 and 21.5 MHz by changing the geometry of the pump cavity. By controlling the ratio of the transverse mode amplitudes, we were able to tune the sweeping bandwidth, eventually covering both the 1300 nm and 1700 nm bioimaging transparency windows. When compared with previously demonstrated wavelength-swept sources, our concept offers much broader tunability and higher speed. Moreover,it does not require an additional intensity modulator.
引文
1.P.Herman,B.Maliwal,H.J.Lin,and J.Lakowicz,“Frequency-domain fluorescence microscopy with the LED as a light source,”J.Microsc.203,176-181(2001).
    2.M.V.Sarunic,S.Weinberg,and J.A.Izatt,“Full-field swept-source phase microscopy,”Opt.Lett.31,1462-1464(2006).
    3.S.R.Chinn,E.A.Swanson,and J.G.Fujimoto,“Optical coherence tomography using a frequency-tunable optical source,”Opt.Lett.22,340-342(1997).
    4.M.Wojtkowski,“High-speed optical coherence tomography:basics and applications,”Appl.Opt.49,D30-D61(2010).
    5.D.Huang,E.A.Swanson,C.P.Lin,J.S.Schuman,W.G.Stinson,W.Chang,M.R.Hee,T.Flotte,K.Gregory,C.A.Puliafito,and J.G.Fujimoto,“Optical coherence tomography,”Science 254,1178-1181(1991).
    6.U.Sharma,E.W.Chang,and S.H.Yun,“Long-wavelength optical coherence tomography at 1.7μm for enhanced imaging depth,”Opt.Express 16,19712-19723(2008).
    7.V.M.Kodach,J.Kalkman,D.J.Faber,and T.G.van Leeuwen,“Quantitative comparison of the OCT imaging depth at 1300 nm and 1600 nm,”Biomed.Opt.Express 1,176-185(2010).
    8.S.P.Chong,C.W.Merkle,D.F.Cooke,T.Zhang,H.Radhakrishnan,L.Krubitzer,and V.J.Srinivasan,“Noninvasive,in vivo imaging of subcortical mouse brain regions with 1.7μm optical coherence tomography,”Opt.Lett.40,4911-4914(2015).
    9.C.Chong,T.Suzuki,A.Morosawa,and T.Sakai,“Spectral narrowing effect by quasi-phase continuous tuning in high-speed wavelengthswept light source,”Opt.Express 16,21105-21118(2008).
    10.S.Yamashita and M.Asano,“Wide and fast wavelength-tunable mode-locked fiber laser based on dispersion tuning,”Opt.Express14,9299-9306(2006).
    11.S.Yamashita,“Dispersion-tuned swept lasers for optical coherence tomography,”IEEE J.Sel.Top.Quantum Electron.24,6800109(2018).
    12.R.Huber,M.Wojtkowski,and J.G.Fujimoto,“Fourier domain mode locking(FDML):a new laser operating regime and applications for optical coherence tomography,”Opt.Express 14,3225-3237(2006).
    13.F.M.Mitschke and L.F.Mollenauer,“Discovery of the soliton selffrequency shift,”Opt.Lett.11,659-661(1986).
    14.N.Nishizawa and T.Goto,“Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,”IEEEPhoton.Technol.Lett.11,325-327(1999).
    15.J.H.Lee,J.Van Howe,C.Xu,X.Liu,and S.Member,“Soliton selffrequency shift:experimental demonstrations and applications,”IEEEJ.Sel.Top.Quantum Electron.14,713-723(2008).
    16.G.Soboń,T.Martynkien,K.Tarnowski,P.Mergo,and J.Sotor,“Generation of sub-100 fs pulses tunable from 1700 to 2100 nm from a compact frequency-shifted Er-fiber laser,”Photon.Res.5,151-155(2017).
    17.G.Soboń,T.Martynkien,D.Tomaszewska,K.Tarnowski,P.Mergo,and J.Sotor,“All-in-fiber amplification and compression of coherent frequency-shifted solitons tunable in the 1800-2000 nm range,”Photon.Res.6,368-372(2018).
    18.N.Akhmediev and M.Karlsson,“Cherenkov radiation emitted by solitons in optical fibers,”Phys.Rev.A 51,2602-2607(1995).
    19.G.Chang,L.-J.Chen,and F.X.K?rtner,“Highly efficient Cherenkov radiation in photonic crystal fibers for broadband visible wavelength generation,”Opt.Lett.35,2361-2363(2010).
    20.T.Hori,N.Nishizawa,H.Nagai,M.Yoshida,and T.Goto,“Electronically controlled high-speed wavelength-tunable femtosecond soliton pulse generation using acoustooptic modulator,”IEEEPhoton.Technol.Lett.13,13-15(2001).
    21.M.E.Masip,A.A.Rieznik,P.G.K?nig,D.F.Grosz,A.V.Bragas,and O.E.Martinez,“Femtosecond soliton source with fast and broad spectral tunability,”Opt.Lett.34,842-844(2009).
    22.K.Sumimura,T.Ohta,and N.Nishizawa,“Quasi-super-continuum generation using ultrahigh-speed wavelength-tunable soliton pulses,”Opt.Lett.33,2892-2894(2008).
    23.K.Sumimura,Y.Genda,T.Ohta,K.Itoh,and N.Nishizawa,“Quasisupercontinuum generation using 1.06μm ultrashort-pulse laser system for ultrahigh-resolution optical-coherence tomography,”Opt.Lett.35,3631-3633(2010).
    24.D.Auston,“Transverse mode locking,”IEEE J.Quantum Electron.4,420-422(1968).
    25.P.W.Smith,“Simultaneous phase‐locking of longitudinal and transverse laser modes,”Appl.Phys.Lett.13,235-237(1968).
    26.D.C?téand H.M.van Driel,“Period doubling of a femtosecond Ti:sapphire laser by total mode locking,”Opt.Lett.23,715-717(1998).
    27.S.R.Bolton,R.A.Jenks,C.N.Elkinton,and G.Sucha,“Pulseresolved measurements of subharmonic oscillations in a Kerr-lens mode-locked Ti:sapphire laser,”J.Opt.Soc.Am.B 16,339-344(1999).
    28.M.Kowalczyk,A.Major,and J.Sotor,“High peak power ultrafast Yb:CaF2oscillator pumped by a single-mode fiber-coupled laser diode,”Opt.Express 25,26289-26295(2017).
    29.K.Goda and B.Jalali,“Dispersive Fourier transformation for fast continuous single-shot measurements,”Nat.Photonics 7,102-112(2013).
    30.L.G.Wright,D.N.Christodoulides,and F.W.Wise,“Spatiotemporal mode-locking in multimode fiber lasers,”Science 358,94-97(2017).
    31.W.Fu,L.G.Wright,P.Sidorenko,S.Backus,and F.W.Wise,“Several new directions for ultrafast fiber lasers[Invited],”Opt.Express 26,9432-9463(2018).
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.