南方崩岗侵蚀机理及治理浅见
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mechanism of hillock collapsing erosion in Southern China and its control suggestions
  • 作者:刘洪鹄 ; 谢浩 ; 钱峰
  • 英文作者:LIU Honghu;XIE Hao;QIAN Feng;Institute of Soil and Water Conservation,Changjiang Scientific Research Institute;Key Laboratory of Soil Erosion and Dry-land Agriculture in the Loess Plateau,Northwest Agriculture and Forestry University;
  • 关键词:侵蚀速率 ; 裂隙 ; 降雨 ; 崩岗治理 ; 花岗岩风化壳 ; 中国南方
  • 英文关键词:weathering granite crust;;crack;;precipitation;;erosion velocity;;hillock collapse;;Southern China
  • 中文刊名:RIVE
  • 英文刊名:Yangtze River
  • 机构:长江科学院水土保持研究所;西北农林科技大学黄土高原土壤侵蚀与旱地农业国家重点实验室;
  • 出版日期:2019-02-28
  • 出版单位:人民长江
  • 年:2019
  • 期:v.50;No.651
  • 基金:国家自然科学基金青年基金资助项目(41301297)
  • 语种:中文;
  • 页:RIVE201902006
  • 页数:5
  • CN:02
  • ISSN:42-1202/TV
  • 分类号:34-38
摘要
崩岗是南方红壤丘陵区生态安全、粮食安全、防洪安全和人居安全的主要威胁。降雨入渗会引起土体的湿胀干缩,增大土体的崩解特性,减小土体的抗剪强度、凝聚力,加重土体,扩大裂隙面,从而使大量土体崩塌,崩岗的最大后退速率可达11. 7 m/a。崩岗综合治理措施布局可概括为"上截、中削、下堵、内外绿化"。如果排水沟或削坡等工程措施不能有效地阻止大量雨水下渗,在一定程度上反而会增强崩岗的发展。通过调查发现,种植生态林可以有效阻止崩岗的发展。因此,建议调整崩岗治理的思路,大力提倡生态修复来进行崩岗治理,在一定程度上也可节省人力、财力。
        Hillock collapse is a major threat to the security of local ecology,food,flood control and human settlement in south China. Rainfall infiltration would cause soil swelling and shrinkage,increase soil collapse potential,reduce soil shear strength and cohesion,increase soil mass weight and enlarge the soil crack,thus resulting in numerous soil collapse with the maximum collapse rate up to 11. 7 m/a. Currently comprehensive control measures for hillock collapsing erosion can be summarized as:building drainage ditch or planting hedgerow on hillock,cutting gully slope,building check dam at hillock foot,afforesting all over the hillock. However,if the above structure measures can not effectively resist massive precipitation into soil,the hillock collapse will aggregated instead. The investigation discovered that ecological forest can prevent the development of hillock collapsing very effectively. Consequently,the traditional structural hillock collapse control should be transformed to ecological restoring,which can reduce manual labor and save money to a certain.
引文
[1]刘洪鹄,刘宪春,张平仓,等.南方崩岗发育特征及其监测技术探讨[J].中国水土保持科学,2011,9(2):19-23.
    [2]冯明汉,瘳纯艳,李双喜,等.我国南方崩岗侵蚀现状调查[J].人民长江,2009,40(8):66-68,75.
    [3]殷祚云,陈建新,王明怀,等.花岗岩风化壳崩岗侵蚀整治方案及效益[J].水土保持通报,1999,19(4):12-17.
    [4]梁音,宁堆虎,潘贤章,等.南方红壤区崩岗侵蚀的特点与治理[J].中国水土保持,2009(1):31-34.
    [5]任兵芳,丁树文,吴大国,等.鄂东南崩岗崩壁溯源侵蚀特征研究[J].人民长江,2015,46(7):76-79.
    [6]谢金波,魏标筹,张汉松.粵东红壤区崩岗侵蚀速率监测研究[J].广东水利水电,2012(S1):13-15.
    [7]林金石,黄炎和,张旭斌,等.南方花岗岩区典型崩岗侵蚀产沙来源分析[J].水土保持学报,2012,26(3):53-57.
    [8]杜赟,李双喜,丁树文,等.基于CORS-RTK结合GIS的鄂东南崩岗侵蚀监测[J].人民长江,2015,46(12):87-90.
    [9]刘希林,张大林.基于三维激光扫描的崩岗侵蚀的时空分析[J].农业工程学报,2015,31(4):204-211.
    [10]刘洪鹄.南方崩岗侵蚀机理初步研究[R].武汉:长江水利委员会长江科学院,2011.
    [11]Chaplot V,Brown J,Dlamini P,et al.Rainfall simulation to identify the storm-scale mechanisms of gully bank retreat[J].Agricultural Water Management,2011(98):1704-1710.
    [12]李万能,金平伟,李岚斌,等.南方红壤丘陵区崩岗成因机理的研究进展[J].亚热带水土保持,2014,26(3):30-33,43.
    [13]Singh H V,Thompson A M.Effect of antecedent soil moisture content on soil critical shear stress in agricultural watersheds[J].Geoderma,2016(262):165-173.
    [14]Poesen J,Nachtergaele J,Verstraeten G,et al.Gully erosion and environmental change:importance and research needs[J].Catena,2003,50(2-4):91-133.
    [15]Valentin C,Poesen J,Li Y.Gully erosion:impacts,factors and control[J].Catena,2005(63):132-153.
    [16]丘世钧.红土坡地崩岗侵蚀过程与机理[J].水土保持通报,1994,14(6):31-40.
    [17]邓羽松,丁树文,刘辰明,等.鄂东南花岗岩崩岗崩壁土壤水分特征研究[J].水土保持学报,2015,29(4):132-137.
    [18]段晓倩,倪晨,陈姣,等.基于含水量高频监测的花岗岩崩岗侵蚀红壤优先流研究[J].水土保持学报,2016,30(5):82-88.
    [19]Nash D,Halliwell D,Cox J.Hydrological mobilization of pollutants at the field/slope scale[C]∥P M Haygarth and S C Jarvis(ed.)Agriculture,hydrology and water quality.Wallingford,Oxon,UK:CABInt,2002.
    [20]卫杰,张晓明,张鹤,等.干湿循环对崩岗不同层次土体无侧限抗压强度的影响[J].水土保持学报,2016,30(5):107-111.
    [21]刘丹露,赵媛,丁树文,等.花岗岩剖面土壤崩解特性与初始含水率的关系[J].中国水土保持科学,2016,14(2):17-22.
    [22]周红艺,李辉霞,叶奇,等.华南活动崩岗崩壁土体裂隙发育规律试验研究[J].水土保持研究,2016,23(1):338-342.
    [23]林敬兰,黄炎和,张德斌,等.水分对崩岗土体抗剪切特性的影响[J].水土保持学报,2013,27(3):55-58.
    [24]魏多落,林敬兰,黄炎和,等.崩岗土体抗剪强度与水作用关系研究[C]∥福建省第十二届水利水电青年学术交流会论文集,2004.
    [25]Chen N,Zhou W,Yang C,et al.The processes and mechanism of failure and debris flow initiation for gravel soil with different clay content[J].Geomorphology,2010(121):222-230.
    [26]Istanbulluoglu E,Bras R L,Flores-Cervantes H,et al.Implications of bank failures and fluvial erosion for gully development:field observation sand modeling[J].Journal of Geophysical Research-Earth Surface,2005,110(F1):F01014.
    [27]张晓明,丁树文,蔡崇法.干湿效应下崩岗区岩土抗剪强度衰减非线性分析[J].农业工程学报,2012,28(5):241-245.
    [28]林敬兰,黄炎和.崩岗侵蚀的成因机理研究与问题[J].水土保持研究,2010,17(2):41-44.
    [29]Vanmaercke M,J Poesen,B V Mele et al.How fast do gully headcuts retreat[J].Earth-Science Reviews,2016(154):336-355.
    [30]Vanwalleghem T,J Poesen,J Nachtergaele,et al.Characteristics,controlling factors and importance of deep gullies under cropland on loess-derived soils[J].Geomorphology,2005(69):76-91.
    [31]张信宝.崩岗边坡失稳的岩石风化膨胀机理探讨[J].中国水土保持,2005(7):10-11.
    [32]阮伏水.福建省崩岗侵蚀与治理模式探讨[J].山地学报,2003,21(6):675-680.
    [33]吴志锋,王继增.华南花岗岩风华壳的崩岗地形与土壤侵蚀关系[J].水土保持学报,2000,14(2):31-35.
    [34]李思平.广东省崩岗侵蚀规律和防治的研究[J].自然灾害学报,1992,1(3):68-74.
    [35]Wilsion G V,Cullum R F,R9mkens M J M.Ephemeral gully erosion by preferential flow through a discontinuous soil-pipe[J].Catena,2008(73):98-106.
    [36]周红艺,李辉霞.华南地区崩岗侵蚀区土壤水分含量对土体抗剪强度的影响[J].江苏农业科学,2014,42(12):347-350.
    [37]周红艺,李辉霞.华南花岗岩风化壳裂隙发育对崩岗侵蚀的影响[J].江苏农业科学,2014,42(10):352-354.
    [38]牛德奎.崩岗侵蚀调查方法的探讨[J].江西水利科技,1994,20(1):42-47.
    [39]Faulkner,H.Piping hazard on collapsible and dispersive soils on Europe[C]∥Boardamn J,Poesen J(Eds).Soil erosion in Europe,Hoboken,NJ,US:John Wiley&Sons,Ltd,2006:537-562.
    [40]蒋斌松,蔡美峰,都浩.平面滑动边坡稳定性的解析计算[J].岩石力学与工程学报,2004,23(1):91-94.
    [41]刘晓宇,赵颖,刘洋,等.土质边坡极限平衡状态及临界滑动面的判定方法[J].岩石力学与工程学报,2012,31(7):1369-1378.
    [42]熊传祥,王涛,鲁晓兵.降雨作用下崩岗形成细观机理模拟[J].山地学报,2013,31(6):710-715.
    [43]史德明.南方花岗岩区的土壤侵蚀及其防治[J].水土保持学报,1991,5(3):63-72.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.