k=0处的类狄拉克锥
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dirac-like cones at k=0
  • 作者:黄学勤 ; 陈子亭
  • 英文作者:Huang Xue-Qin;Chan Che-Ting;Department of Physics and Institute for Advanced Study,Hong Kong University of Science and Technology;
  • 关键词:光子晶体 ; 类狄拉克锥 ; 零折射率 ; 界面态
  • 英文关键词:photonic crystal;;Dirac-like cone;;zero-refractive-index;;interface state
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:香港科技大学物理系;香港科技大学高等研究院;
  • 出版日期:2015-08-31 16:38
  • 出版单位:物理学报
  • 年:2015
  • 期:v.64
  • 基金:香港大学教育资助委员会卓越学科领域计划(批准号:Hong Kong Research Grant Council grant AoE/P-02/12)资助的课题~~
  • 语种:中文;
  • 页:WLXB201518003
  • 页数:10
  • CN:18
  • ISSN:11-1958/O4
  • 分类号:25-34
摘要
狄拉克锥在电子和经典波体系中分别被发现,由于其线性能带关系,伴随着很多独特的现象.除了一般存在于布里渊区边界处的狄拉克锥,k=0处也存在包含线性能带关系的类狄拉克锥.这个类狄拉克锥可以由单极子和偶极子的偶然简并而形成.k=0处的类狄拉克锥可以通过两维电介质光子晶体来实现,利用等效媒质理论,此时的光子晶体在类狄拉克点频率可以等效为介电常数和磁导率都为零的材料.电介质双零折射率材料既可以避免阻抗的不匹配,也可以避免体系推广到高频所引起的强烈损耗.此外,k=0处的类狄拉克锥与双零折射率的概念可以从两维体系拓展到三维体系,而且还可以从电磁波体系推广到声波和弹性波体系.利用具有类狄拉克点的两维光子晶体,在材料参数都偏离类狄拉克点条件的两个半无限大光子晶体所构成的界面中,一定存在界面态.这些界面态的存在可以通过层状多重散射理论得到的表面阻抗以及体能带的几何相位来彻底解释.
        Dirac cones and Dirac points are found at the K(K') points in the Brillouin zones of electronic and classical waves systems with hexagonal or triangular lattices.Accompanying the conical dispersions,there are many intriguing phenomena including quantum Hall effect,Zitterbewegung and Klein tunneling.Such Dirac cones at the Brillouin zone boundary are the consequences of the lattice symmetry and time reversal symmetry.Conical dispersions are difficult to form in the zone center because of time reversal symmetry,which generally requires the band dispersions to be quadratic at k = 0.However,the conical dispersions with a triply degenerate state at k = 0 can be realized in two dimensional(2D) photonic crystal(PC) using accidental degeneracy.The triply degenerate state consists of two linear bands that generate Dirac cones and an additional flat band intersecting at the Dirac point.If the triply degenerate state is derived from the monopolar and dipolar excitations,effective medium theory can relate this 2D PC to a double zero-refractive-index material with effective permittivity and permeability equal to zero simultaneously.There is hence a subtle relationship between two seemingly unrelated concepts:Dirac-like cone and zero-refractive index.The all-dielectric "double zero"-refractive-index material has advantage over metallic zero-index metamaterials which are usually poorly impedance matched to the background and are lossy in high frequencies.The Dirac-like cone zero-index materials have impedances that can tune to match the background material and the loss is small as the system has an all-dielectric construction,enabling the possibility of realizing zero refractive index in optical frequencies.The realization of Dirac-like cones at k = 0 can be extended from the electromagnetic wave system to acoustic and elastic wave systems and effective medium theory can also be applied to relate these systems to zero-index materials.The concept of Dirac/Dirac-like cone is intrinsically 2D.However,using accidental degeneracy and special symmetries,the concept of Dirac-like point can be extended from two to three dimensions in electromagnetic and acoustic waves.Effective medium theory is also applicable to these systems,and these systems can be related to isotropic media with effectively zero refractive indices.One interesting implication of Dirac-like cones in 2D PC is the existence of robust interface states.The existence of interface states is not a trivial problem and there is usually no assurance that localized state can be found at the boundary of photonic or phononic crystal.In order to create an interface state,one usually needs to decorate the interface with strong perturbations.Recently,it is found that interface state can always be found at the boundary separating two semi-infinite PCs which have their system parameters slightly perturbed from the Dirac-like cone formation condition.The assured existence of interface states in such a system can be explained by the sign of the surface impedance of the PCs on either side of the boundary which can be derived using a layer-by-layer multiple scattering theory.In a deeper level,the existence of the interface state can be accounted for by the geometric properties of the bulk band.It turns out that the geometric phases of the bulk band determine the surface impedance within the frequency range of the band gap.The geometric property of the momentum space can hence be used to explain the existence of interface states in real space through a bulk-interface correspondence.
引文
[1]Dirac P A M 1928 Proc.R.Soc.A:Math.Phys.Eng.Sci.117 610
    [2]Novoselov K S,Geim A K,Morozov S V,Jiang D,Zhang Y,Dubonos S V,Gregorieva I V,Firsov A A 2004 Science 306 666
    [3]Novoselov K S,Geim A K,Morozov S V,Jiang D,Katsnelson M I,Grigorieva I V,Dubonos S V,Firsov A A2005 Nature 438 197
    [4]Zhang Y,Tan Y W,Stormer H L,Kim P 2005 Nature438 201
    [5]Gusynin V P,Sharapov S G 2005 Phys.Rev.Lett.95146801
    [6]Novoselov K S,Jiang Z,Zhang Y,Morozov S V,Stormer H L,Zeitler U,Maan J C,Boebinger G S,Kim P,Geim A K 2007 Science 315 1379
    [7]Katsnelsona M I 2006 Eur.Phys.J.B 51 157
    [8]Cserti J,David G 2006 Phys.Rev.B 74 172305
    [9]Rusin T M,Zawadzki W 2007 Phys.Rev.B 76 195439
    [10]David G,Cserti J 2010 Phys.Rev.B 81 121417
    [11]Neto A H C,Guinea F,Peres N M R,Novoselov K S,Geim A K 2009 Rev.Mod.Phys.81 109
    [12]Katsnelson M I,Novoselov K S,Geim A K 2006 Nat.Phys.2 620
    [13]Morozov S V,Novoselov K S,Katsnelson M I,Schedin F,Ponomarenko L A,Jiang D,Geim A K 2006 Phys.Rev.Lett.97 016801
    [14]Geim A K,MacDonald A H 2007 Phys.Today 60 35
    [15]Geim A K,Novoselov K S 2007 Nat.Mater.6 183
    [16]Plihal M,Maradudin A A 1991 Phys.Rev.B 44 8565
    [17]Sepkhanov R A,Bazaliy Ya B,Beenakker C W J 2007Phys.Rev.A 75 063813
    [18]Diem M,Koschny T,Soukoulis C M 2010 Physica B 4052990
    [19]Sepkhanov R A,Nilsson J,Beenakker C W J 2008 Phys.Rev.B 78 045122
    [20]Zhang X 2008 Phys.Rev.Lett.100 113903
    [21]Zhang X,Liu Z 2008 Phys.Rev.Lett.101 264303
    [22]Raghu S,Haldane F D M 2008 Phys.Rev.A 78 033834
    [23]Haldane F D M,Raghu S 2008 Phys.Rev.Lett.100013904
    [24]Ochiai T,Onoda M 2009 Phys.Rev.B 80 155103
    [25]Ochiai T 2010 J.Phys.:Condens.Matter 22 225502
    [26]Veselago V G 1968 Sov.Phys.Usp.10 509
    [27]Shelby R A,Smith D R,Schultz S 2001 Science 292 77
    [28]Smith D R,Padilla W J,Vier D C,Nemat-Nasser S C,Schultz S 2000 Phys.Rev.Lett.84 4184
    [29]Zhang S,Fan W,Panoiu N C,Malloy K J,Osgood R M,Brueck S R J 2005 Phys.Rev.Lett.95 137404
    [30]Shalaev V M,Cai W,Chettiar U K,Yuan H K,Sarychev A K,Drachev V P,Kildishev A V 2005 Opt.Lett.303356
    [31]Dolling G,Wegener M,Soukoulis C M,Linden S 2007Opt.Lett.32 53
    [32]Pendry J B 2000 Phys.Rev.Lett.85 3966
    [33]Fang N,Lee H,Sun C,Zhang X 2005 Science 308 534
    [34]Pendry J B,Schurig D,Smith D R 2006 Science 3121780
    [35]Leonhardt U 2006 Science 312 1777
    [36]Schurig D,Mock J J,Justice B J,Cummer S A,Pendry J B,Starr A F,Smith D R 2006 Science 314 977
    [37]Rahm M,Schurig D,Roberts D A,Cummer S A,Smith D R,Pendry J B 2008 Photon.Nanostruct.Fundam.Appl.6 87
    [38]Yang T,Chen H Y,Luo X D,Ma H R 2008 Opt.Express16 18545
    [39]Chen H Y,Chan C T 2007 Appl.Phys.Lett.90 241105
    [40]Lai Y,Ng J,Chen H Y,Han D,Xiao J,Zhang Z Q,Chan C T 2009 Phys.Rev.Lett.102 253902
    [41]Silveirinha M,Engheta N 2006 Phys.Rev.Lett.97157403
    [42]Silveirinha M,Engheta N 2007 Phys.Rev.B 75 075119
    [43]Silveirinha M G,Engheta N 2007 Phys.Rev.B 76245109
    [44]Alu A,Engheta N 2008 Phys.Rev.B 78 045102
    [45]Alu A,Silveirinha M G,Engheta N 2008 Phys.Rev.E78 016604
    [46]Edwards B,Alu A,Silveirinha M G,Engheta N 2009 J.Appl.Phys.105 044905
    [47]Liu R,Cheng Q,Hand T,Mock J J,Cui T J,Cummer S A,Smith D R 2008 Phys.Rev.Lett.100 023903
    [48]Edwards B,Alu A,Young M E,Silveirinha M,Engheta N 2008 Phys.Rev.Lett.100 033903
    [49]Halterman K,Feng S 2008 Phys.Rev.A 78 021805
    [50]Ziolkowski R W 2004 Phys.Rev.E 70 046608
    [51]Enoch S,Tayeb G,Sabouroux P,Guerin N,Vincent P2002 Phys.Rev.Lett.89 213902
    [52]Alu A,Silveirinha M G,Salandrino A,Engheta N 2007Phys.Rev.B 75 155410
    [53]Hao J,Yan W,Qiu M 2010 Appl.Phys.Lett.96 101109
    [54]Jin Y,He S 2010 Opt.Express 18 16587
    [55]Nguyen V C,Chen L,Halterman K 2010 Phys.Rev.Lett.105 233908.
    [56]Xu Y,Chen H 2011 Appl.Phys.Lett.98 113501
    [57]Huang X,Lai Y,Hang Z H,Zheng H,Chan C T 2011Nat.Mater.10 582
    [58]Chan C T,Hang Z H,Huang X 2012 Advances in OptoElectronics 2012 313984
    [59]Chan C T,Huang X,Liu F,Hang Z H 2012 PIER B 44163
    [60]Wang L G,Wang Z G,Zhang J X,Zhu S Y 2009 Opt.Lett.34 1510
    [61]Mei J,Wu Y,Chan C T,Zhang Z Q 2012 Phys.Rev.B86 035141
    [62]Liu F,Huang X,Chan C T 2012 Appl.Phys.Lett.100071911
    [63]Liu F,Lai Y,Huang X,Chan C T 2011 Phys.Rev.B84 224113
    [64]Sakoda K 2012 Opt.Express 20 3898
    [65]Huang X,Xiao M,Zhang Z Q,Chan C T 2014 Phys.Rev.B 90 075423
    [66]Sakoda K,Zhou H 2010 Opt.Express 18 27371
    [67]Sakoda K,Zhou H 2011 Opt.Express 19 13899
    [68]Wu Y,Li J,Zhang Z Q,Chan C T 2006 Phys.Rev.B74 085111
    [69]Moitra P,Yang Y,Anderson Z,Kravchenko I I,Briggs D P,Valentine J 2013 Nat.Photon.7 791
    [70]Joannopoulos J D,Johnson S G,Winn J N,Meade R D 2008 Photonic Crystals:Molding the Flow of Light(2nd Ed.)(Princeton:Princeton University Press)
    [71]Lawrence F J,Botten L C,Dossou K B,McPhedran R C,de Sterke C M 2010 Phys.Rev.A 82 053840
    [72]Lawrence F J,Botten L C,Dossou K B,de Sterke C M,McPhedran R C 2009 Phys.Rev.A 80 023826
    [73]Xiao M,Zhang Z Q,Chan C T 2014 Phys.Rev.X 4021017
    [74]Wang Z,Chong Y,Joannopoulos J D,Soljacic M 2009Nature 461 772
    [75]Rechtsman M C,Zeuner J M,Plotnik Y,Lumer Y,Podolsky D,Dreisow F,Nolte S,Segev M,Szameit A2013 Nature 496 196
    [76]Khanikaev A B,Mousavi S H,Tse W K,Kargarian M,MacDonald A H,Shvets G 2013 Nat.Mater.12 233
    [77]Lu L,Fu L,Joannopoulos J D,Soljacic M 2013 Nat Photon.7 294
    [78]Fang K,Yu Z,Fan S 2012 Nat Photon.6 782
    [79]Hafezi M,Demler E A,Lukin M D,Taylor J M 2011Nat.Phys.7 907
    [80]Wang Z,Chong Y D,Joannopoulos J D,Soljacic M 2008Phys.Rev.Lett.100 013905
    [81]Yu Z,Veronis G,Wang Z,Fan S 2008 Phys.Rev.Lett.100 023902
    [82]Kraus Y E,Lahini Y,Ringel Z,Verbin M,Zilberberg O2012 Phys.Rev.Lett.109 106402
    [83]Poo Y,Wu R X,Lin Z,Yang Y,Chan C T 2011 Phys.Rev.Lett.106 093903
    [84]Plotnik Y,Rechtsman M C,Song D,Heinrich M,Zeuner J M,Nolte S,Lumer Y,Malkova N,Xu J,Szameit A,Chen Z,Segev M 2014 Nat.Mater.13 57
    [85]Rechtsman M C,Plotnik Y,Zeuner J M,Song D,Chen Z,Szameit A,Segev M 2013 Phys.Rev.Lett.111 103901
    [86]Zak J 1989 Phys.Rev.Lett.62 2747
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.