Remote plasma-enhanced atomic layer deposition of gallium oxide thin films with NH_3 plasma pretreatment
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Remote plasma-enhanced atomic layer deposition of gallium oxide thin films with NH_3 plasma pretreatment
  • 作者:Hui ; Hao ; Xiao ; Chen ; Zhengcheng ; Li ; Yang ; Shen ; Hu ; Wang ; Yanfei ; Zhao ; Rong ; Huang ; Tong ; Liu ; Jian ; Liang ; Yuxin ; An ; Qing ; Peng ; Sunan ; Ding
  • 英文作者:Hui Hao;Xiao Chen;Zhengcheng Li;Yang Shen;Hu Wang;Yanfei Zhao;Rong Huang;Tong Liu;Jian Liang;Yuxin An;Qing Peng;Sunan Ding;College of Materials Science and Engineering, Taiyuan University of Technology;Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS);
  • 英文关键词:Ga-oxide;;RPEALD;;passivation;;NH_3 plasma
  • 中文刊名:BDTX
  • 英文刊名:半导体学报(英文版)
  • 机构:College of Materials Science and Engineering, Taiyuan University of Technology;Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS);
  • 出版日期:2019-01-15
  • 出版单位:Journal of Semiconductors
  • 年:2019
  • 期:v.40
  • 基金:supported jointly by the National Natural Science Foundation of China(Nos.61674165,61604167,61574160,61704183,61404159,11604366);; the Natural Science Foundation of Jiangsu Province(Nos.BK20170432,BK20160397,BK20140394);; the National Key R&D Program of China(No.2016YFB0401803);; the Strategic Priority Re-search Program of the Chinese Academy of Science(No.XDA09020401);; the support at the Platform for Characterization&Test,Suzhou Institute of Nano-Tech and Nano-Bionics(SINANO),Chinese Academy of Sciences
  • 语种:英文;
  • 页:BDTX201901017
  • 页数:7
  • CN:01
  • ISSN:11-5781/TN
  • 分类号:97-103
摘要
High quality gallium oxide(Ga_2O_3) thin films are deposited by remote plasma-enhanced atomic layer deposition(RPEALD) with trimethylgallium(TMG) and oxygen plasma as precursors. By introducing in-situ NH3 plasma pretreatment on the substrates, the deposition rate of Ga_2O_3 films on Si and GaN are remarkably enhanced, reached to 0.53 and 0.46 ?/cycle at 250 °C,respectively. The increasing of deposition rate is attributed to more hydroxyls(–OH) generated on the substrate surfaces after NH3 pretreatment, which has no effect on the stoichiometry and surface morphology of the oxide films, but only modifies the surface states of substrates by enhancing reactive site density. Ga_2O_3 film deposited on GaN wafer is crystallized at 250 °C, with an epitaxial interface between Ga_2O_3 and GaN clearly observed. This is potentially very important for reducing the interface state density through high quality passivation.
        High quality gallium oxide(Ga_2O_3) thin films are deposited by remote plasma-enhanced atomic layer deposition(RPEALD) with trimethylgallium(TMG) and oxygen plasma as precursors. By introducing in-situ NH3 plasma pretreatment on the substrates, the deposition rate of Ga_2O_3 films on Si and GaN are remarkably enhanced, reached to 0.53 and 0.46 ?/cycle at 250 °C,respectively. The increasing of deposition rate is attributed to more hydroxyls(–OH) generated on the substrate surfaces after NH3 pretreatment, which has no effect on the stoichiometry and surface morphology of the oxide films, but only modifies the surface states of substrates by enhancing reactive site density. Ga_2O_3 film deposited on GaN wafer is crystallized at 250 °C, with an epitaxial interface between Ga_2O_3 and GaN clearly observed. This is potentially very important for reducing the interface state density through high quality passivation.
引文
[1]Engelmann S U, Wise R S, Meng L, et al. Facile fabrication of Sibased nanostructures. Proc SPIE, 2017, 10149, 1014910
    [2]Hori Y, Yatabe Z, Hashizume T. Characterization of interface states in Al2O3/AlGaN/GaN structures for improved performance of high-electron-mobility transistors. J Appl Phys, 2013, 114(24),244503
    [3]Shan F K, Liu G X, Lee W J, et al. Structural, electrical, and optical properties of transparent gallium oxide thin films grown by plasma-enhanced atomic layer deposition. J Appl Phys, 2005,98(2), 023504
    [4]Altuntas H, Donmez I, Ozgit-Akgun C, et al. Electrical characteristics ofβ-Ga2O3 thin films grown by PEALD. J Alloys Compd, 2014,593, 190
    [5]Dakhel A A. Investigation of opto-dielectric properties of Tidoped Ga2O3 thin films. Solid State Sci, 2013, 20, 54-58
    [6]Szyszka A, Lupina L, Lupina G, et al. Ultraviolet GaN photodetectors on Si via oxide buffer heterostructures with integrated short period oxide-based distributed Bragg reflectors and leakage suppressing metal–oxide–semiconductor contacts. J Appl Phys,2014, 116(8), 083108
    [7]Shih H Y, Chu F C, Das A, et al. Atomic layer deposition of gallium oxide films as gate dielectrics in AlGaN/GaN metal–oxide–semiconductor high-electron-mobility transistors. Nanoscale Res Lett,2016, 11(1), 235
    [8]Yamada T, Ito J, Asahara R, et al. Improved interface properties of GaN-based metal-oxide-semiconductor devices with thin Ga-oxide interlayers. Appl Phys Lett, 2017, 110(26), 261603
    [9]Liu G X, Shan F K, Park J J, et al. Electrical properties of Ga2O3-based dielectric thin films prepared by plasma enhanced atomic layer deposition(PEALD). J Electroceram, 2006, 17(24), 145
    [10]Yu F P, Ou S, Wuu D S. Pulsed laser deposition of gallium oxide films for high performance solar-blind photodetectors. Opt Mater Express, 2015, 5(5), 1240
    [11]Al-Kuhaili M F, Durrani S M A, Khawaja E E. Optical properties of gallium oxide films deposited by electron-beam evaporation.Appl Phys Lett, 2003, 83(22), 4533
    [12]Takeuchi T, Ishikawa H, Takeuchi N, et al. High resolution X-ray photoelectron spectroscopy of beta gallium oxide films deposited by ultra high vacuum radio frequency magnetron sputtering. Thin Solid Films, 2008, 516(14), 4593
    [13]Ghose S, Rahman S, Hong L, et al. Growth and characterization ofβ-Ga2O3 thin films by molecular beam epitaxy for deep-UV photodetectors. J Appl Phys, 2017, 122(9), 095302
    [14]Baldini M, Albrecht M, Fiedler A, et al. Semiconducting Sn-dopedβ-Ga2O3 homoepitaxial layers grown by metal organic vapourphase epitaxy. J Mater Sci, 2015, 51(7), 3650
    [15]Sasaki K, Thieu Q T, Wakimoto D, et al. Depletion-mode vertical Ga2O3 trench MOSFETs fabricated using Ga2O3 homoepitaxial films grown by halide vapor phase epitaxy. Appl Phys Express,2017, 10(12), 124201
    [16]Battiston G A, Gerbasi R, Porchia M, et al. Chemical vapour deposition and characterization of gallium oxide thin films. Thin Solid Films, 1996, 279, 115
    [17]Comstock D J, Elam J W. Atomic layer deposition of Ga2O3 films using trimethylgallium and ozone. Chem Mater, 2012, 24(21),4011
    [18]Donmez I, Ozgit-Akgun C, Biyikli N. Low temperature deposition of Ga2O3 thin films using trimethylgallium and oxygen plasma. J Vac Sci Technol A, 2013, 31(1), 01A110
    [19]Choi D W, Chung K B, Park J S. Low temperature Ga2O3 atomic layer deposition using gallium tri-isopropoxide and water. Thin Solid Films, 2013, 546, 31
    [20]Ramachandran R K, Dendooven J, Botterman J, et al. Plasma enhanced atomic layer deposition of Ga2O3 thin films. J Mater Chem A, 2014, 2(45), 19232
    [21]O'Donoghue R, Rechmann J, Aghaee M, et al. Low temperature growth of gallium oxide thin films via plasma enhanced atomic layer deposition. Dalton Trans, 2017, 46(47), 16551
    [22]Hoex B, Heil S B S, Langereis E, et al. Ultra low surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3. Appl Phys Lett, 2006, 89(4), 042112
    [23]Park J M, Jang S J, Yusup L L, et al. Plasma-enhanced atomic layer deposition of silicon nitride using a novel silylamine precursor.ACS Appl Mater Interfaces, 2016, 8(32), 20865
    [24]Profijt H B, Potts S E, van de Sanden M C M, et al. Plasma-assisted atomic layer deposition:basics, opportunities, and challenges. J Vac Sci Technol A, 2011, 29(5), 050801
    [25]Bose M, Basa D K, Bose D N. Effect of ammonia plasma pretreatment on the plasma enhanced chemical vapor deposited silicon nitride films. Mater Lett, 2001, 48, 336
    [26]Yang J, Eller B S, Nemanich R J. Surface band bending and band alignment of plasma enhanced atomic layer deposited dielectrics on Ga-and N-face gallium nitride. J Appl Phys, 2014,116(12), 123702
    [27]Li D, Huang J, Yang D. Enhanced electroluminescence of siliconrich silicon nitride light-emitting devices by NH3 plasma and annealing treatment. Physica E, 2009, 41(6), 920
    [28]Krylov I, Gavrilov A, Ritter D, et al. Elimination of the weak inversion hump in Si3N4/InGaAs(001)gate stacks using an in situ NH3pre-treatment. Appl Phys Lett, 2011, 99(20), 203504
    [29]Park J M, Jang S J, Lee S I, et al. Novel Cyclosilazane-type silicon precursor and two-step plasma for plasma-enhanced atomic layer deposition of silicon nitride. ACS Appl Mater Interfaces, 2018,10(10), 9155
    [30]Kim B J, Kim Y C, Lee J J. The effect of NH3 plasma pre-treatment on the adhesion property of(Ti1-x Alx)N coatings deposited by plasma-enhanced chemical vapor deposition. Surf Coat Technol,1999, 114, 85
    [31]Aydil E S. Real time in situ monitoring of surfaces during glow discharge processing:NH3 and H2 plasma passivation of GaAs. J Vac Sci Technol B, 1995, 13(2), 258
    [32]Tadjer M J, Mastro M A, Mahadik N A, et al. Structural, optical,and electrical characterization of monoclinicβ-Ga2O3 grown by MOVPE on sapphire substrates. J Electron Mater, 2016, 45(4),2031
    [33]Oon H S, Cheong K Y. Recent development of gallium oxide thin film on GaN. Mater Sci Semicond Process, 2013, 16(5), 1217
    [34]Jaiswal P, Ul Muazzam U, Pratiyush A S, et al. Microwave irradiation-assisted deposition of Ga2O3 on III-nitrides for deep-UV opto-electronics. Appl Phys Lett, 2018, 112(2), 021105
    [35]Deng X Y, Weis C, Bluhm H, et al. Adsorption of water on Cu2O and Al2O3 thin films. J Phys Chem C, 2008, 112, 9668
    [36]Wang J Q, Wu W H, Feng W M. Introduction to electron spectroscopy(XPS/XAES/UPS). Beijing. National Defence of Industry Press, 1992
    [37]Duan T L, Pan J S, Ang D S. Investigation of surface band bending of Ga-face GaN by angle-resolved X-ray photoelectron spectroscopy. ECS J Solid State Sci Technol, 2016, 5(9), 514
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.