AIE-active Metal-organic Coordination Complexes Based on Tetraphenylethylene Unit and Their Applications
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:AIE-active Metal-organic Coordination Complexes Based on Tetraphenylethylene Unit and Their Applications
  • 作者:Bo ; Jiang ; Chang-Wei ; Zhang ; Xue-Liang ; Shi ; Hai-Bo ; Yang
  • 英文作者:Bo Jiang;Chang-Wei Zhang;Xue-Liang Shi;Hai-Bo Yang;Shanghai Key Laboratory of Green Chemistry and Chemical Processes,School of Chemistry and Molecular Engineering,East China Normal University;
  • 英文关键词:Aggregation-induced emission;;Self-assembly;;Metal-organic coordination complexes;;Tetraphenylethylene;;Sensor
  • 中文刊名:GFZK
  • 英文刊名:高分子科学(英文版)
  • 机构:Shanghai Key Laboratory of Green Chemistry and Chemical Processes,School of Chemistry and Molecular Engineering,East China Normal University;
  • 出版日期:2019-03-19
  • 出版单位:Chinese Journal of Polymer Science
  • 年:2019
  • 期:v.37
  • 基金:financially supported by STCSM (No. 16XD 1401000);; Program for Changjiang Scholars and Innovative Research Team in University
  • 语种:英文;
  • 页:GFZK201904006
  • 页数:11
  • CN:04
  • ISSN:11-2015/O6
  • 分类号:88-98
摘要
Tetraphenylethylene(TPE) and its derivatives, as the widely used aggregation-induced emission(AIE) fluorophores, have attracted rapidly growing interest in the fields of material science and biological technology due to their unique light-emitting mechanism—they are nearly non-emissive in dilute solution but emit brilliant fluorescence in the aggregate state because of the restriction of intramolecular motion. Coordination-driven self-assembly, which provides a highly effective method to put the individual chromophores together, is consistent with the AIE mechanism of TPE. During the past few years, some AIE-active metal-organic coordination complexes have been successfully constructed via coordination-driven self-assembly, and their AIE properties and applications have been investigated. In this review, we survey the recent progress on TPE-based metal-organic coordination complexes and their applications in fluorescence sensors, cell imaging, and light-emitting materials. We will introduce them from three different types of structures: metallacycles, metallacages, and metal-organic frameworks(MOFs).
        Tetraphenylethylene(TPE) and its derivatives, as the widely used aggregation-induced emission(AIE) fluorophores, have attracted rapidly growing interest in the fields of material science and biological technology due to their unique light-emitting mechanism—they are nearly non-emissive in dilute solution but emit brilliant fluorescence in the aggregate state because of the restriction of intramolecular motion. Coordination-driven self-assembly, which provides a highly effective method to put the individual chromophores together, is consistent with the AIE mechanism of TPE. During the past few years, some AIE-active metal-organic coordination complexes have been successfully constructed via coordination-driven self-assembly, and their AIE properties and applications have been investigated. In this review, we survey the recent progress on TPE-based metal-organic coordination complexes and their applications in fluorescence sensors, cell imaging, and light-emitting materials. We will introduce them from three different types of structures: metallacycles, metallacages, and metal-organic frameworks(MOFs).
引文
1 Datta, S.; Saha, M. L.; Stang, P. J. Hierarchical assemblies ofsupramolecular coordination complexes. Acc. Chem. Res. 2018,51, 2047-2063.
    2 Cook, T. R.; Stang, P. J. Recent developments in the preparation and chemistry of metallacycles and metallacages via coordination. Chem. Rev. 2015, 115, 7001-7045.
    3 Cook, T. R.; Zheng, Y. R.; Stang, P. J. Metal-organic frameworks and self-assembled supramolecular coordination complexes:Comparing and contrasting the design, synthesis, and functionality of metal-organic materials. Chem. Rev. 2013, 113,734-777.
    4 Chen, L. J.; Yang, H. B. Construction of stimuli-responsive functional materials via hierarchical self-assembly involving coordination interactions. Acc. Chem. Res. 2018, 51,2699-2710.
    5 Chen, L. J.; Yang, H. B.; Shionoya, M. Chiral metallosupramolecular architectures. Chem. Soc. Rev. 2017, 46, 2555-2576.
    6 Wang, W.; Wang, Y. X.; Yang, H. B. Supramolecular transformations within discrete coordination-driven supramolecular architectures. Chem. Soc. Rev. 2016, 45, 2656-2693.
    7 Xu, L.; Wang, Y. X.; Chen, L. J.; Yang, H. B. Construction of multiferrocenyl metallacycles and metallacages via coordination-driven self-assembly:From structure to functions. Chem.Soc. Rev. 2015, 44, 2148-2167.
    8 Fujita, M.; Tominaga, M.; Hori, A.; Therrien, B. Coordination assemblies from a Pd(Ⅱ)-cornered square complex. Acc. Chem.Res. 2005, 38, 369-378.
    9 Caulder, D. L.; Raymond, K. N. Supermolecules by design.Acc. Chem. Res. 1999, 32, 975-982.
    10 Oliveri, C. G.; Ulmann,P. A.; Wiester, M. J.; Mirkin,C. A.Heteroligated supramolecular coordination complexes formed via the halide-induced ligand rearrangement reaction. Acc.Chem. Res. 2008, 41, 1618-1629.
    11 Eryazici, I.; Moorefield, C. N.; Newkome, G. R. Square-planar Pd(II), Pt(II), and Au(Ⅲ)terpyridine complexes:Their syntheses, physical properties, supramolecular constructs, and biomedical activities. Chem. Rev. 2008, 108, 1834-1895.
    12 Nitschke, J. R. Construction, substitution, and sorting of metallo-organic structures via subcomponent self-assembly.Acc. Chem. Res. 2007, 40, 103-112.
    13 Han, Y. F.; Jin, G. X. Half-sandwich iridium-and rhodiumbased organometallic architectures:Rational design, synthesis,characterization, and applications. Acc. Chem. Res. 2014, 47,3571-3579.
    14 Clever, G. H.; Punt, P. Cation-anion arrangement patterns in self-assembled Pd2L4 and Pd4L8 coordination cages. Acc.Chem. Res. 2017, 50, 2233-2243.
    15 Mukherjee,S.; Mukherjee,P. S. Versatility of azide in serendipitous assembly of copper(Ⅱ)magnetic polyclusters.Acc. Chem. Res. 2013, 46, 2556-2566.
    16 Yan,X.; Li,S.; Cook,T. R.; Ji,X.; Yao, Y.; Pollock,J. B.; Shi,Y.; Yu, G.; Li, J.; Huang, F.; Stang, P. J. Hierarchical self-assembly:Well-defined supramolecular nanostructures and metallohydrogels via amphiphilic discrete organoplatinum(Ⅱ)metallacycles. J. Am. Chem. Soc. 2013, 135, 14036-14039.
    17 Pollock, J. B.; Schneider, G. L.; Cook, T. R.; Davies, A. S.;Stang, P. J. Tunable visible light emission of self-assembled rhomboidal metallacycles. J. Am. Chem. Soc. 2013,135,13676-13679.
    18 Yan, X.; Cook, T. R.; Pollock, J. B.; Wei, P.; Zhang, Y.; Yu,Y.; Huang, F.; Stang, P. J. Responsive supramolecular polymer metallogel constructed by orthogonal coordination-driven selfassembly and host/guest interactions. J. Am. Chem. Soc. 2014,136, 4460-4463.
    19 Neti, V. S. P. K.; Saha, M. L.; Yan, X.; Zhou, Z.; Stang, P. J.Coordination-driven self-assembly of fullerene-functionalized Pt(II)metallacycles. Organometallics 2015, 34, 4813-4815.
    20 Chen, L. J.; Zhao, G. Z.; Jiang, B.; Sun, B.; Wang, M.; Xu, L.;He,J.; Abliz, Z.; Tan,H.; Li,X.; Yang, H. B. Smart stimuli-re-sponsive spherical nanostructures constructed from supramolecular metallodendrimers via hierarchical self-assembly. J.Am. Chem. Soc. 2014, 136, 5993-6001.
    21 Chen, L. J.; Jiang, B.; Yang, H. B. Transformable nanostructures of cholesteryl-containing rhomboidal metallacycles through hierarchical self-assembly. Org. Chem. Front. 2016, 3,579-587.
    22 Li,Z. Y.; Zhang, Y.; Zhang,C. W.; Chen, L. J.; Wang,C.; Tan,H.; Yu, Y.; Li, X.; Yang, H. B. Cross-linked supramolecular polymer gels constructed from discrete multi-pillar[5]arene metallacycles and their multiple stimuli-responsive behavior. J.Am. Chem. Soc. 2014, 136, 8577-8589.
    23 Jiang, B.; Zhang, J.; Ma,J.; Zheng, W.; Chen,L. J.; Sun,B.; Li,C.; Hu, B.; Tan, H.; Li, X.; Yang, H. B. Vapochromic behavior of a chair-shaped supramolecular metallacycle with ultra-stability. J. Am. Chem. Soc. 2016, 138, 738-741.
    24 Jiang, B.; Chen, L. J.; Zhang, Y.; Tan, H.; Xu, L.; Yang, H. B.Hierarchical self-assembly of triangular metallodendrimers into the ordered nanostructures. Chin. Chem. Lett. 2016, 27,607-612.
    25 Jiang, B.; Zhang, J.; Zheng, W.; Chen, L. J.; Yin, G. Q.; Wang,Y. X.; Sun, B.; Li, X.; Yang, H. B. Construction of alkynylplatinum(Ⅱ)bzimpy-functionalized metallacycles and their hierarchical self-assembly behavior in solution promoted by Pt…Pt andπ-πinteractions. Chem. Eur.J. 2016, 22, 14664-14671.
    26 Zhang, Y.; Zhou, Q. F.; Huo, G.; Yin, G. Q.; Zhao, X.; Jiang,B.; Tan, H.; Li, X.; Yang, H. B. Hierarchical self-assembly of an alkynylplatinum(11)bzimpy-functionalized metallacage via Pt…Pt andπ-πInteractions. Inorg. Chem. 2018,57,3516-3520.
    27 Zhang,J.; Marega,R.; Chen,L. J.; Wu,N. W.; Xu,X. D.;Muddiman, D. C.; Bonifazi, D.; Yang, H. B. Hierarchical selfassembly of supramolecular hydrophobic metallacycles into ordered nanostructures. Chem. Asian J. 2014, 9, 2928-2936.
    28 Wu,N. W.; Chen,L. J.; Wang, C.; Ren,Y. Y.; Li,X.; Xu, L.;Yang, H. B. Hierarchical self-assembly of a discrete hexagonal metallacycle into the ordered nanofibers and stimuli-responsive supramolecular gels. Chem. Commun. 2014, 50,4231-4233.
    29 Wang, W.; Zhang, Y.; Sun, B.; Chen, L. J.; Xu, X. D.; Wang,M.; Li, X.; Yu, Y.; Jiang, W.; Yang, H. B. The construction of complex multicomponent supramolecular systems via the combination of orthogonal self-assembly and the self-sorting approach. Chem. Sci. 2014, 5, 4554-4560.
    30 Zhao, G. Z.; Chen, L. J.; Wang,W.; Zhang, J.; Yang, G.;Wang, D. X.; Yu, Y.; Yang, H. B. Stimuli-responsive supramolecular gels through hierarchical self-assembly of discrete rhomboidal metallacycles. Chem. Eur. J. 2013. 19,10094-10100.
    31 Wang, X. Q.; Wang,W.; Yin,G. Q.; Wang,Y. X.; Zhang, C.W.; Shi, J.; Yu, Y.; Yang, H. B. Cross-linked supramolecular polymer metallogels constructed via a self-sorting strategy and their multiple stimulus-response behaviors. Chem. Commun.2015, 51, 16813-16816.
    32 McConnell, A. J.; Wood, C. S.; Neelakandan, P. P.; Nitschke, J.R. Stimuli-responsive metal-ligand assemblies. Chem. Rev.2015,115, 7729-7793.
    33 Luo, J.; Xie,Z.; Lam,J. W. Y.; Cheng,L.; Chen,H.; Qiu,C.;Kwok, H. S.; Zhan, X.; Liu, D.; Tang, B. Z. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem.Commun. 2001, 1740-1741.
    34 Mei,J.; Leung,N. L. C.; Kwok,R. T. K.; Lam,J. W. Y.; Tang,B. Z. Aggregation-induced emission:Together we shine, united we soar! Chem. Rev. 2015, 115, 11718-11940.
    35 Ding,D.; Li,K.; Liu,B.; Tang,B. Z. Bioprobes based on AIE fluorogens. Acc. Chem. Res. 2013, 46, 2441-2453.
    36 Hong, Y.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induce emission. Chem. Soc. Rev. 2011, 40, 5361-5388.
    37 Feng, G.; Liu, B. Aggregation-induced emission(AIE)dots:Emerging theranostic nanolights. Acc. Chem. Res. 2018, 51,1404-1414.
    38 Liu, Y.; Deng,C.; Tang, L.; Qin, A.; Hu, R.; Sun,J. Z.; Tang,B. Z. Specific detection of D-glucose by a tetraphenylethenebased fluorescent sensor. J. Am. Chem. Soc. 2011, 133,660-663.
    39 Wang,J.; Mei,J.; Hu,R.; Sun,J. Z.; Qin,A.; Tang,B. Z. Click synthesis,aggregation-induced emission,E/Z isomerization,self-organization, and multiple chromisms of pure stereoisomers of a tetraphenylethene-cored luminogen. J. Am. Chem.Soc. 2012,134, 9956-9966.
    40 Xu, S.; Yuan, Y.; Cai, X.; Zhang, C. J.; Hu, F.; Liang, J.;Zhang, G.; Zhang, D.; Liu, B. Tuning the singlet-triplet energy gap:A unique approach to efficient photosensitizers with aggregation-induced emission(AIE)characteristics. Chem. Sci.2015, 6, 5824-5830.
    41 Zhang, C. W.; Ou, B.; Jiang, S. T.; Yin, G. Q.; Chen, L. J.; Xu,L.; Li, X.; Yang, H. B. Cross-linked AIE supramolecular polymer gels with multiple stimuli-responsive behaviours constructed by hierarchical self-assembly. Polym. Chem. 2018, 9,2021-2030.
    42 Zhang, C. W.; Jiang, S. T.; Yin, G. Q.; Li, X.; Zhao, X. L.;Yang H. B. Dual stimuli-responsive cross-linker AIE supramolecular polymer constructed through hierarchical self-assembly. Isr. J. Chem. 2018.
    43 Zheng, W.; Yang, G.; Jiang, S.; Shao, N.; Yin, G. Q.; Xu,L.;Li, X.; Chen,G.; Yang, H. B. A Tetraphenylethylene(TPE)-based supra-amphiphilic organoplatinum(Ⅱ)metallacycle and its self-assembly behaviour. Mater. Chem. Front. 2017, 1,1823-1828.
    44 Chen,L. J.; Ren,Y. Y.; Wu,N. W.; Sun,B.; Ma,J.; Zhang,L.;Tan, H.; Liu, M.; Li, X.; Yang, H. B. Hierarchical self-assembly of discrete organoplatinum(Ⅱ)metallacycles with polysaccharide via electrostatic interactions and their application for heparin detection. J. Am. Chem. Soc. 2015, 137, 11725-11735.
    45 Yin,G. Q.; Wang, H.; Wag,X. Q.; Song,B.; Chen,L. J.;Wang,L.; Hao, X. Q.; Yang,H. B.; Li, X. Self-assembly of emissive supramolecular rosettes with increasing complexity using multitopic terpyridine ligands. Nat. Commun. 2018, 9,567.
    46 Zhang, M.; Li, S.; Yan, X.; Zhou, Z.; Saha,M. L.; Wang, Y. C.;Stang, P. J. Fluorescent metallacycle-cored polymers via covalent linkage and their use as contrast agents for cell imaging.Proc. Natl. Acad. Sci. 2016,113, 11100-11105.
    47 Yan, X.; Wang, H.; Hauke, C. E.; Cook, T. R.; Wang, M.;Saha, M. L.; Zhou, Z.; Zhang, M.; Li, X.; Huang, F.; Stang, P.J. A suite of tetraphenylethylene-based discrete organoplatinum(Ⅱ)metallacycles:Controllable structure and stoichiometry,aggregation-induced emission, and nitroaromatics sensing. J.Am. Chem. Soc. 2015, 137, 15276-15286.
    48 Yan, X.; Wang,W.; Cook,T. R.; Zhang,M.; Saha,M. L.;Zhou, Z.; Li, X.; Huang, F.; Stang, P. J. Light-emitting superstructures with anion effect:Coordination-driven self-assembly of pure tetraphenylethylene metallacycles and metallacages. J.Am. Chem. Soc. 2016, 138, 4580-4588.
    49 Zhou,Z.; Yan, X.; Saha,M. L.; Zhang,M.; Wang, M.; Li,X.;Stang, P. J. Immobilizing tetraphenylethylene into fused metallacycles:Shape effects on fluorescence emission. J. Am.Chem. Soc. 2016,138, 13131-13134.
    50 Tian, Y.; Yan, X.; Saha, M. L.; Niu, Z.; Stang, P. J. Hierarchical self-assembly of responsive organoplatinum(Ⅱ)metallacycleTMV complexes with turn-on fluorescence. J. Am. Chem. Soc.2016,138, 12033-12036.
    51 Yu, G.; Zhang, M.; Saha, M. L.; Mao, Z.; Chen, J.; Yao, Y.;Zhou,Z.;Liu,Y.;Gao,C.;Huang,F.;Chen,X.;Stang,P.J.Antitumor activity of a unique polymer that incorporates a fluorescent self-assembled metallacycle. J. Am. Chem. Soc.2017,139, 15940-15949.
    52 Yan,X.; Cook,T. R.; Wang,P.; Huang,F.; Stang,P. J. Highly emissive platinum(II)metallacages. Nat. Chem. 2015, 7,342-348.
    53 Zhang,M.; Saha, M. L.; Wang,M.; Zhou,Z.; Song, B.; Lu, C.;Yan, X.; Li, X.; Huang, F.; Yin, S.; Stang, P. J. Multicomponent platinum(II)cages with tunable emission and amino acid sensing. J. Am. Chem. Soc. 2017, 139, 5067-5074.
    54 Lu,C.; Zhang, M.; Tang,D.; Yan, X.; Zhang, Z.; Zhou, Z.;Song, B.; Wang,H.; Li,X.; Yin, S.; Sepehrpour,H.; Stang,P.J. Fluorescent metallacage-core supramolecular polymer gel formed by orthogonal metal coordination and host-guest interactions. J. Am. Chem. Soc. 2018, 140, 7674-7680.
    55 Sun,Y.; Yao, Y.; Wang, H.; Fu, W.; Chen,C.; Saha,M. L.;Zhang, M.; Datta, S.; Zhou, Z.; Yu, H.; Li, X.; Stang, P. J. Selfassembly of metallacages into multidimensional suprastructures with tunable emissions. J. Am. Chem. Soc. 2018, 140,12819-12828.
    56 Yu,G.; Cook,T. R.; Li,Y.; Yan,X.; Wu,D.; Shao, L.; Shen,J.; Tang,G.; Huang, F.; Chen, X.; Stang, P. J. Tetraphenylethene-based highly emissive metallacage as a component of theranostic supramolecular nanoparticles. Proc. Natl.Acad. Sci. 2016, 113. 13720-13725.
    57 Shustova, N. B.; McCarthy, B. D.; Dinca, M. Turn-on in tetraphenylethylene-based metal-organic frameworks:An alternative to aggregation-induced emission. J. Am. Chem. Soc. 2011,133, 20126-20129.
    58 Shustova, N. B.; Cozzoline,A. F.; Reineke,S.; Baldo,M.;Dinca, M. Selective turn-on ammonia sensing enabled by hightemperature fluorescence in metal-organic frameworks with open metal sites. J. Am. Chem. Soc. 2013, 135, 13326-13329.
    59 Shustova, N.; Cozzolino, A. F.; Dinca, M. Conformational locking by design:Relating strain energy with luminescence and stability in rigid metal-organic frameworks. J. Am. Chem.Soc. 2012,134, 19596-19599.
    60 Shustova, N. B.; Ong, T.; Cozzolino, A. F.; Michaelis, V. K.;Griffin, R. G.; Dinca, M. Phenyl ring dynamics in a tetraphenylethylene-bridged metal-organic framework:Implications for the mechanism of aggregation induced emission. J.Am. Chem. Soc. 2012,134, 15061-15070.
    61 Zhang, Q.; Su,J.; Feng, D.; Wei, Z.; Zou,X.; Zhou,H. C.Piezofluorochromic metal-organic framework:A microscissor lift. J. Am. Chem. Soc. 2015,137, 10064-10067.
    62 Wei, Z.; Gu, Z. Y.; Arvapallu, R. K.; Chen, Y. P.; McDougald,Jr. R. N.; Ivy, J. F.; Yakovenko, A. A.; Feng, D.; Omary, M.A.; Zhou, H. C. Rigidifying fluorescent linkers by metal-organic framework formation for fluorescence blue shift and quantum yield enhancement. J. Am. Chem. Soc. 2014, 136,8269-8276.
    63 Zhang, M.; Feng, G.; Song, Z.; Zhou, Y. P.; Chao, H. Y.; Yuan,D.; Tan, T. T. Y.; Guo, Z.; Hu, Z.; Tang, B. Z.; Liu, B.; Zhao,D. Two-dimensional metal-organic framework with wide channels and responsive turn-on fluorescence for the chemical sensing of volatile organic compounds. J. Am. Chem. Soc. 2014,136, 7241-7244.
    64 Hu, Z.; Lustig, W. P.; Zhang, J.; Zheng, C.;Wang, H.; Teat, S.J.; Gong, Q.; Rudd, N. D.; Li, J. Effective detection of mycotoxins by a highly luminescent metal-organic framework. J.Am. Chem. Soc. 2015, 137, 16209-16215.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.