Alkalitalea saponilacus产木聚糖酶的碳源优化及酶学特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Carbon source optimization and characterization of a xylanase from Alkalitalea saponilacus SC/BZ-SP2~T
  • 作者:廖子亚 ; 郭晓萌 ; 王海胜 ; 闫艳春 ; 李俊 ; 赵百锁
  • 英文作者:Ziya Liao;Xiaomeng Guo;Haisheng Wang;Yanchun Yan;Jun Li;Baisuo Zhao;Graduate School,Chinese Academy of Agricultural Sciences;Laboratory of Quality & Safety Risk Assessment for Microbial Products(Beijing),Ministry of Agriculture;
  • 关键词:盐碱细菌 ; Alkalitalea ; saponilacus ; 丙酸 ; 木聚糖酶
  • 英文关键词:halo-alkaliphile;;Alkalitalea saponilacus;;propionic acid;;xylanase
  • 中文刊名:WSXB
  • 英文刊名:Acta Microbiologica Sinica
  • 机构:中国农业科学院研究生院;农业部微生物产品质量安全风险评估实验室;
  • 出版日期:2018-05-25 13:09
  • 出版单位:微生物学报
  • 年:2018
  • 期:v.58;No.341
  • 基金:国家自然科学基金(31370158,31570110);; 中国农业科学院研究生院基本科研业务费(610042017001)~~
  • 语种:中文;
  • 页:WSXB201809013
  • 页数:12
  • CN:09
  • ISSN:11-1995/Q
  • 分类号:121-132
摘要
【目的】确定厌氧盐碱细菌Alkalitalea saponilacus产木聚糖酶所需的碳源,优化木聚糖粗酶的提取条件并分析酶学性质。【方法】应用GC技术分析A.saponilacus发酵木聚糖的主要产物;利用二硝基水杨酸法(DNS)测定木聚糖酶活力以获得最优的碳源、提取粗酶的最佳条件及其酶学特性。【结果】A.saponilacus以不同来源木聚糖为底物时,发酵产生的主要产物丙酸含量都在80%以上。若以0.4%(W/V)蔗糖+0.1%(W/V)桦木木聚糖为复合碳源时,木聚糖酶活力是以桦木木聚糖或者蔗糖为单一碳源时的3.2倍。木聚糖酶的酶活力在盐度2%–6%、pH 7.0和55°C达到最佳且在该条件下的酶活力为590 IU/mg。此外,该酶活力在0.2%Tween 20存在时增加,而在5 mmol/L Mg~(2+)和0.2%Triton X-100存在时无显著影响,但在Cu~(2+)、Fe3+和Ni~(2+)等金属离子存在时则被显著抑制。【结论】A.saponilacus发酵主产物丙酸以及生物合成的木聚糖酶在工业生产中具有广泛的应用前景。
        [Objective] We optimized carbon source for xylanase production by anaerobically halophilic alkaliphilic bacterium Alkalitalea saponilacus and characterized the enzyme.[Methods] Xylanase activity was determined by 2-nitro salicylic acid(DNS) method.The conditions for the extraction of crude xylanase were optimized and the enzyme was characterized.[Results] Xylanase activity by fermentation using 0.4%(W/V) sucrose+0.1%(W/V) birch xylan as carbon source was 3.2 folds higher than that with single substrate of birch xylan or sucrose.The maximal xylanase activity reached 590 IU/mg under the conditions of salinity between 2% and 6%,p H 7.0 and 55 °C.Enzyme activity was significantly inhibited with Cu~(2+),Fe3+ and Ni~(2+).[Conclusion] Xylanase produced by A.saponilacus can have potential for industrial production.
引文
[1]Coughlan MP,Hazlewood GP.Beta-1,4-D-xylan-degrading enzyme systems:biochemistry,molecular biology and applications.Biotechnology and Applied Biochemistry,1993,17(3):259-289.
    [2]Motta FL,Andrade CCP,Santana MHA.A review of xylanase production by the fermentation of xylan:classification,characterization and applications//Chandel AK,Da Silva SS.Sustainable Degradation of Lignocellulosic BiomassTechniques,Applications and Commercialization.New York:In Tech,2012.
    [3]Beg QK,Kapoor M,Mahajan L,Hoondal GS.Microbial xylanases and their industrial applications:a review.Applied Microbiology and Biotechnology,2001,56(3/4):326-338.
    [4]Zhao BS,Chen SL.Alkalitalea saponilacus gen.nov.,sp.nov.,an obligately anaerobic,alkaliphilic,xylanolytic bacterium from a meromictic soda lake.International Journal of Systematic and Evolutionary Microbiology,2012,62(Pt11):2618-2623.
    [5]Shan ZQ,Zhou JG,Zhou YF,Yuan HY,LüH.Isolation and characterization of an alkaline xylanasefrom a newly isolated Bacillus sp.QH14.Hereditas(Beijing),2012,34(3):356-365.(in Chinese)单志琼,周峻岗,周宇飞,袁汉英,吕红.产碱性木聚糖酶菌株的筛选及酶学性质.遗传,2012,34(3):356-365.
    [6]Zhao BS,Liu J,Frear C,Holtzapple M,Chen SL.Consolidated bioprocessing of microalgal biomass to carboxylates by a mixed culture of cow rumen bacteria using anaerobic sequencing batch reactor(ASBR).Bioresource Technology,2016,222:517-522.
    [7]Amore A,Parameswaran B,Kumar R,Birolo L,Vinciguerra R,Marcolongo L,Ionata E,La Cara F,Pandey A,Faraco V.Application of a new xylanase activity from Bacillus amyloliquefaciens XR44A in brewer’s spent grain saccharification.Journal of Chemical Technology and Biotechnology,2015,90(3):573-581.
    [8]Seyis I,Aksoz N.Xylanase production from Trichoderma harzianum 1073 D3 with alternative carbon and nitrogen sources.Food Technology and Biotechnology,2005,43(1):37-40.
    [9]Kapoor M,Nair LM,Kuhad RC.Cost-effective xylanase production from free and immobilized Bacillus pumilus strain MK001 and its application in saccharification of Prosopis juliflora.Biochemical Engineering Journal,2008,38(1):88-97.
    [10]Shen DK,Gu S,Bridgwater AV.Study on the pyrolytic behaviour of xylan-based hemicellulose using TG-FTIR and Py-GC-FTIR.Journal of Analytical and Applied Pyrolysis,2010,87(2):199-206.
    [11]Shao W,Wiegel J.Purification and characterization of two thermostable acetyl xylan esterases from Thermoanaerobacterium sp.strain JW/SL-YS485.Applied and Environmental Microbiology,1995,61(2):729-733.
    [12]ParajóJC,Domínguez H,Domínguez JM.Production of xylitol from concentrated wood hydrolysates by Debaryomyces hansenii:effect of the initial cell concentration.Biotechnology Letters,1996,18(5):593-598.
    [13]Suwannakham S,Yang ST.Enhanced propionic acid fermentation by Propionibacterium acidipropionici mutant obtained by adaptation in a fibrous-bed bioreactor.Biotechnology and Bioengineering,2005,91(3):325-337.
    [14]Chen YG,Randall AA,Mc Cue T.The efficiency of enhanced biological phosphorus removal from real wastewater affected by different ratios of acetic to propionic acid.Water Research,2004,38(1):27-36.
    [15]Adhyaru DN,Bhatt NS,Modi HA.Enhanced production of cellulase-free,thermo-alkali-solvent-stable xylanase from Bacillus altitudinis DHN8,its characterization and application in sorghum straw saccharification.Biocatalysis and Agricultural Biotechnology,2014,3(2):182-190.
    [16]Akila G,Chandra TS.A novel cold-tolerant Clostridium strain PXYL1 isolated from a psychrophilic cattle manure digester that secretes thermolabile xylanase and cellulase.FEMSMicrobiology Letters,2003,219(1):63-67.
    [17]Cheng CL,Chang JS.Hydrolysis of lignocellulosic feedstock by novel cellulases originating from Pseudomonas sp.CL3 for fermentative hydrogen production.Bioresource Technology,2011,102(18):8628-8634.
    [18]Chadha BS,Ajay BK,Mellon F,Bhat MK.Two endoxylanases active and stable at alkaline p H from the newly isolated thermophilic fungus,Myceliophthora sp.IMI 387099.Journal of Biotechnology,2004,109(3):227-237.
    [19]Latif F,Asgher M,Saleem R,Akrem A,Legge RL.Purification and characterization of a xylanase produced by Chaetomium thermophile NIBGE.World Journal of Microbiology and Biotechnology,2006,22(1):45-50.
    [20]Ryan SE,Nolan K,Thompson R,Gubitz GM,Savage AV,Tuohy MG.Purification and characterization of a new low molecular weight endoxylanase from Penicillium capsulatum.Enzyme and Microbial Technology,2003,33(6):775-785.
    [21]Franco PF,Ferreira HM,Filho EXF.Production and characterization of hemicellulase activities from Trichoderma harzianum strain T4.Biotechnology and Applied Biochemistry,2004,40(3):255-259.
    [22]Choudhury B,Sunita C,Singh SN,Ghosh P.Production of xylanase of Bacillus coagulans and its bleaching potential.World Journal of Microbiology and Biotechnology,2006,22(3):283-288.
    [23]Bataillon M,Cardinali APN,Castillon N,Duchiron F.Purification and characterization of a moderately thermostable xylanase from Bacillus sp.strain SPS-0.Enzyme and Microbial Technology,2000,26(2/4):187-192.
    [24]Sánchez-Herrera LM,Ramos-Valdivia AC,De La Torre M,Salgado LM,Ponce-Noyola T.Differential expression of cellulases and xylanases by Cellulomonas flavigena grown on different carbon sources.Applied Microbiology and Biotechnology,2007,77(3):589-595.
    [25]Xu ZH,Bai YL,Xu X,Shi JS,Tao WY.Production of alkali-tolerant cellulase-free xylanase by Pseudomonas sp.WLUN024 with wheat bran as the main substrate.World Journal of Microbiology and Biotechnology,2005,21(4):575-581.
    [26]Salles BC,Cunha RB,Fontes W,Sousa MV,Filho EXF.Purification and characterization of a new xylanase from Acrophialophora nainiana.Journal of Biotechnology,2000,81(2/3):199-204.
    [27]Taneja K,Gupta S,Kuhad RC.Properties and application of a partially purified alkaline xylanase from an alkalophilic fungus Aspergillus nidulans KK-99.Bioresource Technology,2002,85(1):39-42.
    [28]Antoine AA,Jacqueline D,Thonart P.Xylanase production by Penicillium canescens on soya oil cake in solid-state fermentation.Applied Biochemistry and Biotechnology,2010,160(1):50-62.
    [29]Singh S,Reddy P,Haarhoff J,Biely P,Janse B,Pillay B,Pillay D,Prior BA.Relatedness of Thermomyces lanuginosus strains producing a thermostable xylanase.Journal of Biotechnology,2000,81(2/3):119-128.
    [30]Xiong HR,Von Weymarn N,Leisola M,Turunen O.Influence of p H on the production of xylanases by Trichoderma reesei Rut C-30.Process Biochemistry,2004,39(6):731-736.
    [31]Menon G,Mody K,Keshri J,Jha B.Isolation,purification,and characterization of haloalkaline xylanase from a marine Bacillus pumilus strain,GESF-1.Biotechnology and Bioprocess Engineering,2010,15(6):998-1005.
    [32]Wang CY,Chan H,Lin HT,Shyu YT.Production,purification and characterisation of a novel halostable xylanase from Bacillus sp.NTU-06.Annals of Applied Biology,2010,156(2):187-197.
    [33]Hung KS,Liu SM,Tzou WS,Lin FP,Pan CL,Fang TY,Sun KH,Tang SJ.Characterization of a novel GH10 thermostable,halophilic xylanase from the marine bacterium Thermoanaerobacterium saccharolyticum NTOU1.Process Biochemistry,2011,46(6):1257-1263.
    [34]Sanghvi G,Jivrajani M,Patel N,Jivrajani H,Bhaskara GB,Patel S.Purification and characterization of haloalkaline,organic solvent stable xylanase from newly isolated halophilic bacterium-OKH.International Scholarly Research Notices,2014,2014:198251.
    [35]Wejse PL,Ingvorsen K,Mortensen KK.Purification and characterisation of two extremely halotolerant xylanases from a novel halophilic bacterium.Extremophiles,2003,7(5):423-431.
    [36]Chakdar H,Kumar M,Pandiyan K,Singh A,Nanjappan K,Kashyap PL,Srivastava AK.Bacterial xylanases:biology to biotechnology.3 Biotech,2016,6(2):150.
    [37]Panwar D,Srivastava PK,Kapoor M.Production,extraction and characterization of alkaline xylanase from Bacillus sp.PKD-9 with potential for poultry feed.Biocatalysis and Agricultural Biotechnology,2014,3(2):118-125.
    [38]Prakash S,Veeranagouda Y,Kyoung L,Sreeramulu K.Xylanase production using inexpensive agricultural wastes and its partial characterization from a halophilic Chromohalobacter sp.TPSV 101.World Journal of Microbiology and Biotechnology,2009,25(2):197-204.
    [39]Li HL,Wu HL,Jiang FJ,Wu JL,Xue Y,Gan LH,Liu J,Long MN.Heterologous expression and characterization of an acidic GH11 family xylanase from Hypocrea orientalis.Applied Biochemistry and Biotechnology,2018,184(1):228-238.
    [40]Di Marco E,Soraire PM,Romero CM,Villegas LB,Martínez MA.Raw sugarcane bagasse as carbon source for xylanase production by Paenibacillus species:a potential degrader of agricultural wastes.Environmental Science and Pollution Research,2017,24(23):19057-19067.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.