基于宏基因组学重建来自深海热液喷口的Epsilonproteobacteria基因组及其代谢分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Metabolic analysis of Epsilonproteobacteria genomes reconstructed from the deep sea hydrothermal vent chimney based on metagenomic technology
  • 作者:侯佳林 ; 聂唱 ; Venki ; Perumal ; 肖湘 ; 王风平
  • 英文作者:HOU Jia-Lin;NIE Chang;Venki Perumal;XIAO Xiang;WANG Feng-Ping;School of Life Sciences and Biotechnology, Shanghai Jiao Tong University;State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University;State Key Laboratory of Ocean Engineering, Ocean and Civil Engineering, Shanghai Jiao Tong University;
  • 关键词:深海热液 ; Epsilonproteobacteria ; 宏基因组 ; Binning ; 化能自养
  • 英文关键词:Deep sea hydrothermal vent;;Epsilonproteobacteria;;Metagenomics;;Binning;;Chemoautotrophic
  • 中文刊名:WSWT
  • 英文刊名:Microbiology China
  • 机构:上海交通大学生命科学技术学院;上海交通大学微生物代谢国家重点实验室;上海交通大学海洋工程国家重点实验室;
  • 出版日期:2018-05-15 15:04
  • 出版单位:微生物学通报
  • 年:2018
  • 期:v.45
  • 基金:国家自然科学基金(41525011,41530967,91751205,31661143022,91428308);; 国家重点研发计划项目(2016YFA0601102);; 国际IMBER计划项目;; 国际深部碳观测计划项目(DCO)~~
  • 语种:中文;
  • 页:WSWT201809002
  • 页数:10
  • CN:09
  • ISSN:11-1996/Q
  • 分类号:9-18
摘要
【背景】非致病性Epsilonproteobacteria广泛存在于全球各种不同的自然环境中,特别是一些极端生境如深海热液喷口,并且经常在微生物群落中作为优势物种被发现。然而,由于现阶段培养技术的限制,仅有为数不多的深海热液Epsilonproteobacteria被分离培养,极大限制了对其生理特征、代谢方式以及生态功能的深入认识。【目的】研究深海热液未培养Epsilonproteobacteria的进化地位、代谢潜能及其在原位生态系统中可能发挥的作用。【方法】基于宏基因组学Binning的方法,从采集自东太平洋海隆深海热液烟囱体样本中构建4个高质量的Epsilonproteobacteria基因组Bin225、Bin51、Bin54和Bin189,并进行了系统发育和代谢途径的分析。【结果】Bin189在系统发育树上相对独立于其他所有已知的Epsilonproteobacteria类群,而其余3个重构基因组都与Nitratiruptor sp. SB155-2具有较近的亲缘关系。在代谢潜能方面,所有的基因组除了都含有sqr硫氧化和rTCA碳固定途径的基因以外,也同时具有脂多糖输出转运子和多种分泌系统。Bin189显示出与其它基因组显著不同的代谢特征,其中还检测到与有机物和氨基酸转运相关的功能基因。而其他的3个基因组均具有完整的反硝化途径的功能基因,其中2个还具有Sox系统、氢化酶和鞭毛移动系统。【结论】Bin189可能是一种新发现的深海热液兼性化能营养型Epsilonproteobacteria,推测其余的3个类群能够利用硫化物和氢气作为能源进行化能自养生长。考虑到它们多样的代谢潜能,这些Epsilonproteobacteria类群很可能在深海热液微生物群落的形成发展和地球化学元素循环中发挥重要作用。
        [Background] Nonpathogenic Epsilonproteobacteria globally distributes in diverse natural environments, especially extreme environments like deep sea hydrothermal vents, are usually detected in microbial communities as a dominant microbial group. Only few hydrothermal Epsilonproteobacteria species have been isolated due to the limitation of current culture technology, which significantly influences our further understanding about their physiological features, metabolic pathways and ecological roles. [Objective] Gaining insight into the phylogenetic position, metabolic potentials and putative roles of uncultured Epsilonproteobacteria in the deep sea hydrothermal communities and vent ecosystems. [Methods] We analyzed the phylogeny and metabolic pathway of four Epsilonproteobacteria reconstructed from the East Pacific Rise deep sea hydrothermal chimney sample based on metagenomic Binning technology. [Results] Bin189 is phylogenetically independent from all other known Epsilonproteobacteria, whereas the other three reconstructed genomes have closed relationship with Nitratiruptor sp. SB155-2. In metabolic potentials, all of reconstructed genomes have the sqr and rTCA carbon fixation pathway related genes, besides they all have the lipopolysaccharide exporter system and multiple secretion system. However, Bin189 has the extra organic matter and amino acid transporters, all of the other three genomes have the complete denitrification pathway and two of them also have the Sox system, hydrogenase as well as the flagella system. [Conclusion] Bin189 very likely is a kind of novel heterotrophic Epsilonproteobacteria detected in the deep sea hydrothermal environments, whereas the other three chemoautotrophic taxa are capable of oxidizing diverse reduced sulfur compounds and hydrogen as energy source. Consequently, these Epsilonproteobacteria are supposed to play crucial roles in the colonization and development of the hydrothermal microbial communities as well as the deep sea geochemical element cycling.
引文
[1]Waite DW,Vanwonterghem I,Rinke C,et al.Comparative genomic analysis of the class Epsilonproteobacteria and proposed reclassification to epsilonbacteraeota(phyl.nov.)[J].Frontiers in Microbiology,2017,8:682
    [2]Nakagawa S,Takaki Y,Shimamura S,et al.Deep-sea ventε-proteobacterial genomes provide insights into emergence of pathogens[J].Proceedings of the National Academy of Sciences of the United States of America,2007,104(29):12146-12150
    [3]Nakagawa S,Takai K,Inagaki F,et al.Nitratiruptor tergarcus gen.nov.,sp.nov.and Nitratifractor salsuginis gen.nov.,sp.nov.,nitrate-reducing chemolithoautotrophs of theε-Proteobacteria isolated from a deep-sea hydrothermal system in the Mid-Okinawa Trough[J].International Journal of Systematic and Evolutionary Microbiology,2005,55(2):925-933
    [4]Inagaki F,Takai K,Nealson KH,et al.Sulfurovum lithotrophicum gen.nov.,sp.nov.,a novel sulfur-oxidizing chemolithoautotroph within theε-Proteobacteria isolated from Okinawa Trough hydrothermal sediments[J].International Journal of Systematic and Evolutionary Microbiology,2004,54(5):1477-1482
    [5]Pérez-Rodríguez I,Ricci J,Voordeckers JW,et al.Nautilia nitratireducens sp.nov.,a thermophilic,anaerobic,chemosynthetic,nitrate-ammonifying bacterium isolated from a deep-sea hydrothermal vent[J].International Journal of Systematic and Evolutionary Microbiology,2010,60(5):1182-1186
    [6]Keller AH,Schleinitz KM,Starke R,et al.Metagenome-based metabolic reconstruction reveals the ecophysiological function of Epsilonproteobacteria in a hydrocarbon-contaminated sulfidic aquifer[J].Frontiers in Microbiology,2015,6:1396
    [7]Voordeckers JW,Starovoytov V,Vetriani C.Caminibacter mediatlanticus sp.nov.,a thermophilic,chemolithoautotrophic,nitrate-ammonifying bacterium isolated from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge[J].International Journal of Systematic and Evolutionary Microbiology,2005,55(2):773-779
    [8]Meyer JL,Huber JA.Strain-level genomic variation in natural populations of Lebetimonas from an erupting deep-sea volcano[J].The ISME Jouanal,2014,8(4):867-880
    [9]Goris T,Schubert T,Gadkari J,et al.Insights into organohalide respiration and the versatile catabolism of Sulfurospirillum multivorans gained from comparative genomics and physiological studies[J].Environmental Microbiology,2014,16(11):3562-3580
    [10]Stokke R,Dahle H,Roalkvam I,et al.Functional interactions among filamentous Epsilonproteobacteria and Bacteroidetes in a deep-sea hydrothermal vent biofilm[J].Environmental Microbiology,2015,17(10):4063-4077
    [11]Grzymski JJ,Murray AE,Campbell BJ,et al.Metagenome analysis of an extreme microbial symbiosis reveals eurythermal adaptation and metabolic flexibility[J].Proceedings of the National Academy of Sciences of the United States of America,2008,105(45):17516-17521
    [12]Zbinden M,MarquéL,Gaudron SM,et al.Epsilonproteobacteria as gill epibionts of the hydrothermal vent gastropod Cyathermia naticoides(North East-Pacific Rise)[J].Marine Biology,2015,162(2):435-448
    [13]Steen IH,Dahle H,Stokke R,et al.Novel barite chimneys at the Loki's Castle Vent Field shed light on key factors shaping microbial communities and functions in hydrothermal systems[J].Frontiers in Microbiology,2015,6:1510
    [14]Takai K,Suzuki M,Nakagawa S,et al.Sulfurimonas paralvinellae sp.nov.,a novel mesophilic,hydrogen-and sulfur-oxidizing chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent polychaete nest,reclassification of Thiomicrospira denitrificans as Sulfurimonas denitrificans comb.nov.and emended description of the genus Sulfurimonas[J].International Journal of Systematic and Evolutionary Microbiology,2006,56(8):1725-1733
    [15]Nakagawa S,Takaki Y.Nonpathogenic Epsilonproteobacteria[A]//Encyclopedia of Life Sciences[M].New York:John Wiley&Sons,2009
    [16]Campbell BJ,Engel AS,Porter ML,et al.The versatileε-proteobacteria:key players in sulphidic habitats[J].Nature Reviews Microbiology,2006,4(6):458-468
    [17]Sievert SM,Vetriani C.Chemoautotrophy at deep-sea vents:past,present,and future[J].Oceanography,2012,25(1):218-233
    [18]He Y,Li M,Perumal V,et al.Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments[J].Nature Microbiology,2016,1(6):16035
    [19]Peng Y,Leung HCM,Yiu SM,et al.IDBA-UD:a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth[J].Bioinformatics,2012,28(11):1420-1428
    [20]Dick GJ,Andersson AF,Baker BJ,et al.Community-wide analysis of microbial genome sequence signatures[J].Genome Biology,2009,10(8):R85
    [21]Langmead B,Salzberg SL.Fast gapped-read alignment with Bowtie 2[J].Nature Methods,2012,9(4):357-359
    [22]Albertsen M,Hugenholtz P,Skarshewski A,et al.Genome sequences of rare,uncultured bacteria obtained by differential coverage binning of multiple metagenomes[J].Nature Biotechnology,2013,31(6):533-538
    [23]Parks DH,Imelfort M,Skennerton CT,et al.CheckM:assessing the quality of microbial genomes recovered from isolates,single cells,and metagenomes[J].Genome Research,2015,25(7):1043-1055
    [24]Hyatt D,Chen GL,Locascio PF,et al.Prodigal:prokaryotic gene recognition and translation initiation site identification[J].BMC Bioinformatics,2010,11:119
    [25]Lagesen K,Hallin P,R?dland EA,et al.RNAmmer:consistent and rapid annotation of ribosomal RNA genes[J].Nucleic Acids Research,2007,35(9):3100-3108
    [26]Kanehisa M,Goto S.KEGG:kyoto encyclopedia of genes and genomes[J].Nucleic Acids Research,2000,28(1):27-30
    [27]Tatusov RL,Fedorova ND,Jackson JD,et al.The COGdatabase:an updated version includes eukaryotes[J].BMCBioinformatics,2003,4:41
    [28]Rinke C,Schwientek P,Sczyrba A,et al.Insights into the phylogeny and coding potential of microbial dark matter[J].Nature,2013,499(7459):431-437
    [29]Katoh K,Misawa K,Kuma K,et al.MAFFT:a novel method for rapid multiple sequence alignment based on fast Fourier transform[J].Nucleic Acids Research,2002,30(14):3059-3066
    [30]Price MN,Dehal PS,Arkin AP.FastTree 2-approximately maximum-likelihood trees for large alignments[J].PLoS One,2010,5(3):e9490
    [31]Yamamoto M,Nakagawa S,Shimamura S,et al.Molecular characterization of inorganic sulfur-compound metabolism in the deep-sea epsilonproteobacterium Sulfurovum sp.NBC37-1[J].Environmental Microbiology,2010,12(5):1144-1153
    [32]Ray S,Banerjee A,Bagchi A.Molecular level insight into the interactions of SoxC and SoxD from Epsilonproteobacteria Sulfurimonas denitrificans:a biomolecular computational approach[A]//Proceedings of the Second International Conference on Computer and Communication Technologies[C].New Delhi:Springer,2016,379:401-410
    [33]Eick-Helmerich K,Braun V.Import of biopolymers into Escherichia coli:nucleotide sequences of the exbB and exbDgenes are homologous to those of the tolQ and tolR genes,respectively[J].Journal of Bacteriology,1989,171(9):5117-5126
    [34]Forward JA,Behrendt MC,Wyborn NR,et al.TRAPtransporters:a new family of periplasmic solute transport systems encoded by the dctPQM genes of Rhodobacter capsulatus and by homologs in diverse gram-negative bacteria[J].Journal of Bacteriology,1997,179(17):5482-5493
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.