Effect of mass transfer process on hydrogen adsorption on polycrystalline platinum electrode in sulfuric acid solution
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of mass transfer process on hydrogen adsorption on polycrystalline platinum electrode in sulfuric acid solution
  • 作者:Wei ; Zhang ; Yang ; Liu ; Hainan ; Luo ; Changwei ; Pan
  • 英文作者:Wei Zhang;Yang Liu;Hainan Luo;Changwei Pan;College of Chemical Engineering and Material Science, Zaozhuang University;College of Chemical Engineering, China University of Mining and Technology;
  • 英文关键词:HUPD;;DFT;;Mass transfer;;Platinum electrode;;Pt(110);;Pt(100)
  • 中文刊名:FXKB
  • 英文刊名:中国化学快报(英文版)
  • 机构:College of Chemical Engineering and Material Science, Zaozhuang University;College of Chemical Engineering, China University of Mining and Technology;
  • 出版日期:2019-06-15
  • 出版单位:Chinese Chemical Letters
  • 年:2019
  • 期:v.30
  • 基金:the National Natural Science Foundation of China (No. 21773304);; the Fundamental Research Funds for the Central Universities(No. 2015XKZD09);; the Natural Science Foundation of Jiangsu Province(No. BK20160240);; the Research Innovation Project for College Graduates of Jiangsu Province (No. KYLX16_0549);; the Research Foundation Project of Zaozhuang University (No. 2017YB24);; Doctoral Foundation Program of Zaozhuang University(No.2018BS060,102201702)
  • 语种:英文;
  • 页:FXKB201906009
  • 页数:5
  • CN:06
  • ISSN:11-2710/O6
  • 分类号:52-56
摘要
The underpotential adsorption of hydrogen(HUPD)is one of the most attractive fields in surface electrochemistry and electrocatalysis.In this work,the hydrogen adsorption on polycrystalline platinum electrode experimentally as well as on single crystal Pt(110)and Pt(100)electrode theoretically were studied.The effect of forced convection on the adsorption and desorption process of hydrogen was studied through adjusting the sampling rate of the microporous sampler closing to the surface of the platinum electrode immersed in dilute sulfuric acid solutio n.The relationship between HUPD and surface structure sensitivity was built quantitively.The DFT simulation shows that the adsorption strength of hydrogen on Pt(100),due to the lower adsorption energy,is weaker than that on Pt(110).Moreover,the bridged position of hydro gen on Pt(100)and the sho rt-range bridged position on Pt(110)we re found to be the optimal adsorption sites.The study of fo rced convection on the electrode surface pro motes the HUPD research from static process to a convective mode and also provides a new strategy to investigate the hydrogen adsorption in solution.
        The underpotential adsorption of hydrogen(HUPD)is one of the most attractive fields in surface electrochemistry and electrocatalysis.In this work,the hydrogen adsorption on polycrystalline platinum electrode experimentally as well as on single crystal Pt(110)and Pt(100)electrode theoretically were studied.The effect of forced convection on the adsorption and desorption process of hydrogen was studied through adjusting the sampling rate of the microporous sampler closing to the surface of the platinum electrode immersed in dilute sulfuric acid solutio n.The relationship between HUPD and surface structure sensitivity was built quantitively.The DFT simulation shows that the adsorption strength of hydrogen on Pt(100),due to the lower adsorption energy,is weaker than that on Pt(110).Moreover,the bridged position of hydro gen on Pt(100)and the sho rt-range bridged position on Pt(110)we re found to be the optimal adsorption sites.The study of fo rced convection on the electrode surface pro motes the HUPD research from static process to a convective mode and also provides a new strategy to investigate the hydrogen adsorption in solution.
引文
[1].Clavilier,A.Rodes,K.E.I.Achi,M.A.Zamakhchari,J.Chim.Phys.88(1991)1291-1337.
    [2]N.Markovic,M.Hanson,G.Mcdougall,J.Electroanal.Chem.214(1986)555-566.
    [3]S.Kan,A.Iannelli,B.Love,J.Electroanal.Chem.226(1987)351-360.
    [4]N.M.Markovic,N.S.Marinkovic,R.R.Adzic,J.Electroanal.Chem.241(1988)309-328.
    [5]I.M.Tidswell,N.M.Markovic,P.N.Ross, Phys.Rev.Lett.71(1993)1601.
    [6]I.M.Tidswell,N.M.Markovic,P.N.Ross,J.Electroanal.Chem.376(1994)119-126.
    [7]C.A.Lucas,N.M.Markovic,P.N.Ross,Phys.Rev.Lett.77(1996)4922.
    [8] B.E.Conway,B.V.Tilak,Electrochim.Acta 47(2002)3571-3594.
    [9]K.Domke,E.Herrero,A.Rodes,J.Electroanal.Chem.552(2004)115-128.
    [10]J.H.Barber,B.E.Conway,J.Electroanal.Chem.461(1999)80-89.
    [11]B.E.Conway,J.Barber,S.Morin,Electrochim.Acta 44(1998)1109-1125.
    [12]A.Bjorling,E.Ahlberg,J.M.Feliu,Electrochem.Commun.12(2010)359-361.
    [13]W.Sheng,Z.Zhuang,M.Gao,et al.,Nat.Commun.6(2015)5848.
    [14]A.M.A.Gómez-Marín,J.M.Feliu,Electrochem.Acta 82(2012)558-569.
    [15] J.Clavilier,K.E.Actii,M.Petit,J.Electroanal.Chem.295(1990)333-356.
    [16]I.Kanezashi,S.Nohara,J.Omura,J.Electroanal.Chem.662(2011)123-129.
    [17]Y.Kwon,M.T.M.Koper,Anal.Chem.82(2010)5420.
    [18]J.Yang,Y.Kwon,M.Duca,Anal.Chem.85(2013)7645-7649.
    [19]W.Zhang,C.Pan,Q.Gao,J.Phys.Chem.C 122(2018)24150-24157.
    [20]J.B.Raoof,R.Ojani,S.Rashid-Nadimi,Electrochim.Acta 49(2004)271-280.
    [21]G.Peng,L.R.Merte,J.Knudsen,T.V.Ronnie,J.Phys.Chem.C 114(2010)21579-21584.
    [22]G.Kresse,J.Furthmuller,Phys.Rev.B 54(1996)11169-11186.
    [23]G.Kresse,J.Furthmüller,Comput.Mater.Sci.6(1996)15-50.
    [24]J.P.Perdew,Y.Wang,Phys.Rev.B 45(1992)13244-13249.
    [25]G.Kresse,D.Joubert,Phys.Rev.B 59(1999)1758-1775.
    [26]J.D.Pack,H.J.Monkhorst,Phys.Rev.B 13(1976)5188-5192.
    [27] E.M.Patrito,F.P.Cometto,P.Paredes-Olivera,J.Phys.Chem.B 108(2004)15755-15769.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.