RGD与特定形貌金红石表面相互作用的分子动力学模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Molecular dynamics simulations of interplay between RGD and rutile surfaces with designed topographies
  • 作者:吴春亚 ; 郭闯强 ; 郑庭 ; 陈妮 ; 陈明君 ; 赫晓东
  • 英文作者:WU Chunya;GUO Chuangqiang;ZHENG Ting;CHEN Ni;CHEN Mingjun;HE Xiaodong;Postdoctoral Station of Materials Science and Engineering, Harbin Institute of Technology;School of Mechatronics Engineering, Harbin Institute of Technology;
  • 关键词:金红石 ; 表面拓扑结构 ; ; 分子模拟 ; 水溶液
  • 英文关键词:rutile;;surface topography;;peptide;;molecular simulation;;aqueous solution
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:哈尔滨工业大学材料科学与工程博士后流动站;哈尔滨工业大学机电工程学院;
  • 出版日期:2016-10-28 13:21
  • 出版单位:化工学报
  • 年:2017
  • 期:v.68
  • 基金:国家自然科学基金委员会创新研究群体科学基金项目(51521003);; 中央高校基本科研业务费专项资金(AUGA5710058415);; 中国博士后基金项目(2015M581439);; 高等学校学科创新引智计划项目(B07018)~~
  • 语种:中文;
  • 页:HGSZ201701025
  • 页数:9
  • CN:01
  • ISSN:11-1946/TQ
  • 分类号:210-218
摘要
精氨酸–甘氨酸–天冬氨酸(Arg-Gly-Asp,RGD)序列是细胞膜整合素受体与细胞外配体相结合的识别位点,利用其对材料表面进行仿生修饰可以提高植入体的生物相容性。采用全原子分子动力学方法,模拟研究了RGD与理想和具有不同深度凹槽结构的金红石型TiO_2(110)表面的结合模式和结合稳定性。研究结果表明,在纯水环境下,RGD在金红石表面存在锚定点是该序列中带负电的羧基基团与表面Ti原子直接键合的前提。凹槽侧壁表层的不饱和原子是RGD形成吸附的潜在作用点,故在金红石表面引入凹槽结构能在一定程度上影响该序列同基底之间的结合模式。当RGD通过羧基基团与槽底原子稳定键合之后,若剩余部分的长度足以触及至槽壁区域,则肽链中带正电的氨基或胍基基团与槽壁原子形成氢键的概率较大;若RGD通过两侧末端基团分别同槽底形成了稳定作用,则会显著抑制该序列与槽壁原子之间氢键的形成。RGD序列同金红石表面结合作用的强弱取决于结合点的数量以及相互作用的具体类型。
        The Arg-Gly-Asp sequence(RGD), a ubiquitous adhesive motif in extracellular matrix proteins, exhibits a high affinity to the predominant osteoblast integrin; thus it has been regarded as a promising candidate for biomimic coating to emulate biology in the fabrication of bone-anchored implant surfaces, especially the widely used titanium-based materials. The present study aims to explore the molecular scale events that occur when RGD is placed close to the rutile TiO_2(110) surface by employing classical all-atom molecular dynamics simulations. Local grooves with different depths were introduced in the substrate surfaces to figure out the effect of surface topography on the binding modes of RGD with rutile. The simulation results show that the negatively charged carboxyl groups of RGD are able to break through the barriers from surface hydrations, forming direct bonds with the surface Ti atoms. However, this occurs on the premise that an anchoring site on the rutile surface has been provided to the peptide with an external intervention. Since the unsaturated atoms on the top-layer of groove walls seem to be underlying active sites for peptide adsorption, the presence of surface grooves will largely affect the RGD-rutile binding modes. If RGD can be locked on the bottom of groove via the direct bonds between carboxyl groups and surface Ti atoms, the positively charged groups(guanidine or amino group) are inclined to form hydrogen bonds with surface O atoms on the groove walls, when the length of the rest chain allows. However, once RGD is connected to the bottom of groove with both Arg and Asp side chains "trapped" in a "horseshoe" configuration, the formation of hydrogen bonds between the peptide and the groove walls will be greatly suppressed. The results also indicate that the dominant factors determining the binding strength of RGD–rutile complex are the concrete types of interaction and the number of jointing points. It is anticipated that the findings presented here will ultimately contribute to the biomimetic modification of implants, by suggesting how to tailor the surface topography of implants to induce the desirable biological function.
引文
[1]VALLEE A,HUMBLOT V,PRADIER C M.Peptide interactions with metal and oxide surfaces[J].Accounts of Chemical Research,2010,43(10):1297–1306.
    [2]COSTA D,GARRAIN P A,BAADEN M.Understanding small biomolecule–biomaterial interactions:a review of fundamental theoretical and experimental approaches for biomolecule interactions with inorganic surfaces[J].Journal of Biomedical Materials Research Part A,2013,101A(4):1210–1222.
    [3]OZBOYACI M,KOKH D B,CORNI S,et al.Modeling and simulation of protein-surface interactions:achievements and challenges[J].Quarterly Reviews of Biophysics,2016,49:1-45.
    [4]WANG X,HERTING G,WALLINDER I O,et al.Adsorption of lysozyme on silver and its influence on silver release[J].Langmuir,2014,30:13877-13889.
    [5]KIM G H,KIM I S,PARK S W,et al.Evaluation of osteoblast-like cell viability and differentiation on the Gly-Arg-Gly-Asp-Ser peptide immobilized titanium dioxide nanotube via chemical grafting[J].Journal of Nanoscience and Nanotechnology,2016,16(2):1396-1399.
    [6]CHENG K,WANG T T,YU M L,et al.Effects of RGD immobilization on light-induced cell sheet detachment from TiO_2nanodots films[J].Materials Science&Engineering C-Materials for Biological Applications,2016,63:240-246.
    [7]ELMENGAARD B,BECHTOLD J E,SOBALLE K.In vivo study of the effect of RGD treatment on bone ongrowth on press–fit titanium alloy implants[J].Biomaterials,2005,26(17):3521-3526.
    [8]FERRIS D M,MOODIE G D,DIMOND P M,et al.RGD–coated titanium implants stimulate increased bone formation in vivo[J].Biomaterials,1999,20:2323-2331.
    [9]REZANIA A,HEALY K E.The effect of peptide surface density on mineralization of matrix deposited by osteogenic cells[J].Journal of Biomedical Materials Research,2000,52(4):595-600.
    [10]QUIRK R A,CHAN W C,DAVIES M C,et al.Poly(L–lysine)–GRGDS as a biomimetic surface modifier for poly(lactic acid)[J].Biomaterials,2001,22(8):865-872.
    [11]VERRIER S,PALLU S,BAREILLE R,et al.Function of linear and cyclic RGD–containing peptides in osteoprogenitor cells adhesion process[J].Biomaterials,2002,23(2):585-596.
    [12]SKELTON A A,LIANG T,WALSH T R.Interplay of sequence,conformation and binding at the titania–peptide interface as mediated by water[J].ACS Applied Materials&Interfaces,2009,1(7):1482-1491.
    [13]MONTI S,WALSH T R.Free energy calculations of the adsorption of amino acid analogues at the aqueous titania interface[J].The Journal of Physical Chemistry C,2010,114(50):22197-22206.
    [14]WU C Y,CHEN M J,GUO C Q,et al.Peptide-TiO_2 interaction in aqueous solution:conformational dynamics of RGD using different water models[J].The Journal of Physical Chemistry B,2010,114(13):4692-4701.
    [15]WU C Y,SKELTON A A,CHEN M J,et al.Modeling the interaction between integrin-binding peptide(RGD)and rutile surface:the effect of cation mediation on Asp adsorption[J].Langmuir,2012,28(5):2799-2811.
    [16]WU C Y,CHEN M J,SKELTON A A,et al.Adsorption of arginine-glycine-aspartate tripeptide onto negatively charged rutile(110)mediated by cations:the effect of surface hydroxylation[J].ACS Applied Materials&Interfaces,2013,5(7):2567-2579.
    [17]DIEBOLD U.The surface science of titanium dioxide[J].Surface Science Reports,2003,48(5/6/7/8):53-229.
    [18]RODDICK-LANZILOTTA A D,MCQUILLAN A J.An in situ infrared spectroscopic study of glutamic acid and of aspartic acid adsorbed on TiO_2:implications for the biocompatibility of titanium[J].Journal of Colloid and Interface Science,2000,227:48-54.
    [19]DICKINSON C D,VEERAPANDIAN B,DAI X P,et al.Crystal structure of the tenth type III cell adhesion module of human fibronectin[J].Journal of Molecular Biology,1994,236:1079-1092.
    [20]HUGENSCHMIDT M B,GAMBLE L,CAMPBELL C T.The interaction of H2O with a TiO_2(110)surface[J].Surface Science,1994,302(3):329-340.
    [21]BENKOULA S,SUBLEMONTIER O,PATANEN M,et al.Water adsorption on TiO_2 surfaces probed by soft X-ray spectroscopies:bulk materials vs.isolated nanoparticles[J].Scientific Reports,2015,5,Article number:15088.
    [22]BRINKLEY D,DIETRICH M,ENGEL T,et al.A modulated molecular beam study of the extent of H2O dissociation on TiO_2(110)[J].Surface Science,1998,395(2/3):292-306.
    [23]WESOLOWSKI D J,SOFO J O,BANDURA A V,et al.Comment on"structure and dynamics of liquid water on rutile TiO_2(110)"[J].Physical Review B,2012,85(16):3603-3612.
    [24]SHI H,LIU Y C,ZHAO Z J,et al.Reactivity of the defective rutile TiO_2(110)surfaces with two bridging-oxygen vacancies:water molecule as a probe[J].The Journal of Physical Chemistry C,2014,118(35):20257-20263.
    [25]LAMMPS Molecular Dynamics Simulator Home Page[EB/OL].http://lammps.sandia.gov.
    [26]MATSUI M,AKAOGI M.Molecular dynamics simulation of the structural and physical properties of the four polymorphs of TiO_2[J].Molecular Simulation,1991,6:239-244.
    [27]CORNELL W D,CIEPLAK P,BAYLY C I,et al.A second generation force field for the simulation of proteins,nucleic acids,and organic molecules[J].Journal of the American Chemical Society,1995,117:5179-5197.
    [28]BERENDSEN H J C,GRIGERA J R,STRAATSMA T P.The missing term in effective pair potentials[J].Journal of Physical Chemistry,1987,91(24):6269-6271.
    [29]CARRAVETTA V,MONTI S.Peptide–TiO_2 surface interaction in solution by ab initio and molecular dynamics simulations[J].The Journal of Physical Chemistry B,2006,110:6160-6169.
    [30]RYCKAERT J P,CICCOTTI G,BERENDSEN H J.Numerical integration of the cartesian equations of motion of a system with constraints:molecular dynamics of nalkanes[J].Journal of Computational Physics,1977,23(3):327-341.
    [31]KIM D W,ENOMOTO N,NAKAGAWA Z,et al.Molecular dynamic simulation in titanium dioxide polymorphs:rutile,brookite,and anatase[J].Journal of the American Ceramic Society,1996,79(4):1095-1099.
    [32]SANO K I,SHIBA K.A hexapeptide motif that electrostatically binds to the surface of titanium[J].Journal of the American Chemical Society,2003,125(47):14234-14235.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.