基于径流和积雪资料的水文模型多目标率定
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Multi-objective optimization of hydrological model based on runoff and snow data
  • 作者:何柯琪 ; 高超 ; 谢京凯 ; 许月萍
  • 英文作者:HE Keqi;GAO Chao;XIE Jingkai;XU Yueping;Institute of Hydrology and Water Resources, College of Civil Engineering and Architecture, Zhejiang University;
  • 关键词:水文模型 ; 径流模拟 ; 积雪模拟 ; 多目标率定
  • 英文关键词:hydrological model;;runoff simulation;;snow simulation;;multi-objective calibration
  • 中文刊名:SFXB
  • 英文刊名:Journal of Hydroelectric Engineering
  • 机构:浙江大学建筑工程学院水文与水资源工程研究所;
  • 出版日期:2018-09-18 17:13
  • 出版单位:水力发电学报
  • 年:2019
  • 期:v.38;No.200
  • 基金:国家自然科学基金(91547106);; 国家重点研发计划政府间国际科技创新合作重点专项(2016YFE0122100)
  • 语种:中文;
  • 页:SFXB201903008
  • 页数:10
  • CN:03
  • ISSN:11-2241/TV
  • 分类号:69-78
摘要
以雅鲁藏布江奴下水文站以上流域作为研究区,采用HBV水文模型(HydrologiskaByr?ns Vattenbalansavdelning model)对研究区域的积雪和径流进行模拟。提出了一种同时考虑径流、雪深和积雪覆盖面积的多目标优化方法对水文模型的参数进行率定,并同仅考虑径流和雪深的率定结果进行了对比。结果表明,率定时仅考虑径流和雪深时,HBV模型能较好地模拟研究区的径流过程,但对雪深变化过程的模拟效果欠佳;率定时增加积雪覆盖面积目标函数后,模型能精确判断流域积雪覆盖情况,径流的模拟效率系数也有所提升,表明同时基于径流、积雪覆盖面积和雪深数据的HBV水文模型可以更好地预测和模拟研究区积雪和径流变化。
        This study applies the Hydrologiska Byr?ns Vattenbalansavdelning(HBV) model to simulations of snow and runoff processes in the upper Yalung Zangbu River over its basin above the Nuxia gauging station. We develop a multi-objective optimization method considering river runoff, snow depth, and snow coverage to calibrate the model's parameters; and compare the simulation results with those considering only river runoff and snow depth. The results show that the HBV model based on measurements of runoff and snow depth simulates the runoff quite well, but its simulations of snow depth are poor. Adding snow coverage to the model calibration can improve the simulation accuracy of snow coverage significantly,and also improves efficiency coefficient of river runoff. Thus, changes in snow and runoff in the study area can be better predicted by this HBV model that is calibrated against the measurements of river runoff,snow coverage, and snow depth.
引文
[1]SOLOMON S,QIN D H,MANNING M,et al.Contribution of working group I to the fourth assessment report of the inter-government panel on climate change[M]//Climate change 2007:The physical science basis.Cambridge,UK:Cambridge University Press,2007.
    [2]高超,文化,宣伟栋,等.基于分段三伽玛分布的降雨偏差纠正方法[J].水科学进展,2018,29(2):169-178.GAO Chao,WEN Hua,XUAN Weidong,et al.A separated three-gamma bias correction method for precipitation[J].Advances in Water Science,2018,29(2):169-178.(in Chinese)
    [3]张顺利,陶诗言.雅鲁藏布江流域地-气系统的水平衡[J].水科学进展,2001,12(4):509-515.ZHANG Shunli,TAO Shiyan.Water balance in landatmospheric system over the Yalu Tsangpo River Basin[J].Advances in Water Science,2001,12(4):509-515.(in Chinese)
    [4]芮孝芳.流域水文模型研究中的若干问题[J].水科学进展,1997,8(1):94-98.RUI Xiaofang.Some problems in research of watershed hydrology model[J].Advances in Water Science,1997,8(1):94-98.(in Chinese)
    [5]BERGSTR?M S,SINGH V P.The HBV model[M].Little Town,Colorado,USA:Water Resources Publications,1995.
    [6]康尔泗,程国栋,蓝永超,等.西北干旱区内陆河流域出山径流变化趋势对气候变化响应模型[J].中国科学(D辑:地球科学),1999,29(S1):47-54.KANG Ersi,CHENG Guodong,LAN Yongchao,et al.Climate change response model of mountainous runoff changes in the continental river basin in the arid northwest China[J].Science in China Series D:Earth Sciences,1999,29(S1):47-54.(in Chinese)
    [7]包为民,张坤,王红艳,等.参数线性化率定方法在HBV-IWS模型中的应用[J].水利学报,2013,44(10):1210-1216.BAO Weimin,ZHANG Kun,WANG Hongyan,et al.Application of the linearized parameter calibration method for HBV-IWS model[J].Journal of Hydraulic Engineering,2013,44(10):1210-1216.(in Chinese)
    [8]赵彦增,张建新,章树安,等.HBV模型在淮河官寨流域的应用研究[J].水文,2007,27(2):57-60.ZHAO Yanzeng,ZHANG Jianxin,ZHANG Shu’an,et al.Application research of HBV model in Guanzhai Basin of Huaihe River[J].Journal of China Hydrology,2007,27(2):57-60.(in Chinese)
    [9]马勇刚,黄粤,陈曦,等.新疆积雪覆盖时空变异分析[J].水科学进展,2013,24(4):483-489.MA Yonggang,HUANG Yue,CHEN Xi,et al.Analyzing spatial-temporal variability of snow cover in Xinjiang[J].Advances in Water Science,2013,24(4):483-489.(in Chinese)
    [10]CHE T,XIN L,JIN R,et al.Snow depth derived from passive microwave remote-sensing data in China[J].Annals of Glaciology,2008,49(1):145-154.
    [11]DAI L Y,CHE T,WANG J,et al.Snow depth and snow water equivalent estimation from AMSR-E data based on a priori snow characteristics in Xinjiang,China[J].Remote Sensing of Environment,2012,127:14-29.
    [12]DAI L Y,CHE T,DING Y J.Inter-calibrating SMMR,SSM/I and SSMI/S data to improve the consistency of snow-depth products in China[J].Remote Sensing,2015,7(6):7212-7230.
    [13]MARTINEC J,RANGO A,MAJOR E.Snowmelt-runoff model(SRM)user's manual[M].USA:NASA Reference Publication,1983.
    [14]LI X,WANG L,CHEN D,et al.Near-surface air temperature lapse rates in the mainland China during1962-2011[J].Journal of Geophysical Research Atmospheres,2013,118(14):7505-7515.
    [15]MARCHANE A,JARLAN L,HANICH L,et al.Assessment of daily MODIS snow cover products to monitor snow cover dynamics over the Moroccan Atlas mountain range[J].Remote Sensing of Environment,2015,160:72-86.
    [16]PARAJKA J,BL?SCHL G.The value of MODIS snow cover data in validating and calibrating conceptual hydrologic models[J].Journal of Hydrology,2008,358(3):240-258.
    [17]REYNOLDS J E,HALLDIN S,SEIBERT J,et al.Definitions of climatological and discharge days:Do they matter in hydrological modelling?[J].Hydrological Sciences Journal,2018,63(5):1-9.
    [18]AKHTAR M,AHMAD N,BOOIJ M J.Use of regional climate model simulations as input for hydrological models for the Hindukush-Karakorum-Himalaya region[J].Hydrology and Earth System Sciences,2009,13(7),1075-1089.
    [19]KNOBEN W J M.Estimation of non-stationary hydrological model parameters for the Polish Welna catchment[D].Enschede,the Netherlands:University of Twente,2013.
    [20]World Meteorological Organization.Forecast verification:Issues,methods and FAQ[R].Montreal,Canada:WWRP/WGNE Joint Working Group on Verification,2015.
    [21]HO-HUU V,HARTJES S,VISSER H G,et al.An improved MOEA/D algorithm for bi-objective optimization problems with complex Pareto fronts and its application to structural optimization[J].Expert Systems with Applications,2018,92:430-446.
    [22]ZHANG Q F,LI H.MOEA/D:A multiobjective evolutionary algorithm based on decomposition[J].IEEETransactions on Evolutionary Computation 2007,11(6):712-731.
    [23]车涛,李新,高峰.青藏高原积雪深度和雪水当量的被动微波遥感反演[J].冰川冻土,2004,26(3):363-368.CHE Tao,LI Xin,GAO Feng.Estimation of snow water equivalent in the Tibetan Plateau using passive microwave remote sensing data(SSM/I)[J].Journal of Glaciology and Geocryology,2004,26(3):363-368.(in Chinese)
    [24]车涛,李新.利用被动微波遥感数据反演我国积雪深度及其精度评价[J].遥感技术与应用,2004,19(5):301-306.CHE Tao,LI Xin.Retrieval of snow depth in China by passive microwave remote sensing data and its accuracy assessment[J].Remote Sensing Technology and Application,2004,19(5):301-306.(in Chinese)
    [25]陈敏,高璐,曹永强.2001-2014年阿克苏河流域山区积雪时空变化分析[J].水力发电学报,2016,35(9):28-37.CHEN Min,GAO Lu,CAO Yongqiang.Spatio-temporal variation analysis of mountain snow cover in Aksu River basin during 2001-2014[J].Journal of Hydroelectric Engineering,2016,35(9):28-37.(in Chinese)
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.