生物活性支架在骨组织工程中的应用及进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application and progress of bioactive scaffolds in bone tissue engineering
  • 作者:冷一 ; 李祖浩 ; 任广凯 ; 王中汉 ; 高超华 ; 史晨玉 ; 刘贺 ; 吴丹凯
  • 英文作者:Leng Yi;Li Zuhao;Ren Guangkai;Wang Zhonghan;Gao Chaohua;Shi Chenyu;Liu He;Wu Dankai;Department of Orthopedics, Second Hospital of Jilin University;
  • 关键词:骨再生 ; 聚合物 ; 组织工程 ; 骨科材料 ; 生物活性材料 ; 3D打印 ; 骨缺损 ; 仿生支架 ; 功能化技术
  • 英文关键词:,Bone Regeneration;;Polymers;;Tissue Engineering
  • 中文刊名:XDKF
  • 英文刊名:Chinese Journal of Tissue Engineering Research
  • 机构:吉林大学第二医院骨科;
  • 出版日期:2018-12-26
  • 出版单位:中国组织工程研究
  • 年:2019
  • 期:v.23;No.863
  • 基金:国家自然科学基金(81671804,81171681,81772456)~~
  • 语种:中文;
  • 页:XDKF201906026
  • 页数:8
  • CN:06
  • ISSN:21-1581/R
  • 分类号:149-156
摘要
背景:随着生物打印技术与化学合成技术的进展,将这些技术纳入组织工程支架制作,用于促进骨再生已成为当今研究的热点。目的:介绍生物活性骨组织工程支架,讨论并总结不同制作材料在促进骨再生及治疗骨缺损方面的应用。方法:由第一作者于2018年7至9月以"bone tissue engineer,3D-printed,scaffold,composite scaffold"为关键词,检索2003至2018年期间PubMed、Web of Science、SpringerLink、Medline数据库发表的相关文献。初检文章237篇,筛选后对70篇文章进行分析。结果与结论:生物活性支架主要包括金属材料复合支架、生物陶瓷材料复合支架与聚合物材料复合支架,目前已被应用于骨组织工程中。已开发了几个具有临床转化成功的骨和软骨构建体实例,其中陶瓷和聚合物复合材料与天然骨具有相似的组织组成和良好的生物相容性,可能获得最大成功。若可将现有的生物活性材料、生长因子、功能化技术和仿生支架设计相结合,在未来可能为特定患者创建复杂的骨组织工程支架,这也为治疗各种具有挑战性的疾病提供了希望,包括骨肿瘤、骨质疏松症和严重的骨缺损。
        BACKGROUND: With the advancement of bio-printing technology and chemical synthesis technology, the incorporation of these technologies into tissue engineering scaffolds for promoting bone regeneration has become a hot topic in current research. OBJECTIVE: To introduce bioactive bone tissue engineering scaffolds, and to discuss and summarize the application of different scaffold materials in promoting bone regeneration and treating bone defects. METHODS: The first author searched PubMed, Web of Science, SpringerLink, and Medline databases in July to September 2018 for relevant articles published from 2003 to 2018 using the keywords of "bone tissue engineer,3D-printed, scaffold, composite scaffold". Initially, 237 articles were retrieved, and only 70 articles were eligible for result analysis. RESULTS AND CONCLUSION: Bioactive scaffolds mainly include metal composite scaffolds, bioceramic composite scaffolds and polymer composite scaffolds, which have been used in bone tissue engineering. Several examples of successful bone and cartilage construction with clinical transformation have been developed, in which bioceramic and polymer composites may be the most successful due to their similar tissue composition and good biocompatibility with natural bone. And if combined with existing bioactive materials, growth factors, functionalization techniques and biomimetic scaffold designs, the potential for creating complex bone tissue engineering scaffolds for patient-specific applications in the future is enormous. This also provides hope for the treatment of a variety of challenging diseases, including bone tumor, osteoporosis and severe bone defects.
引文
[1]Ashman O,Phillips AM.Treatment of non-unions with bone defects:which option and why?Injury.2013;44 Suppl 1:S43-45.
    [2]Thaller PH,Furmetz J,Wolf F,et al.Limb lengthening with fully implantable magnetically actuated mechanical nails(PHENIX((R)))-preliminary results.Injury.2014;45 Suppl 1:S60-65.
    [3]Hollister SJ.Porous scaffold design for tissue engineering.Nat Mater.2005;4(7):518-524.
    [4]Garcia-Gareta E,Coathup MJ,Blunn GW.Osteoinduction of bone grafting materials for bone repair and regeneration.Bone.2015;81:112-121.
    [5]Brydone AS,Meek D,Maclaine S.Bone grafting,orthopaedic biomaterials,and the clinical need for bone engineering.Proc Inst Mech Eng H.2010;224(12):1329-1343.
    [6]Higgins A,Glover M,Yang Y,et al.EXOGEN ultrasound bone healing system for long bone fractures with non-union or delayed healing:a NICE medical technology guidance.Appl Health Econ Health Policy.2014;12(5):477-484.
    [7]Faour O,Dimitriou R,Cousins CA,Giannoudis PV.The use of bone graft substitutes in large cancellous voids:any specific needs?Injury.2011;42 Suppl 2:S87-90.
    [8]O'Keefe RJ,Mao J.Bone tissue engineering and regeneration:from discovery to the clinic--an overview.Tissue Eng Part B Rev.2011;17(6):389-392.
    [9]Bose S,Roy M,Bandyopadhyay A.Recent advances in bone tissue engineering scaffolds.Trends Biotechnol.2012;30(10):546-554.
    [10]Wu S,Liu X,Yeung KWK,et al.Biomimetic porous scaffolds for bone tissue engineering.Mater Sci Eng R.2014;80:1-36.
    [11]Webber MJ,Khan OF,Sydlik SA,et al.R.A perspective on the clinical translation of scaffolds for tissue engineering.Ann Biomed Eng.2015;43(3):641-656.
    [12]Boskey AL,Roy R.Cell culture systems for studies of bone and tooth mineralization.Chem Rev.2008;108(11):4716-4733.
    [13]Young MF.Bone matrix proteins:their function,regulation,and relationship to osteoporosis.Osteoporos Int.2003;14 Suppl 3:S35-42.
    [14]Kim SS,Sun Park M,Jeon O,et al.Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering.Biomaterials.2006;27(8):1399-1409.
    [15]Hench LL.Opening paper 2015-Some comments on Bioglass:Four Eras of Discovery and Development.Biomed Glasses.2015;1(1):1-11.
    [16]Albrektsson T,Johansson C.Osteoinduction,osteoconduction and osseointegration.Eur Spine J.2001;10 Suppl 2:S96-101.
    [17]Vaccaro AR.The role of the osteoconductive scaffold in synthetic bone graft.Orthopedics.2002;25(5 Suppl):s571-578.
    [18]Gao C,Deng Y,Feng P,et al.Current progress in bioactive ceramic scaffolds for bone repair and regeneration.Int J Mol Sci.2014;15(3):4714-4732.
    [19]Loh QL,Choong C.Three-dimensional scaffolds for tissue engineering applications:role of porosity and pore size.Tissue Eng Part B Rev.2013;19(6):485-502.
    [20]Johnson T,Bahrampourian R,Patel A,et al.Fabrication of highly porous tissue-engineering scaffolds using selective spherical porogens.Biomed Mater Eng.2010;20(2):107-118.
    [21]Dehghani F,Annabi N.Engineering porous scaffolds using gas-based techniques.Curr Opin Biotechnol.2011;22(5):661-666.
    [22]Huang Y,Han S,Pang X,et al.Electrodeposition of porous hydroxyapatite/calcium silicate composite coating on titanium for biomedical applications.Appl Surf Sci.2013;271:299-302.
    [23]Ligon SC,Liska R,Stampfl J,et al.Polymers for 3D Printing and Customized Additive Manufacturing.Chem Rev.2017;117(15):10212-10290.
    [24]Kim K,Yeatts A,Dean D,et al.Stereolithographic bone scaffold design parameters:osteogenic differentiation and signal expression.Tissue Eng Part B Rev.2010;16(5):523-539.
    [25]Do AV,Khorsand B,Geary SM,et al.3D Printing of Scaffolds for Tissue Regeneration Applications.Adv Healthc Mater.2015;4(12):1742-1762.
    [26]Xia Y,Zhou P,Cheng X,et al.Selective laser sintering fabrication of nano-hydroxyapatite/poly-epsilon-caprolactone scaffolds for bone tissue engineering applications.Int J Nanomedicine.2013;8:4197-4213.
    [27]Murphy SV,Atala A.3D bioprinting of tissues and organs.Nat Biotechnol.2014;32(8):773-785.
    [28]Saunders RE,Derby B.Inkjet printing biomaterials for tissue engineering:bioprinting.Int Mater Rev.2014;59(8):430-448.
    [29]Koch L,Gruene M,Unger C,et al.Laser assisted cell printing.Curr Pharm Biotechnol.2013;14(1):91-97.
    [30]Faulkner-Jones A,Fyfe C,Cornelissen DJ,et al.Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D.Biofabrication.2015;7(4):044102.
    [31]Ozbolat IT,Hospodiuk M.Current advances and future perspectives in extrusion-based bioprinting.Biomaterials.2016;76:321-343.
    [32]Staiger MP,Pietak AM,Huadmai J,et al.Magnesium and its alloys as orthopedic biomaterials:a review.Biomaterials.2006;27(9):1728-1734.
    [33]Lopez-Heredia MA,Sohier J,Gaillard C,et al.Rapid prototyped porous titanium coated with calcium phosphate as a scaffold for bone tissue engineering.Biomaterials.2008;29(17):2608-2615.
    [34]Chen H,Wang C,Zhu X,et al.Fabrication of porous titanium scaffolds by stack sintering of microporous titanium spheres produced with centrifugal granulation technology.Mater Sci Eng CMater Biol Appl.2014;43:182-188.
    [35]Bose S,Fielding G,Tarafder S,et al.Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics.Trends Biotechnol.2013;31(10):594-605.
    [36]Atkins GJ,Welldon KJ,Halbout P,et al.Strontium ranelate treatment of human primary osteoblasts promotes an osteocyte-like phenotype while eliciting an osteoprotegerin response.Osteoporos Int.2009;20(4):653-664.
    [37]Lei Y,Xu Z,Ke Q,et al.Strontium hydroxyapatite/chitosan nanohybrid scaffolds with enhanced osteoinductivity for bone tissue engineering.Mater Sci Eng C Mater Biol Appl.2017;72:134-142.
    [38]Xiu P,Jia ZJ,Lv J,et al.Hierarchical Micropore/Nanorod Apatite Hybrids In-Situ Grown from 3-D Printed Macroporous Ti6Al4VImplants with Improved Bioactivity and Osseointegration.J Mater Sci Technol.2017;33(2):179-186.
    [39]Peuster M,Hesse C,Schloo T,et al.Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta.Biomaterials.2006;27(28):4955-4962.
    [40]Chou DT,Wells D,Hong D,et al.Novel processing of iron-manganese alloy-based biomaterials by inkjet 3-D printing.Acta Biomater.2013;9(10):8593-8603.
    [41]Ho GW,Matinlinna JP.Insights on Ceramics as Dental Materials.Part I:Ceramic Material Types in Dentistry.Silicon.2011;3(3):109-115.
    [42]Bohner M,Galea L,Doebelin N.Calcium phosphate bone graft substitutes:Failures and hopes.J Eur Ceram Soc.2012;32(11):2663-2671.
    [43]Ko CL,Chen WC,Chen JC,et al.Properties of osteoconductive biomaterials:calcium phosphate cement with different ratios of platelet-rich plasma as identifiers.Mater Sci Eng C Mater Biol Appl.2013;33(6):3537-3544.
    [44]Tang Z,Tan Y,Ni Y,et al.Comparison of ectopic bone formation process induced by four calcium phosphate ceramics in mice.Mater Sci Eng C Mater Biol Appl.2017;70(Pt 2):1000-1010.
    [45]Mohseni M,Jahandideh A,Abedi G,et al.Assessment of tricalcium phosphate/collagen(TCP/collagene)nanocomposite scaffold compared with hydroxyapatite(HA)on healing of segmental femur bone defect in rabbits.Artif Cells Nanomed Biotechnol.2018;46(2):242-249.
    [46]Tarafder S,Bose S.Polycaprolactone-coated 3D printed tricalcium phosphate scaffolds for bone tissue engineering:in vitro alendronate release behavior and local delivery effect on in vivo osteogenesis.ACS Appl Mater Interfaces.2014;6(13):9955-9965.
    [47]Dai Y,Liu H,Liu B,et al.Porousβ-Ca2SiO4 ceramic scaffolds for bone tissue engineering:In vitro and in vivo characterization.Ceram Int.2015;41(4):5894-5902.
    [48]Pasold J,Markhoff J,Tillmann J,et al.Direct influence of titanium and zirconia particles on the morphology and functionality of mature human osteoclasts.J Biomed Mater Res A.2017;105(9):2608-2615.
    [49]Jones JR.Review of bioactive glass:from Hench to hybrids.Acta Biomater.2013;9(1):4457-4486.
    [50]Rahaman MN,Day DE,Bal BS,et al.Bioactive glass in tissue engineering.Acta Biomater.2011;7(6):2355-2373.
    [51]Miguez-Pacheco V,Hench LL,Boccaccini AR.Bioactive glasses beyond bone and teeth:emerging applications in contact with soft tissues.Acta Biomater.2015;13:1-15.
    [52]Habraken WJ,Wolke JG,Jansen JA.Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering.Adv Drug Deliv Rev.2007;59(4-5):234-248.
    [53]Westhauser F,Weis C,Prokscha M,et al.Three-dimensional polymer coated 45S5-type bioactive glass scaffolds seeded with human mesenchymal stem cells show bone formation in vivo.JMater Sci Mater Med.2016;27(7):119.
    [54]Jiang S,Zhang Y,Shu Y,et al.Amino-functionalized mesoporous bioactive glass for drug delivery.Biomed Mater.2017;12(2):025017.
    [55]Zhang Y,Cui X,Zhao S,et al.Evaluation of injectable strontium-containing borate bioactive glass cement with enhanced osteogenic capacity in a critical-sized rabbit femoral condyle defect model.ACS Appl Mater Interfaces.2015;7(4):2393-2403.
    [56]Ravi S,Chaikof EL.Biomaterials for vascular tissue engineering.Regen Med.2010;5(1):107-120.
    [57]Zhu J,Marchant RE.Design properties of hydrogel tissue-engineering scaffolds.Expert Rev Med Devices.2011;8(5):607-626.
    [58]Sheikh FA,Ju HW,Moon BM,et al.Hybrid scaffolds based on PLGA and silk for bone tissue engineering.J Tissue Eng Regen Med.2016;10(3):209-221.
    [59]Liao HT,Chen CT,Chen JP.Osteogenic differentiation and ectopic bone formation of canine bone marrow-derived mesenchymal stem cells in injectable thermo-responsive polymer hydrogel.Tissue Eng Part C Methods.2011;17(11):1139-1149.
    [60]Woodruff MA,Hutmacher DW.The return of a forgotten polymerPolycaprolactone in the 21st century.Prog Polym Sci.2010;35(10):1217-1256.
    [61]Hollister SJ,Murphy WL.Scaffold translation:barriers between concept and clinic.Tissue Eng Part B Rev.2011;17(6):459-474.
    [62]Gloria A,De Santis R,Ambrosio L.Polymer-based composite scaffolds for tissue engineering.J Appl Biomater Biomech.2010;8(2):57-67.
    [63]Bellis SL.Advantages of RGD peptides for directing cell association with biomaterials.Biomaterials.2011;32(18):4205-4210.
    [64]Villa MM,Wang L,Huang J,et al.Bone tissue engineering with a collagen-hydroxyapatite scaffold and culture expanded bone marrow stromal cells.J Biomed Mater Res B Appl Biomater.2015;103(2):243-253.
    [65]Marcacci M,Kon E,Moukhachev V,et al.Stem cells associated with macroporous bioceramics for long bone repair:6-to 7-year outcome of a pilot clinical study.Tissue Eng.2007;13(5):947-955.
    [66]Hou J,Wang J,Cao LY,et al.Segmental bone regeneration using rhBMP-2-loaded collagen/chitosan microspheres composite scaffold in a rabbit model.Biomed Mater.2012;7(3):035002.
    [67]Chang YS,Huang HD,Yeh KT,et al.Genetic alterations in endometrial cancer by targeted next-generation sequencing.Exp Mol Pathol.2016;100(1):8-12.
    [68]Yang T,Hu Y,Wang CY,et al.Fabrication of Hierarchical Macroporous Biocompatible Scaffolds by Combining Pickering High Internal Phase Emulsion Templates with Three-Dimensional Printing.ACS Appl Mater Interfaces.2017;9(27):22950-22958.
    [69]Shuai CJ,Yang B,Peng SP,et al.Development of composite porous scaffolds based on poly(lactide-co-glycolide)/nano-hydroxyapatite via selective laser sintering.Int J Adv Manuf Tech.2013;69(1-4):51-7.
    [70]Haider A,Gupta KC,Kang IK.Morphological effects of HA on the cell compatibility of electrospun HA/PLGA composite nanofiber scaffolds.Biomed Res Int.2014;2014:308306.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.