低维氧化锌晶面调控及催化抗菌活性研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Recent Progress in Facets Regulation and Catalytic Antibacterial Activity of Low-dimensional ZnO Crystals
  • 作者:李丹 ; 张忞灏 ; 廖佩姿 ; 谢远 ; 甄贺伟 ; 徐晓玲 ; 周祚万
  • 英文作者:LI Dan;ZHANG Minhao;LIAO Peizi;XIE Yuan;ZHEN Hewei;XU Xiaoling;ZHOU Zuowan;Key Laboratory of Advanced Technologies of Materials (Ministry of Education) ,School of Materials Science and Engineering,Southwest Jiaotong University;
  • 关键词:氧化锌 ; 暴露晶面 ; 晶面调控 ; 催化抗菌活性 ; 晶面吸附 ; 晶种诱导 ; 晶面刻蚀
  • 英文关键词:zinc oxide;;exposed crystal facets;;facets regulation;;catalytic antibacterial activity;;crystal facets adsorption;;seeding induction;;crystal facets etching
  • 中文刊名:CLDB
  • 英文刊名:Materials Reports
  • 机构:西南交通大学材料科学与工程学院材料先进技术教育部重点实验室;
  • 出版日期:2019-01-10
  • 出版单位:材料导报
  • 年:2019
  • 期:v.33
  • 基金:国家自然科学基金(51772251; 51302230);; 四川省科技计划项目(2016GZ0264; 2017RZ0032);; 中央高校基本科研基金(2682016CX068)~~
  • 语种:中文;
  • 页:CLDB201901008
  • 页数:9
  • CN:01
  • ISSN:50-1078/TB
  • 分类号:59-67
摘要
低维结构氧化锌(ZnO)作为一种典型的直接宽带隙半导体材料,具有独特的形貌可调性、优异的催化活性和良好的生物相容性,在长效抗菌、催化降解和能源转化等领域受到较多关注。大量研究表明,通过制备方法的设计,可以得到球、棒、针、片、带、管和多面体等形貌各异的低维ZnO晶体材料,而不同的形貌结构对其宏观性质具有显著的影响,甚至直接导致了材料在应用领域上的差异。因此,低维ZnO晶体材料的形貌结构调控对于其应用而言至关重要。ZnO丰富的形貌特征源于其晶体生长的各向异性。在ZnO晶体生长过程中,反应体系中的各种因素(如溶剂、成核剂、添加剂等)均可能对晶体生长产生影响,促使晶体沿不同晶向生长。因此,反应条件不仅能够影响ZnO的形貌,更重要的是,其表面的暴露晶面也会随之变化。而ZnO不同暴露晶面上的原子排布、原子密度和表面悬挂键等都不尽相同,这使得其性质和功能会出现显著差异。通过控制ZnO的形貌结构、晶体取向和暴露晶面等能够有效提高其稳定性、催化活性和选择性吸附等能力,并进一步实现对材料物理/化学性质的调控。随着制备技术和模拟计算的不断发展,现阶段对于ZnO暴露晶面的调控方法大致可分为晶面吸附法、晶种诱导法、溶剂调节法和晶面刻蚀法四种。其中前三种均属于自下而上的合成法,在ZnO晶体的成核和生长过程中,通过引入吸附剂、晶种或改变溶剂,来控制目标晶体特定晶面的结晶、生长,从而实现晶体形貌和暴露晶面的调控;而晶面刻蚀法是一种自上而下的制备方法,利用ZnO晶体自身各向异性所带来的晶面活性差异来选择性刻蚀高活性晶面,得到所需的暴露晶面。通过上述方法,研究者能够实现对ZnO晶体形貌和暴露晶面的可控制备,并在此基础上进一步研究ZnO暴露晶面与催化抗菌活性间的规律和机制。为了更好地指导ZnO系列结构的功能调控,本文综述了ZnO晶面调控方法及其对催化抗菌活性影响的研究进展,重点归纳了在低维结构ZnO生长过程中,通过不同制备方法来实现对ZnO特定暴露晶面调控的研究进展,并进一步总结了暴露晶面的调控对于ZnO在光照和无光条件下催化抗菌活性的研究现状。最后,对晶面调控低维结构ZnO今后的研究方向与亟待解决的学术难题进行了讨论。
        As a kind of typical wide-band-gap semiconductor material,low dimensional zinc oxide( ZnO) has attracted increasing attention in long-term antibacterial,catalytic degradation and energy conversion,owing to its unique morphological adjustability,excellent catalytic activity and good biocompatibility. Sufficient research has indicated that,by changing the reaction conditions,the morphology and structure of ZnO can be easily tuned,which will further exert remarkable influence on properties and performance of ZnO. Therefore,the regulation of morphology and structure has been regarded as a crucial issue for the application of ZnO.The morphological diversification of ZnO originates from the anisotropic growth of its crystal. Many factors( like solvent,nucleating agent and additive agent etc.) may impact on this process and facilitate the growth of crystal along different crystal orientation. Therefore,the reaction condition determines both morphology and exposed crystal facet of ZnO. The atomic alignment,atomic density and surface dangling bonds vary considerably among different types of crystal facets. Hence,the performance of ZnO can be regulated by carefully control the morphology,structure,crystal orientation and exposed crystal surface.The continuous advancement of technology and simulation,the methodologies for facets regulation can be classified into crystal facets adsorption,seeding induction,solvent adjustment and crystal facets etching. The former three methods are bottom-up synthesis techniques,which achieve the control of crystal morphology and facets by either introducing adsorbents and/or seeds synthesis process,or carefully choosing appropriate solvent. On the other hand,crystal facets etching is a top-down process. The crystal facets of ZnO can be selectively etched because of the differences in reactive activity,which facilitates to obtain the required facets. These methods enable researchers to precisely regulate the crystal morphology and facet of the synthesized ZnO,and in consequence,to further study the relationship and mechanism between exposed crystal facets and catalytic antibacterial activity.In this review,we summarize the recent progress and the common methods,along with their action mechanisms,with respect to facets regulation of ZnO. The potential effects of crystal facets regulation on the catalytic antibacterial activity of ZnO with or without light irradiation are also explored. The paper ends with a discussion on the growing trends and emerging challenges in this field.
引文
1 Cho S,Jang J W,Lee J S,et al. Langmuir,2010,26(17),14255.
    2 Liu X,Ye L,Liu S,et al. Scientific Reports,2016,6,38474.
    3 Sun Y,Chen L,Bao Y,et al. Catalysts,2016,6(12),188.
    4 Zhao Y,Cui T,Wu T,et al. ChemCatChem,2017,9(16),3180.
    5 Peng F,Zhou Q,Lu C,et al. Applied Surface Science,2017,394,115.
    6 Djuri2ic'A B,Chen X,Leung Y H,et al. Journal of Materials Chemistry,2012,22(14),6526.
    7 Guo L L. Materials Review B:Research Papers,2014,28(7),31(in Chinese).郭丽丽.材料导报:研究篇,2014,28(7),31.
    8 Mirzaei H,Darroudi M. Ceramics International,2017,43(1),907.
    9 Cao P J,Xie Z Y,Han S,et al. Materials Review B:Research Papers,2014,28(7),1(in Chinese).曹培江,解振宇,韩舜,等.材料导报:研究篇,2014,28(7),1.
    10 Katea S N,Hajduk S,Orel Z C,et al. Inorganic Chemistry,2017,56(24),15150.
    11 Boppella R,Anjaneyulu K,Basak P,et al. The Journal of Physical Chemistry C,2013,117(9),4597.
    12 Shi R,Yang P,Song X,et al. Applied Surface Science,2016,366,506.
    13 Tong G X,Du F F,Liang Y,et al. Journal of Materials Chemistry B,2013,1(4),454.
    14 Xu X,Pang H,Zhou Z,et al. Advanced Powder Technology,2011,22(5),634.
    15 Li W,Xu H,Yu H,et al. Journal of Alloys and Compounds,2017,706,461.
    16 Wang X,Ahmad M,Sun H. Materials,2017,10(11),1304.
    17 Joo J,Chow B Y,Prakash M,et al. Nature Materials,2011,10(8),596.
    18 Zhu S,Tian X,Shan L,et al. Ceramics International,2013,39(8),9637.
    19 Nicholas N J,Franks G V,Ducker W A. Langmuir,2012,28(18),7189.
    20 Zhu S,Chen X,Zuo F,et al. Journal of Solid State Chemistry,2013,197,69.
    21 Wang R Z,Wang Z Z,Zhang M,et al. Chinese Journal of Applied Chemistry,2014,31(3),316(in Chinese).王瑞枝,王真真,张明,等.应用化学,2014,31(3),316.
    22 Yahiro J,Kawano T,Imai H. Journal of Colloid and Interface Science,2007,310(1),302.
    23 Wang C,Gao Y,Wang L,et al. Physica Status Solidi A,2017,214(6),1600876.
    24 Garcia S P,Semancik S. Chemistry of Materials,2007,19(16),4016.
    25 Li G R,Hu T,Pan G L,et al. The Journal of Physical Chemistry C,2008,112(31),11859.
    26 Hassanpour A,Bogdan N,Capobianco J A,et al. Materials&Design,2017,119,464.
    27 Serrano A,Arana A,Galdámez A,et al. Vacuum,2017,146,509.
    28 Murillo G,Rodríguez-Ruiz I,Esteve J. Crystal Growth and Design,2016,16(9),5059.
    29 Hong Y J,An S J,Jung H S,et al. Advanced Materials,2007,19(24),4416.
    30 Tang J F,Su H H,Lu Y M,et al. CrystEngComm,2015,17(3),592.
    31 Huang M,Yan Y,Feng W,et al. Crystal Growth and Design,2014,14(5),2179.
    32 Cho M Y,Kim M S,Choi H Y,et al. Bulletin of the Korean Chemical Society,2011,32(3),880.
    33 Ko S H,Lee D,Hotz N,et al. Langmuir,2011,28(10),4787.
    34 Tao Y,Fu M,Zhao A,et al. Journal of Alloys and Compounds,2010,489(1),99.
    35 Choy J H,Jang E S,Won J H,et al. Advanced Materials,2003,15(22),1911.
    36 Jang E S,Chen X,Won J H,et al. Applied Physics Letters,2010,97(4),043109.
    37 Jang E S. Journal of the Korean Ceramic Society,2017,54(3),167.
    38 Zhang D F,Sun L D,Zhang J,et al. Crystal Growth and Design,2008,8(10),3609.
    39 Saleh S M,Soliman A M,Sharaf M A,et al. Journal of Environmental Chemical Engineering,2017,5(1),1219.
    40 Edalati K,Shakiba A,Vahdati-Khaki J,et al. Materials Research Bulletin,2016,74,374.
    41 Chen X,Song X,Qiao W,et al. CrystEngComm,2016,18(47),9139.
    42 Xu L,Hu Y L,Pelligra C,et al. Chemistry of Materials,2009,21(13),2875.
    43 Khoza P B,Moloto M J,Sikhwivhilu L M. Journal of Nanotechnology,2012,2012,195106.
    44 Zhang J,Sun L,Liao C,et al. Chemical Communications,2002(3),262.
    45 Huang M,Weng S,Wang B,et al. The Journal of Physical Chemistry C,2014,118(44),25434.
    46 Qi J,Zhang K,Ji Z,et al. RSC Advances,2015,5(55),44563.
    47 Zhou F,Jing W,Shi J,et al. Ceramics International,2016,42(4),4788.
    48 Wang X,Ma X,Church J,et al. Materials Letters,2017,192,107.
    49 Ostapenko A,Kloffel T,Euner J,et al. ACS Applied Materials&Interfaces,2016,8(21),13472.
    50 Han X G,Jiang Y Q,Xie S F,et al. The Journal of Physical Chemistry C,2010,114(22),10114.
    51 Duan X,Chen G,Li C,et al. Nanotechnology,2016,27(29),295601.
    52 Ryu S R,Ram S D G,Cho H,et al. Nanoscale,2015,7(25),11115.
    53 Ramani M,Ponnusamy S,Muthamizhchelvan C,et al. Colloids and Surfaces B:Biointerfaces,2014,117,233.
    54 Jang E S,Won J H,Hwang S J,et al. Advanced Materials,2006,18(24),3309.
    55 Li Y,Zhang W,Niu J,et al. ACS Nano,2012,6(6),5164.
    56 Dutta R K,Nenavathu B P,Gangishetty M K,et al. Colloids and Surfaces B:Biointerfaces,2012,94,143.
    57 Cai Q,Gao Y,Gao T,et al. ACS Applied Materials&Interfaces,2016,8(16),10109.
    58 Ramani M,Ponnusamy S,Muthamizhchelvan C,et al. Colloids and Surfaces B:Biointerfaces,2013,105,24.
    59 Talebian N,Amininezhad S M,Doudi M. Journal of Photochemistry and Photobiology B:Biology,2013,120,66.
    60 Singh S,Barick K C,Bahadur D. CrystEngComm,2013,15(23),4631.
    61 Cha S H,Hong J,Mc Guffie M,et al. ACS Nano,2015,9(9),9097.
    62 Xu X,Chen D,Yi Z,et al. Langmuir,2013,29(18),5573.
    63 Xu J,Xue Z,Qin N,et al. Sensors and Actuators B:Chemical,2017,242,148.
    64 Lakshmi Prasanna V,Vijayaraghavan R. Langmuir,2015,31(33),9155.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.