Effect of preparation methods on the performance of CuFe-SSZ-13 catalysts for selective catalytic reduction of NO_x with NH_3
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of preparation methods on the performance of CuFe-SSZ-13 catalysts for selective catalytic reduction of NO_x with NH_3
  • 作者:Yijiao ; Wang ; Lijuan ; Xie ; Fudong ; Liu ; Wenquan ; Ruan
  • 英文作者:Yijiao Wang;Lijuan Xie;Fudong Liu;Wenquan Ruan;School of Environment and Civil Engineering, Jiangnan University;Jiangsu Key Laboratory of Anaerobic Biotechnology;Department of Civil, Environmental, and Construction Engineering, Energy Conversion and Propulsion Cluster, University of Central Florida;
  • 英文关键词:NOxremoval;;CuFe-SSZ-13;;Preparation methods;;Active species;;NH3-SCR performance
  • 中文刊名:HJKB
  • 英文刊名:环境科学学报(英文版)
  • 机构:School of Environment and Civil Engineering, Jiangnan University;Jiangsu Key Laboratory of Anaerobic Biotechnology;Department of Civil, Environmental, and Construction Engineering, Energy Conversion and Propulsion Cluster, University of Central Florida;
  • 出版日期:2019-04-29
  • 出版单位:Journal of Environmental Sciences
  • 年:2019
  • 期:v.81
  • 基金:supported by the National Natural Science Foundation of China(No.51508231)
  • 语种:英文;
  • 页:HJKB201907018
  • 页数:10
  • CN:07
  • ISSN:11-2629/X
  • 分类号:197-206
摘要
CuFe-SSZ-13 catalyst showed excellent performance in the selective catalytic reduction of NO_x with NH_3(NH_3-SCR) for diesel engine exhaust purification. To investigate the effect of preparation methods on NH_3-SCR performance, Fe was loaded into one-pot synthesized Cu-SSZ-13 catalysts through solid-state ion-exchange(SSIE), homogeneous deposition precipitation(HDP) and liquid ion-exchange(IE), respectively. Three CuFe-SSZ-13 catalysts showed similar SO_2 resistance, which was better than that of Cu-SSZ-13. The improvement was attributed to the protection of Fe species. Hydrothermal stability of three CuFe-SSZ-13 catalysts was significantly different, which was attributed to the state of active species caused by different preparation methods. Compared with the other two catalysts, more active species existed inside the zeolite pores of CuFe-SSZ-13 SSIE. During hydrothermal aging, the aggregation of these active species in the pores caused the collapse of catalyst structure, ultimately leading to the deactivation of CuFe-SSZ-13 SSIE. In contrast, Fe species was dispersed better on the surface over CuFe-SSZ-13 IE, enhancing the hydrothermal stability of catalysts. Consequently, Fe loading effectively improved the resistance of SO_2 and H_2O over Cu-SSZ-13. For CuFe-SSZ-13, large amounts of active species located inside the zeolite pores are not beneficial for the hydrothermal stability.
        CuFe-SSZ-13 catalyst showed excellent performance in the selective catalytic reduction of NO_x with NH_3(NH_3-SCR) for diesel engine exhaust purification. To investigate the effect of preparation methods on NH_3-SCR performance, Fe was loaded into one-pot synthesized Cu-SSZ-13 catalysts through solid-state ion-exchange(SSIE), homogeneous deposition precipitation(HDP) and liquid ion-exchange(IE), respectively. Three CuFe-SSZ-13 catalysts showed similar SO_2 resistance, which was better than that of Cu-SSZ-13. The improvement was attributed to the protection of Fe species. Hydrothermal stability of three CuFe-SSZ-13 catalysts was significantly different, which was attributed to the state of active species caused by different preparation methods. Compared with the other two catalysts, more active species existed inside the zeolite pores of CuFe-SSZ-13 SSIE. During hydrothermal aging, the aggregation of these active species in the pores caused the collapse of catalyst structure, ultimately leading to the deactivation of CuFe-SSZ-13 SSIE. In contrast, Fe species was dispersed better on the surface over CuFe-SSZ-13 IE, enhancing the hydrothermal stability of catalysts. Consequently, Fe loading effectively improved the resistance of SO_2 and H_2O over Cu-SSZ-13. For CuFe-SSZ-13, large amounts of active species located inside the zeolite pores are not beneficial for the hydrothermal stability.
引文
An,K.,Somorjai,G.A.,2012.Size and shape control of metal nanoparticles for reaction selectivity in catalysis.ChemCatChem 4(10),1512-1524.
    Beale,A.M.,Gao,F.,Lezcano-Gonzalez,I.,Peden,C.H.,Szanyi,J.,2015.Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials.Chem.Soc.Rev.44(20),7371-7405.
    Chen,B.H.,Xu,R.N.,Zhang,R.D.,Liu,N.,2014.Economical way to synthesize SSZ-13 with abundant ion-exchanged Cu+for an extraordinary performance in selective catalytic reduction(SCR)of NOx by ammonia.Environ.Sci.Technol.48(23),13909-13916.
    Fan,Y.,Ling,W.,Huang,B.,Dong,L.,Yu,C.,Xi,H.,2017.The synergistic effects of cerium presence in the framework and the surface resistance to SO2and H2O in NH3-SCR.J.Ind.Eng.Chem.56,108-119.
    Feng,B.J.,Wang,Z.,Sun,Y.Y.,Zhang,C.H.,Tang,S.F.,Li,X.B.,et al.,2016.Size controlled ZSM-5 on the structure and performance of Fe catalyst in the selective catalytic reduction of NOx with NH3.Catal.Commun.80,20-23.
    Gao,F.,Walter,E.D.,Karp,E.M.,Luo,J.,Tonkyn,R.G.,Kwak,J.H.,et al.,2013.Structure-activity relationships in NH3-SCR over CuSSZ-13 as probed by reaction kinetics and EPR studies.J.Catal.300(3),20-29.
    Granger,P.,Parvulescu,V.I.,2011.Catalytic NOx abatement systems for mobile sources:from three-way to lean burn aftertreatment technologies.Chem.Rev.111(5),3155.
    Guo,Q.,Fan,F.,Ligthart,D.A.J.M.,Li,G.,Feng,Z.,Hensen,E.J.M.,et al.,2014.Effect of the nature and location of copper species on the catalytic nitric oxide selective catalytic reduction performance of the copper/SSZ-13 zeolite.ChemCatChem 6(2),634-639.
    Ismagilov,Z.R.,Yashnik,S.A.,Anufrienko,V.F.,Larina,T.V.,Vasenin,N.T.,Bulgakov,N.N.,et al.,2004.Linear nanoscale clusters of CuO in Cu-ZSM-5 catalysts.Appl.Surf.Sci.226,88-93.
    Jangjou,Y.,Wang,D.,Kumar,A.,Li,J.,Epling,W.S.,2016.SO2poisoning of the NH3-SCR reaction over Cu-SAPO-34:effect of ammonium sulfate versus other s-containing species.ACSCatal.6(10),6612-6622.
    Jeong,Y.E.,Kumar,P.A.,Ha,H.P.,Lee,K.Y.,2017.Highly active SbV-CeO2/TiO2catalyst under low sulfur for NH3-SCR at low temperature.Catal.Lett.147(2),428-441.
    Jin,R.B.,Liu,Y.,Wang,Y.,Cen,W.L.,Wu,Z.B.,Wang,H.Q.,et al.,2014.The role of cerium in the improved SO2tolerance for no reduction with NH3over Mn-Ce/TiO2catalyst at low temperature.Appl.Catal.B Environ.148,582-588.
    Kefirov,R.,Penkova,A.,Hadjiivanov,K.,Dzwigaj,S.,Che,M.,2008.Stabilization of Cu+ions in BEA zeolite:Study by FTIRspectroscopy of adsorbed CO and TPR.Microporous Mesoporous Mater.116(1),180-187.
    Kim,Y.J.,Lee,J.K.,Min,K.M.,Hong,S.B.,Nam,I.S.,Cho,B.K.,2014.Hydrothermal stability of Cu-SSZ-13 for reducing NOx by NH3.J.Catal.311,447-457.
    Lezcano-Gonzalez,I.,Deka,U.,Arstad,B.,Van,Y.D.D.A.,Hemelsoet,K.,Waroquier,M.,et al.,2013.Determining the storage,availability and reactivity of NH3within Cu-chabazitebased ammonia selective catalytic reduction systems.Phys.Chem.Chem.Phys.16(4),1639-1650.
    Lin,W.G.,Zhou,Y.,Gu,F.N.,Zhou,S.L.,Zhu,J.H.,2013.Catalytic degradation of tobacco-specific nitrosamines by ferric zeolite.Appl.Catal.B Environ.129,301-308.
    Long,R.Q.,Yang,R.T.,2000.Characterization of Fe-ZSM-5 catalyst for selective catalytic reduction of nitric oxide by ammonia.J.Catal.194(1),80-90.
    Ma,Z.R.,Wu,X.D.,Feng,Y.,Si,Z.C.,Weng,D.,Shi,L.,2015.Lowtemperature SCR activity and SO2deactivation mechanism of Ce-modified V2O5-WO3/TiO2catalyst.Prog.Nat.Sci.Mater.25(4),342-352.
    Maqbool,M.S.,Pullur,A.K.,Ha,H.P.,2014.Novel sulfation effect on low-temperature activity enhancement of CeO2-added SbV2O5/TiO2catalyst for NH3-SCR.Appl.Catal.B Environ.152,28-37.
    Mauvezin,M.,Delahay,G.,Coq,B.,Kieger,S.,Jumas,a.J.C.,OlivierFourcade,J.,2007.Identification of iron species in Fe-BEA:influence of the exchange level.J.Phys.Chem.B 105(5),928-935.
    Mu,J.C.,Li,X.Y.,Sun,W.B.,Fan,S.Y.,Wang,X.Y.,Wang,L.,et al.,2018.Inductive effect boosting catalytic performance of advanced Fe1-xVxOδcatalysts in low-temperature NH3selective catalytic reduction:insight into the structure,interaction,and mechanisms.ACS Catal.8,6760-6774.
    Nedyalkova,R.,Kamasamudram,K.,Currier,N.W.,Li,J.,Yezerets,A.,Olsson,L.,2013.Experimental evidence of the mechanism behind NH3overconsumption during scr over Fe-zeolites.J.Catal.299(2),101-108.
    Pereda-Ayo,B.,Torre,U.D.L.,Illán-Gómez,M.J.,Bueno-López,A.,González-Velasco,J.R.,2014.Role of the different copper species on the activity of Cu/zeolite catalysts for SCR of NOx with NH3.Appl.Catal.B Environ.147,420-428.
    Shen,M.Q.,Wen,H.Y.,Hao,T.,Yu,T.,Fan,D.,Wang,J.,et al.,2015.Deactivation mechanism of SO2on Cu/SAPO-34 NH3-SCRcatalysts:structure and active Cu2+.Catal.Sci.Technol.5(3),1741-1749.
    Shen,M.Q.,Li,X.H.,Wang,J.Q.,Wang,C.,Wang,J.,2018.Nature identification of cu active sites in sulfur-fouled Cu/SAPO-34regeneration.Ind.Eng.Chem.Res.57(10),3501-3509.
    Shi,X.Y.,Liu,F.D.,Xie,L.J.,Shan,W.P.,He,H.,2013.NH3-SCRperformance of fresh and hydrothermally aged Fe-ZSM-5 in standard and fast selective catalytic reduction reactions.Environ.Sci.Technol.47,3293-3298.
    Shuai,S.J.,Tang,T.,Zhao,Y.G.,Hua,L.,2012.State of the art and outlook of diesel emission regulations and aftertreatment technologies.J.Autom.Safety Ener.3(3),200-217.
    Su,W.K.,Li,Z.G.,Zhang,Y.N.,Meng,C.C.,Li,J.H.,2017.Identification of sulfate species and their influence on SCRperformance of Cu/CHA catalyst.Catal.Sci.Technol.7(7),1523-1528.
    Sultana,A.,Sasaki,M.,Suzuki,K.,Hamada,H.,2013.Tuning the NOx conversion of Cu-Fe/ZSM-5 catalyst in NH3-SCR.Catal.Commun.41,21-25.
    Treacy,M.M.J.,Princeton,N.J.,2001.Collection of Simulated XRDPowder Patterns for Zeolites.Elsevier,pp.388-389.
    Wang,J.,Fan,D.Q.,Yu,T.,Wang,J.Q.,Hao,T.,Hu,X.D.,et al.,2015a.Improvement of low-temperature hydrothermal stability of Cu/SAPO-34 catalysts by Cu2+species.J.Catal.322,84-90.
    Wang,D.,Jangjou,Y.,Liu,Y.,Sharma,M.K.,Luo,J.,Li,J.,et al.,2015b.A comparison of hydrothermal aging effects on NH3-SCR of NOx over Cu-SSZ-13 and Cu-SAPO-34 catalysts.Appl.Catal.B Environ.165,438-445.
    Wang,J.,Peng,Z.,Qiao,H.,Yu,H.,Hu,Y.,Chang,L.,et al.,2016.Cerium-stabilized Cu-SSZ-13 catalyst for the catalytic removal of NOx by NH3.Ind.Eng.Chem.Res.55(5),1174-1182.
    Wijayanti,K.,Andonova,S.,Kumar,A.,Li,J.,Kamasamudram,K.,Currier,N.W.,et al.,2015.Impact of sulfur oxide on NH3-SCRover Cu-SAPO-34.Appl.Catal.B Environ.166,568-579.
    Wijayanti,K.,Xie,K.,Kumar,A.,Kamasamudram,K.,Olsson,L.,2017.Effect of gas compositions on SO2poisoning over Cu/SSZ-13 used for NH3-SCR.Appl.Catal.B Environ.219,142-154.
    Xie,L.J.,Liu,F.D.,Ren,L.,Shi,X.Y.,Xiao,F.S.,He,H.,2014.Excellent performance of one-pot synthesized Cu-ssz-13 catalyst for the selective catalytic reduction of NOx with NH3.Environ.Sci.Technol.48(1),566-572.
    Yan,L.J.,Liu,Y.Y.,Zha,K.W.,Li,H.R.,Shi,L.Y.,Zhang,D.S.,2017.Scale-activity relationship of MnOx-FeOy nanocage catalysts derived from prussian blue analogues for low-temperature no reduction:experimental and DRT studies.ACS Appl.Mater.Interfaces 9(3),2581-2593.
    Yin,C.,Cheng,P.,Li,X.,Yang,R.T.,2016.Selective catalytic reduction of nitric oxide with ammonia over high-activity Fe/SSZ-13 and Fe/one-pot-synthesized Cu-SSZ-13 catalysts.Catal.Sci.Technol.6(20),7561-7568.
    Yu,C.,Huang,B.,Dong,L.,Chen,F.,Yang,Y.,Fan,Y.,et al.,2017.Effect of Pr/Ce addition on the catalytic performance and SO2resistance of highly dispersed MnOx/SAPO-34 catalyst for NH3-SCR at low temperature.Chem.Eng.J.316,1059-1068.
    Zhang,R.R.,Li,H.Y.,Zhen,T.L.,2014a.Ammonia selective catalytic reduction of NO over Fe/Cu-SSZ-13.RSC Adv.4(94),52130-52139.
    Zhang,T.,Liu,J.,Wang,D.,Zhao,Z.,Wei,Y.,Cheng,K.,et al.,2014b.Selective catalytic reduction of NO with NH3over HZSM-5-Supported Fe-Cu nanocomposite catalysts:the Fe-Cu bimetallic effect.Appl.Catal.B Environ.148,520-531.
    Zhang,L.,Wang,D.,Liu,Y.,Kamasamudram,K.,Li,J.,Epling,W.,2014c.SO2poisoning impact on the NH3-SCR reaction over a commercial Cu-SAPO-34 SCR catalyst.Appl.Catal.B Environ.156,371-377.
    Zhang,T.,Li,J.M.,Liu,J.,Wang,D.X.,Zhao,Z.,Cheng,K.,et al.,2015.High activity and wide temperature window of Fe-CuSSZ-13 in the selective catalytic reduction of NO with ammonia.AICHE J.61(11),3825-3837.
    Zhao,W.Y.,Li,Y.H.,Liu,X.J.,Zhang,R.R.,2016.Effect of preparation methods on de-NOx performance of Fe/Cu-SSZ-13 catalyst for NH3-SCR.Chem.Indus.Eng.Process.35(12),3898-3906.
    Zhao,H.,Li,H.,Li,X.,Liu,M.,Li,Y.,2017.The promotion effect of Fe to Cu-SAPO-34 for selective catalytic reduction of NOx with NH3.Catal.Today 297,84-91.
    Zhu,L.,Zhong,Z.P.,Yang,H.,Wang,C.H.,2016.Effect of MoO3on vanadium based catalysts for the selective catalytic reduction of NOx with NH3at low temperature.J.Environ.Sci.56,169-179.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.