Mathematical Analysis of the Jin-Neelin Model of El Nio-Southern-Oscillation
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mathematical Analysis of the Jin-Neelin Model of El Nio-Southern-Oscillation
  • 作者:Yining ; CAO ; Mickaёl ; D.CHEKROUN ; Aimin ; HUANG ; Roger ; TEMAM
  • 英文作者:Yining CAO;Mickaёl D.CHEKROUN;Aimin HUANG;Roger TEMAM;Department of Mathematics and the Institute for Scientific Computing and Applied Mathematics,Indiana University;Department of Atmospheric and Oceanic Sciences, University of California;
  • 英文关键词:El Nio–Southern Oscillation;;Coupled nonlinear hyperbolic-parabolic systems;;Fractional step method;;Semigroup theory
  • 中文刊名:SXNK
  • 英文刊名:数学年刊B辑(英文版)
  • 机构:Department of Mathematics and the Institute for Scientific Computing and Applied Mathematics,Indiana University;Department of Atmospheric and Oceanic Sciences, University of California;
  • 出版日期:2019-01-15
  • 出版单位:Chinese Annals of Mathematics,Series B
  • 年:2019
  • 期:v.40
  • 基金:supported by the Office of Naval Research Multidisciplinary University Research Initiative(No.N00014-16-1-2073);; the National Science Foundation(Nos.OCE-1658357,DMS-1616981,DMS-1206438,DMS-1510249);; the Research Fund of Indiana University
  • 语种:英文;
  • 页:SXNK201901001
  • 页数:38
  • CN:01
  • ISSN:31-1329/O1
  • 分类号:5-42
摘要
The Jin-Neelin model for the El Nio–Southern Oscillation(ENSO for short) is considered for which the authors establish existence and uniqueness of global solutions in time over an unbounded channel domain. The result is proved for initial data and forcing that are sufficiently small. The smallness conditions involve in particular key physical parameters of the model such as those that control the travel time of the equatorial waves and the strength of feedback due to vertical-shear currents and upwelling; central mechanisms in ENSO dynamics.From the mathematical view point, the system appears as the coupling of a linear shallow water system and a nonlinear heat equation. Because of the very different nature of the two components of the system, the authors find it convenient to prove the existence of solution by semi-discretization in time and utilization of a fractional step scheme. The main idea consists of handling the coupling between the oceanic and temperature components by dividing the time interval into small sub-intervals of length k and on each sub-interval to solve successively the oceanic component, using the temperature T calculated on the previous sub-interval, to then solve the sea-surface temperature(SST for short) equation on the current sub-interval. The passage to the limit as k tends to zero is ensured via a priori estimates derived under the aforementioned smallness conditions.
        The Jin-Neelin model for the El Nio–Southern Oscillation(ENSO for short) is considered for which the authors establish existence and uniqueness of global solutions in time over an unbounded channel domain. The result is proved for initial data and forcing that are sufficiently small. The smallness conditions involve in particular key physical parameters of the model such as those that control the travel time of the equatorial waves and the strength of feedback due to vertical-shear currents and upwelling; central mechanisms in ENSO dynamics.From the mathematical view point, the system appears as the coupling of a linear shallow water system and a nonlinear heat equation. Because of the very different nature of the two components of the system, the authors find it convenient to prove the existence of solution by semi-discretization in time and utilization of a fractional step scheme. The main idea consists of handling the coupling between the oceanic and temperature components by dividing the time interval into small sub-intervals of length k and on each sub-interval to solve successively the oceanic component, using the temperature T calculated on the previous sub-interval, to then solve the sea-surface temperature(SST for short) equation on the current sub-interval. The passage to the limit as k tends to zero is ensured via a priori estimates derived under the aforementioned smallness conditions.
引文
[1]Adams,R.A.and Fournier,J.J.F.,Sobolev Spaces,140,Academic Press,Amsterdam,2003.
    [2]Aubin,J.-P.,Un th′eoreme de compacit′e,C.R.Acad.Sci.Paris,256(24),1963,5042-5044.
    [3]Barnston,A.G.,Tippett,M.K.,Heureux,M.L.,et al.,Skill of real-time seasonal ENSO model predictions during 2002-2011-is our capability improving?,Bull.Amer.Meteo.Soc.,93(5),2012,631-651.
    [4]Bjerknes,J.,Atmospheric teleconnections from the equatorial Pacific,Monthly Weather Review,97(3),1969,163-172.
    [5]Brzis,H.,Functional Analysis,Sobolev Spaces and Partial Differential Equations,Springer-Verlag,New York,2011.
    [6]Camargo,S.J.and Sobel,A.H.,Western North Pacific tropical cyclone intensity and ENSO,Journal of Climate,18(15),2005,2996-3006.
    [7]Cane,M.A.and Zebiak,S.E.,A theory for El Ni no and the Southern Oscillation,Science,228,1985,1085-1088.
    [8]Cane,M.A.,Experimental forecasts of El Ni no,Nature,321,1986,827-832.
    [9]Cane,M.A.and Sarachik,E.S.,Forced baroclinic ocean motions,II,The linear equatorial bounded case,J.of Marine Research,35(2),1977,395-432.
    [10]Cao,C.and Titi,E.S.,Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics,Ann.Math.(2),166(1),2007,245-267.
    [11]Cazenave,T.and Haraux,A.,An Introduction to Semilinear Evolution Equations,13,Oxford Lecture Series in Mathematics and its Applications,The Clarendon Press,Oxford,1998.
    [12]Chang,P.,Ji,L.,Wang,B.and Li,T.,Interactions between the seasonal cycle and El Ni no-Southern Oscillation in an intermediate coupled ocean-atmosphere model,Journal of the Atmospheric Sciences,52(13),1995,2353-2372.
    [13]Chekroun,M.D.,Ghil,M.and Neelin,J.D.,Pullback attractor crisis in a delay differential ENSO model,Advances in Nonlinear Geosciences,to appear,A.Tsonis,Ed.Springer-Verlag,2018,1-33.
    [14]Chekroun,M.D.,Kondrashov,D.and Ghil,M.,Predicting stochastic systems by noise sampling,and application to the El Ni no-Southern Oscillation,Proc.Natl.Acad.Sci USA,108(29),2011,11766-11771.
    [15]Chekroun,M.D.,Neelin,J.D.,Kondrashov,D.,et al.,Rough parameter dependence in climate models:The role of Ruelle-Pollicott resonances,Proc.Natl.Acad.Sci USA,111(5),2014,1684-1690.
    [16]Chekroun,M.D.,Simonnet,E.and Ghil,M.,Stochastic climate dynamics:Random attractors and timedependent invariant measures,Physica D.,240(21),2011,1685-1700.
    [17]Chen,C.,Cane,M.A.,Henderson,N.,et al.,Diversity,nonlinearity,seasonality,and memory effect in ENSO simulation and prediction using empirical model reduction,Journal of Climate,29(5),2016,1809-1830.
    [18]Chorin,A.,Numerical solution of the Navier-Stokes equations,Math.Comput.,22,1968,745-762.
    [19]Coti Zelati,M.,Huang,A.,Kukavica,I.,et al.,The primitive equations of the atmosphere in presence of vapour saturation,Nonlinearity,28(3),2015,625-668.
    [20]Dijkstra,H.A.,Nonlinear Physical Oceanography:A Dynamical Systems Approach to the Large Scale Ocean Circulation and El Ni no,28,Springer-Verlag Science&Business Media,2005.
    [21]Engel,K.-J.and Nagel,R.,One-Parameter Semigroups for Linear Evolution Equations,194,Graduate Texts in Mathematics,Springer-Verlag,New York,2000.
    [22]Guilyardi,E.,Wittenberg,A.,Fedorov,A.,et al.,Understanding El Ni no in ocean-atmosphere general circulation models:Progress and challenges,Bulletin of the American Meteorological Society,90(3),2009,325-340.
    [23]Huang,A.and Temam,R.,The linearized 2D inviscid shallow water equations in a rectangle:Boundary conditions and well-posedness,Archive for Rational Mechanics and Analysis,211(3),2014,1027-1063.
    [24]Huang,A.and Temam,R.,The nonlinear 2D subcritical inviscid shallow water equations with periodicity in one direction,Commun.Pure Appl.Anal.,13(5),2014,2005-2038.
    [25]Huang,A.and Temam,R.,The linear hyperbolic initial and boundary value problems in a domain with corners,Discrete and Continuous Dynamical Systems,Series B,19(6),2014,1627-1665.
    [26]Huang,A.and Temam,R.,The 2D nonlinear fully hyperbolic inviscid shallow water equations in a rectangle,J.Dynam.Differential Equations,27(3-4),2015,763-785.
    [27]Jin,F.-F.,An equatorial ocean recharge paradigm for ENSO,Part I:Conceptual model,Journal of the Atmospheric Sciences,54(7),1997,811-829.
    [28]Jin,F.-F.and Neelin,J.D.,Modes of interannual tropical ocean-atmosphere interaction-A unified view,Part I:Numerical results,Journal of the Atmospheric Sciences,50(21),1993,3477-3503.
    [29]Jin,F.-F.and Neelin,J.D.,Modes of interannual tropical ocean-atmosphere interaction-A unified view,Part III:Analytical results in fully coupled cases,Journal of the atmospheric sciences,50(21),1993,3523-3540.
    [30]Jin,F.-F.,Neelin,J.D.and Ghil,M.,El Ni no on the Devil’s staircase:Annual subharmonic steps to chaos,Science,274,1994,70-72.
    [31]Jin,F.-F.,Neelin,J.D.and Ghil,M.,El Ni no/Southern Oscillation and the annual cycle:Subharmonic frequency locking and aperiodicity,Physica D,98,1996,442-465.
    [32]Kiladis,G.N.,Wheeler,M.C.,Haertel,P.T,et al.,Convectively coupled equatorial waves,Reviews of Geophysics,47(2),2009.
    [33]Kirtman,B.P.and Schopf,P.S.,Decadal variability in ENSO predictability and prediction,Journal of Climate,11(11),1998,2804-2822.
    [34]Kobelkov,G.M.,Existence of a solution“in the large”for ocean dynamics equations,J.Math.Fluid Mech.,9(4),2007,588-610.
    [35]Kondrashov,D.,Kravtsov,S.,Robertson,A.W.and Ghil,M.,A hierarchy of data-based ENSO models,J.Climate,18(21),1995,4425-4444.
    [36]Kukavica,I.and Ziane,M.,The regularity of solutions of the primitive equations of the ocean in space dimension three,C.R.Math.Acad.Sci.Paris,345(5),2007,257-260.
    [37]Lions,J.L.,Quelques m′ethodes de r′esolution des probl`emes aux limites non lin′eaires,2nd ed.,68,Gauthier-Villars Dunod,1969.
    [38]Lions,J.L.and Magenes,E.,Non-homogeneous Boundary Value Problems and Applications.Vol.I,2nd ed.,68,Springer-Verlag,New York,1972.
    [39]Lions,J.-L.,Temam,R.and Wang,S.,New formulations of the primitive equations of atmosphere and applications,Nonlinearity,5(2),1992,237-288.
    [40]Lions,J.-L.,Temam,R.and Wang,S.,On the equations of the large-scale ocean,Nonlinearity,5(5),1992,1007-1053.
    [41]Lyon,B.and Barnston,A.G.,ENSO and the spatial extent of interannual precipitation extremes in tropical land areas,Journal of Climate,18(23),2005,5095-5109.
    [42]Marchuk,G.I.,Methods of Numerical Mathematics,2nd ed.,Springer-Verlag,New York,Heidelberg,Berlin,1982.
    [43]Matsuno,T.,Quasi-geostrophic motions in the equatorial area,Journal of the Meteorological Society of Japan.,Ser.II,44(1),1966,25-43.
    [44]McCreary Jr,J.P.and Anderson,D.L.T.,A simple model of El Ni no and the Southern Oscillation,Monthly Weather Review,112(5),1984,934-946.
    [45]McCreary Jr,J.P.and Anderson,D.L.T.,Simple models of El Ni no and the Southern Oscillation,in Elsevier oceanography series,Nihoul,J.C.J.(ed),40,Elsevier Amsterdam,1985,345-370.
    [46]McCreary Jr,J.P.and Anderson,D.L.T.,An overview of coupled ocean-atmosphere models of El Ni no and the Southern Oscillation,Journal of Geophysical Research:Oceans,96(S01),1991,3125-3150.
    [47]McPhaden,M.J.,Zebiak,S.E.and Glantz,M.H.,ENSO as an integrating concept in earth science,science,314(5806),2006,1740-1745.
    [48]Mechoso,C.R.,Neelin,J.D.and Yu,J.-Y.,Testing simple models of ENSO,J.Atmos.Sci.,60,2003,305-318.
    [49]Neelin,J.D.,The slow sea surface temperature mode and the fast-wave limit:Analytic theory for tropical interannual oscillations and experiments in a hybrid coupled model,J.of the Atmos.Sci.,48(4),1991,584-606.
    [50]Neelin,J.D.,Battisti,D.S.,Hirst,A.C.,et al.,ENSO theory,Journal of Geophysical Research:Oceans,103(C7),1998,14261-14290.
    [51]Neelin,J.D.,Dijkstra,H.A.,Ocean-atmosphere interaction and the tropical climatology,Part I:The dangers of flux correction,Journal of climate,8(5),1995,1325-1342.
    [52]Neelin,J.D.and Jin,F.-F.,Modes of interannual tropical ocean-atmosphere interaction-a unified view,Part II:Analytical results in the weak-coupling limit,Journal of the atmospheric sciences,50(21),1993,3504-3522.
    [53]Pazy,A.,Semigroups of Linear Operators and Applications to Partial Differential Equations,44,Applied Mathematical Sciences,Springer-Verlag,New York,1983.
    [54]Penland,C.and Sardeshmukh,P.D.,The optimal growth of tropical sea-surface temperature anomalies,J.Climate,8(8),1995,1999-2024.
    [55]Philander,S.G.H.,El Ni no,La Ni na,and the Southern Oscillation,Academic Press,San Diego,1992.
    [56]Sarachik,E.S.and Cane,M.A.,The El Ni no-Southern Oscillation Phenomenon,Cambridge University Press,New York,2010.
    [57]Temam,R.,Sur l’approximation de la solution des′equations de Navier-Stokes par la m′ethode des pas fractionnaires(II),Arch.Ration.Mech.Anal.,33,1969,377-385.
    [58]Temam,R.,Infinite-Dimensional Dynamical Systems in Mechanics and Physics,2nd ed.,68,Applied Mathematical Sciences,Springer-Verlag,New York,1997.
    [59]Tziperman,E.,Cane,M.A.and Zebiak,S.E.,Irregularity and locking to the seasonal cycle in an ENSOprediction model as explained by the quasi-periodicity route to chaos,Journal of the Atmospheric Sciences,52(3),1995,293-306.
    [60]Tziperman,E.,Stone,L.,Cane,M.and Jarosh,H.,El Ni no chaos:Overlapping of resonances between the seasonal cycle and the Pacific ocean-atmosphere oscillator,Science,264(5155),1994,72-74.
    [61]Wang,C.and Picaut,J.,Understanding ENSO physics-A review,in Earth’s Climate:The OceanAtmosphere Interaction,Geophys.Monogr.,147,2004,21-48.
    [62]Wang,C.and Wang,X.,Classifying El Ni no Modoki I and II by different impacts on rainfall in southern China and typhoon tracks,Journal of Climate,26(4),2013,1322-1338.
    [63]Yanenko,N.N.,The method of fractional steps:the solution of problems of mathematical physics in several variables,Springer-Verlag,New York-Heidelberg,1971.
    [64]Zebiak,S.E.,A simple atmospheric model of relevance to El Ni no,Journal of the Atmospheric Sciences,39(9),1982,2017-2027.
    [65]Zebiak,S.E.,Atmospheric convergence feedback in a simple model for El Ni no,Monthly weather review,114(7),1986,1263-1271.
    [66]Zebiak,S.E.and Cane,M.A.,A model El Ni no-southern oscillation,Monthly Weather Review,115(10),1987,2262-2278.
    1Strip centered at the equator(y=0)that we consider to be of meridional half-width equal to unity,that is,y∈(-1,1)in adimensionalized units.The corresponding term,H(-vN)vN(T-TN),was initially introduced in[49]in the simplification of the full SST equation of[66]to such an equatorial strip.
    2Note thatδis scaled to be order unity at standard values of dimensional coefficients(see[28]).
    3Note that in this case not only the wind stress becomes time-periodic but also the “equilibrium” Tr, as obtained by solving the JN model withμ=0(see[31]).
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.