Review of Water-Assisted Crystallization for TiO_2 Nanotubes
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Review of Water-Assisted Crystallization for TiO_2 Nanotubes
  • 作者:Xiaoyi ; Wang ; Dainan ; Zhang ; Quanjun ; Xiang ; Zhiyong ; Zhong ; Yulong ; Liao
  • 英文作者:Xiaoyi Wang;Dainan Zhang;Quanjun Xiang;Zhiyong Zhong;Yulong Liao;State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China;Center for Applied Chemistry, University of Electronic Science and Technology of China;
  • 英文关键词:TiO2nanotube;;Crystallization;;Waterassisted;;Low-temperature
  • 中文刊名:NANO
  • 英文刊名:纳微快报(英文)
  • 机构:State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China;Center for Applied Chemistry, University of Electronic Science and Technology of China;
  • 出版日期:2018-10-15
  • 出版单位:Nano-Micro Letters
  • 年:2018
  • 期:v.10
  • 基金:financially supported by the National R&D Program of China under No.2017YFA0207400;; National Key Research and Development Plan under No.2016YFA0300801;; National Natural Science Foundation of China under Nos.51502033,61571079,61131005 and 51572042
  • 语种:英文;
  • 页:NANO201804023
  • 页数:28
  • CN:04
  • ISSN:31-2103/TB
  • 分类号:366-393
摘要
TiO_2 nanotubes(TNTs) have drawn tremendous attention owing to their unique architectural and physical properties. Anodizing of titanium foil has proven to be the most efficient method to fabricate well-aligned TNTs,which, however, usually produces amorphous TNTs and needs further thermal annealing. Recently, a water-assisted crystallization strategy has been proposed and investigated by both science and engineering communities. This method is very efficient and energy saving, and it circumvents the drawbacks of thermal sintering approach. In this paper, we review the recent research progress in this kind of lowtemperature crystallization approach. Here, various synthetic methods are summarized, and the mechanisms of the amorphous–crystalline transformation are analyzed. The fundamental properties and applications of the low-temperature products are also discussed. Furthermore, it is proved that the water-assisted crystallization approach is not only applicable to TNTs but also to crystallizing other metal oxides.
        TiO_2 nanotubes(TNTs) have drawn tremendous attention owing to their unique architectural and physical properties. Anodizing of titanium foil has proven to be the most efficient method to fabricate well-aligned TNTs,which, however, usually produces amorphous TNTs and needs further thermal annealing. Recently, a water-assisted crystallization strategy has been proposed and investigated by both science and engineering communities. This method is very efficient and energy saving, and it circumvents the drawbacks of thermal sintering approach. In this paper, we review the recent research progress in this kind of lowtemperature crystallization approach. Here, various synthetic methods are summarized, and the mechanisms of the amorphous–crystalline transformation are analyzed. The fundamental properties and applications of the low-temperature products are also discussed. Furthermore, it is proved that the water-assisted crystallization approach is not only applicable to TNTs but also to crystallizing other metal oxides.
引文
1.K.Nakata,A.Fujishima,TiO2photocatalysis:design and applications.J.Photochem.Photobiol.C 13(3),169-189(2012).https://doi.org/10.1016/j.jphotochemrev.2012.06.001
    2.S.G.Kumar,L.G.Devi,Review on modified TiO2photocatalysis under UV/Visible light:selected results and related mechanisms on interfacial charge carrier transfer dynamics.J.Phys.Chem.A 115(46),13211-13241(2011).https://doi.org/10.1021/jp204364a
    3.W.T.Sun,Y.Yu,H.Y.Pan,X.F.Gao,Q.Chen,L.M.Peng,CdSquantum dots sensitized TiO2nanotube-array photoelectrodes.J.Am.Chem.Soc.130(4),1124-1125(2008).https://doi.org/10.1021/ja0777741
    4.K.Zhu,T.B.Vinzant,N.R.Neale,A.J.Frank,Removing structural disorder from oriented TiO2nanotube arrays:reducing the dimensionality of transport and recombination in dye-sensitized solar cells.Nano Lett.7(12),3739-3746(2007).https://doi.org/10.1021/nl072145a
    5.B.L.He,B.Dong,H.L.Li,Preparation and electrochemical properties of Ag-modified TiO2nanotube anode material for lithium-ion battery.Electrochem.Commun.9(3),425-430(2007).https://doi.org/10.1016/j.elecom.2006.10.008
    6.H.Liu,W.Li,D.Shen,D.Zhao,G.Wang,Graphitic carbon conformal coating of mesoporous TiO2hollow spheres for highperformance lithium ion battery anodes.J.Am.Chem.Soc.137(40),13161-13166(2015).https://doi.org/10.1021/jacs.5b08743
    7.X.Lu,G.Wang,T.Zhai,M.Yu,J.Gan,Y.Tong,Y.Li,Hydrogenated TiO2nanotube arrays for supercapacitors.Nano Lett.12(3),1690-1696(2012).https://doi.org/10.1021/nl300173j
    8.H.Wu,D.Li,X.Zhu,C.Yang,D.Liu,X.Chen,Y.Song,L.Lu,High-performance and renewable supercapacitors based on Ti O2nanotube array electrodes treated by an electrochemical doping approach.Electrochim.Acta 116,129-136(2014).https://doi.org/10.1016/j.electacta.2013.10.092
    9.X.Wang,D.Zhang,J.Li,Z.Zhong,L.Jia,T.Wen,H.Zhang,Y.Liao,A novel sol-gel method for preparing favorable TiO2thin film.Mater.Res.Express 3(1),016401(2016).https://doi.org/10.1088/2053-1591/3/1/016401
    10.H.Yu,S.Zhang,H.Zhao,G.Will,P.Liu,An efficient and lowcost TiO2compact layer for performance improvement of dyesensitized solar cells.Electrochim.Acta 54(4),1319-1324(2009).https://doi.org/10.1016/j.electacta.2008.09.025
    11.G.K.Mor,O.K.Varghese,M.Paulose,K.Shankar,C.A.Grimes,A review on highly ordered,vertically oriented TiO2nanotube arrays:fabrication,material properties,and solar energy applications.Sol.Energy Mater.Sol.Cells 90(14),2011-2075(2006).https://doi.org/10.1016/j.solmat.2006.04.007
    12.B.Karunagaran,P.Uthirakumar,S.J.Chung,S.Velumani,E.K.Suh,TiO2thin film gas sensor for monitoring ammonia.Mater.Charact.58(8),680-684(2007).https://doi.org/10.1016/j.matchar.2006.11.007
    13.J.Moon,J.A.Park,S.J.Lee,T.Zyung,I.D.Kim,Pd-doped TiO2nanofiber networks for gas sensor applications.Sens.Actuator B-Chem.149(1),301-305(2010).https://doi.org/10.1016/j.snb.2010.06.033
    14.M.Ni,M.K.H.Leung,D.Y.C.Leung,K.Sumathy,A review and recent developments in photocatalytic water-splitting using TiO2for hydrogen production.Renew.Sustain.Energy Rev.11(3),401-425(2007).https://doi.org/10.1016/j.rser.2005.01.009
    15.B.X.Lei,J.Y.Liao,R.Zhang,J.Wang,C.Y.Su,D.B.Kuang,Ordered crystalline TiO2nanotube arrays on transparent FTOglass for efficient dye-sensitized solar cells.J.Phys.Chem.C114(35),15228-15233(2010).https://doi.org/10.1021/jp105780v
    16.H.Xiong,M.D.Slater,M.Balasubramanian,C.S.Johnson,T.Rajh,Amorphous TiO2nanotube anode for rechargeable sodium ion batteries.J.Phys.Chem.Lett.2(20),2560-2565(2011).https://doi.org/10.1021/jz2012066
    17.Z.Zhang,L.Zhang,M.N.Hedhili,H.Zhang,P.Wang,Plasmonic Gold nanocrystals coupled with photonic crystal seamlessly on tio2nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting.Nano Lett.13(1),14-20(2013).https://doi.org/10.1021/nl3029202
    18.J.Wang,Z.Lin,Freestanding TiO2nanotube arrays with ultrahigh aspect ratio via electrochemical anodization.Chem.Mater.20(4),1257-1261(2008).https://doi.org/10.1021/cm7028917
    19.J.Qiu,Z.Jin,Z.Liu,X.Liu,G.Liu,W.Wu,X.Zhang,X.Gao,Fabrication of TiO2nanotube film by well-aligned ZnO nanorod array film and sol-gel process.Thin Solid Films 515(5),2897-2902(2007).https://doi.org/10.1016/j.tsf.2006.08.023
    20.S.Xu,J.Ng,X.Zhang,H.Bai,D.D.Sun,Adsorption and photocatalytic degradation of Acid Orange 7 over hydrothermally synthesized mesoporous TiO2nanotube.Colloid Surf.A-Physicochem.Eng.379(1),169-175(2011).https://doi.org/10.1016/j.colsurfa.2010.11.032
    21.M.Paulose,K.Shankar,S.Yoriya,H.E.Prakasam,O.K.Varghese,G.K.Mor,T.A.Latempa,A.Fitzgerald,C.A.Grimes,Anodic growth of highly ordered TiO2nanotube arrays to134 lm in length.J.Phys.Chem.B 110(33),16179-16184(2006).https://doi.org/10.1021/jp064020k
    22.N.Liu,X.Chen,J.Zhang,J.W.Schwank,A review on TiO2-based nanotubes synthesized via hydrothermal method:formation mechanism,structure modification,and photocatalytic applications.Catal.Today 225,34-51(2014).https://doi.org/10.1016/j.cattod.2013.10.090
    23.D.Kuang,J.Brillet,P.Chen,M.Takata,S.Uchida,H.Miura,K.Sumioka,S.M.Zakeeruddin,M.Gra¨tzel,Application of highly ordered TiO2nanotube arrays in flexible dye-sensitized solar cells.ACS Nano 2(6),1113-1116(2008).https://doi.org/10.1021/nn800174y
    24.Z.Liu,M.Misra,Dye-sensitized photovoltaic wires using highly ordered TiO2nanotube arrays.ACS Nano 4(4),2196-2200(2010).https://doi.org/10.1021/nn9015696
    25.M.Paulose,H.E.Prakasam,O.K.Varghese,L.Peng,K.C.Popat,G.K.Mor,T.A.Desai,C.A.Grimes,TiO2nanotube arrays of 1000 lm length by anodization of titanium foil:phenol red diffusion.J.Phys.Chem.C 111(41),14992-14997(2007).https://doi.org/10.1021/jp075258r
    26.D.Regonini,C.R.Bowen,A.Jaroenworaluck,R.Stevens,Areview of growth mechanism,structure and crystallinity of anodized TiO2nanotubes.Mater.Sci.Eng.R 74(12),377-406(2013).https://doi.org/10.1016/j.mser.2013.10.001
    27.C.C.Chen,H.W.Chung,C.H.Chen,H.P.Lu,C.M.Lan,S.F.Chen,L.Luo,C.S.Hung,E.W.G.Diau,Fabrication and characterization of anodic titanium oxide nanotube arrays of controlled length for highly efficient dye-sensitized solar cells.J.Phys.Chem.C 112(48),19151-19157(2008).https://doi.org/10.1021/jp806281r
    28.K.Zhu,N.R.Neale,A.Miedaner,A.J.Frank,Enhanced chargecollection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2nanotubes arrays.Nano Lett.7(1),69-74(2007).https://doi.org/10.1021/nl062000o
    29.D.Wang,B.Yu,C.Wang,F.Zhou,W.Liu,A novel protocol toward perfect alignment of anodized Ti O2nanotubes.Adv.Mater.21(19),1964-1967(2009).https://doi.org/10.1002/adma.200801996
    30.J.Yu,B.Wang,Effect of calcination temperature on morphology and photoelectrochemical properties of anodized titanium dioxide nanotube arrays.Appl.Catal.B-Environ.94(3),295-302(2010).https://doi.org/10.1016/j.apcatb.2009.12.003
    31.S.Sreekantan,R.Hazan,Z.Lockman,Photoactivity of anataserutile TiO2nanotubes formed by anodization method.Thin Solid Films 518(1),16-21(2009).https://doi.org/10.1016/j.tsf.2009.06.002
    32.J.M.Macak,M.Zlamal,J.Krysa,P.Schmuki,Self-organized TiO2nanotube layers as highly efficient photocatalysts.Small3(2),300-304(2007).https://doi.org/10.1002/smll.200600426
    33.N.K.Allam,K.Shankar,C.A.Grimes,A general method for the anodic formation of crystalline metal oxide nanotube arrays without the use of thermal annealing.Adv.Mater.20(20),3942-3946(2008).https://doi.org/10.1002/adma.200800815
    34.J.H.Yang,Y.S.Han,J.H.Choy,TiO2thin-films on polymer substrates and their photocatalytic activity.Thin Solid Films495(1),266-271(2006).https://doi.org/10.1016/j.tsf.2005.08.195
    35.K.Lee,A.Mazare,P.Schmuki,One-dimensional titanium dioxide nanomaterials:nanotubes.Chem.Rev.114(19),9385-9454(2014).https://doi.org/10.1021/cr500061m
    36.P.Roy,S.Berger,P.Schmuki,TiO2nanotubes:synthesis and applications.Angew.Chem.Int.Ed.50(13),2904-2939(2011).https://doi.org/10.1002/anie.201001374
    37.Z.Su,L.Zhang,F.Jiang,M.Hong,Formation of crystalline TiO2by anodic oxidation of titanium.Prog.Nat.Sci.23(3),294-301(2013).https://doi.org/10.1016/j.pnsc.2013.04.004
    38.S.Ali,S.P.Hannula,Titania nanotube powders obtained by rapid breakdown anodization in perchloric acid electrolytes.J.Solid State Chem.249,189-198(2017).https://doi.org/10.1016/j.jssc.2017.03.007
    39.Y.Liao,W.Que,P.Zhong,J.Zhang,Y.He,A facile method to crystallize amorphous anodized TiO2nanotubes at low temperature.ACS Appl.Mater.Interfaces 3(7),2800-2804(2011).https://doi.org/10.1021/am200685s
    40.D.Wang,L.Liu,F.Zhang,K.Tao,E.Pippel,K.Domen,Spontaneous phase and morphology transformations of anodized titania nanotubes induced by water at room temperature.Nano Lett.11(9),3649-3655(2011).https://doi.org/10.1021/nl2015262
    41.N.Liu,S.P.Albu,K.Lee,S.So,P.Schmuki,Water annealing and other low temperature treatments of anodic TiO2nanotubes:a comparison of properties and efficiencies in dye sensitized solar cells and for water splitting.Electrochim.Acta 82,98-102(2012).https://doi.org/10.1016/j.electacta.2012.06.006
    42.B.M.Rao,S.C.Roy,Water assisted crystallization,gas sensing and photo-electrochemical properties of electrochemically synthesized TiO2nanotube arrays.RSC Adv.4(90),49108-49114(2014).https://doi.org/10.1039/C4RA06842D
    43.H.Kaifu,W.Hairong,Z.Xuming,C.Yue,P.K.Chu,Heterostructured TiO2nanoparticles/nanotube arrays:in situ formation from amorphous TiO2nanotube arrays in water and enhanced photocatalytic activity.ChemPlusChem 77(4),323-329(2012).https://doi.org/10.1002/cplu.201200024
    44.T.Zeng,H.Ni,X.Su,Y.Chen,Y.Jiang,Highly crystalline Titania nanotube arrays realized by hydrothermal vapor route and used as front-illuminated photoanode in dye sensitized solar cells.J.Power Sources 283,443-451(2015).https://doi.org/10.1016/j.jpowsour.2015.02.150
    45.S.Kurian,P.Sudhagar,J.Lee,D.Song,W.Cho,S.Lee,Y.S.Kang,H.Jeon,Formation of a crystalline nanotube-nanoparticle hybrid by post water-treatment of a thin amorphous TiO2layer on a TiO2nanotube array as an efficient photoanode in dyesensitized solar cells.J.Mater.Chem.A 1(13),4370-4375(2013).https://doi.org/10.1039/c3ta01339a
    46.K.Assaker,C.Carteret,B.Lebeau,C.Marichal,L.Vidal,M.-J.Ste′be′,J.-L.Blin,Water-catalyzed low-temperature transformation from amorphous to semi-crystalline phase of ordered mesoporous titania framework.ACS Sustain.Chem.Eng.2(2),120-125(2014).https://doi.org/10.1021/sc400323w
    47.J.Lin,X.Liu,M.Guo,W.Lu,G.Zhang,L.Zhou,X.Chen,H.Huang,A facile route to fabricate an anodic TiO2nanotubenanoparticle hybrid structure for high efficiency dye-sensitized solar cells.Nanoscale 4(16),5148-5153(2012).https://doi.org/10.1039/c2nr31268a
    48.W.Krengvirat,S.Sreekantan,A.F.Mohd Noor,N.Negishi,G.Kawamura,H.Muto,A.Matsuda,Low-temperature crystallization of TiO2nanotube arrays via hot water treatment and their photocatalytic properties under visible-light irradiation.Mater.Chem.Phys.137(3),991-998(2013).https://doi.org/10.1016/j.matchemphys.2012.11.013
    49.X.Keyu,G.Min,L.Wei,H.Haitao,Aligned Ti O2nanotube/nanoparticle heterostructures with enhanced electrochemical performance as three-dimensional anode for lithiumion microbatteries.Nanotechnology 25(45),455401(2014).https://doi.org/10.1088/0957-4484/25/45/455401
    50.T.C.Hufnagel,Finding order in disorder.Nat.Mater.3,666(2004).https://doi.org/10.1038/nmat1227
    51.M.P.Finnegan,H.Zhang,J.F.Banfield,Phase stability and transformation in titania nanoparticles in aqueous solutions dominated by surface energy.J.Phys.Chem.C 111(5),1962-1968(2007).https://doi.org/10.1021/jp063822c
    52.Y.Liao,X.Wang,Y.Ma,J.Li,T.Wen,L.Jia,Z.Zhong,L.Wang,D.Zhang,New mechanistic insight of low temperature crystallization of anodic TiO2nanotube array in water.Cryst.Growth Des.16(4),1786-1791(2016).https://doi.org/10.1021/acs.cgd.5b01234
    53.H.Fan,H.Zhang,X.Luo,M.Liao,X.Zhu,J.Ma,Y.Song,Hydrothermal solid-gas route to TiO2nanoparticles/nanotube arrays for high-performance supercapacitors.J.Power Sources357,230-240(2017).https://doi.org/10.1016/j.jpowsour.2017.05.009
    54.J.Liu,Z.Liu,T.Zhang,J.Zhai,L.Jiang,Low-temperature crystallization of anodized TiO2nanotubes at the solid-gas interface and their photoelectrochemical properties.Nanoscale5(13),6139-6144(2013).https://doi.org/10.1039/c3nr01286g
    55.A.Lamberti,A.Chiodoni,N.Shahzad,S.Bianco,M.Quaglio,C.F.Pirri,Ultrafast room-temperature crystallization of TiO2nanotubes exploiting water-vapor treatment.Sci.Rep.5,7808(2015).https://doi.org/10.1038/srep07808
    56.J.Su,X.Zou,G.D.Li,Y.M.Jiang,Y.Cao,J.Zhao,J.S.Chen,Room-temperature spontaneous crystallization of porous amorphous titania into a high-surface-area anatase photocatalyst.Chem.Commun.49(74),8217-8219(2013).https://doi.org/10.1039/c3cc43772h
    57.C.Zhao,D.Zhu,S.Cao,Amorphous TiO2nanotube-derived synthesis of highly ordered anatase TiO2nanorod arrays.Superlattices Microstruct.90,257-264(2016).https://doi.org/10.1016/j.spmi.2015.12.037
    58.Y.Cai,Y.Ye,S.Wu,J.Liu,C.Liang,Simultaneous Cu doping and growth of TiO2nanocrystalline array film as a glucose biosensor.RSC Adv.6(81),78219-78224(2016).https://doi.org/10.1039/C6RA15014D
    59.Y.Liao,J.Brame,W.Que,Z.Xiu,H.Xie,Q.Li,M.Fabian,P.J.Alvarez,Photocatalytic generation of multiple ROS types using low-temperature crystallized anodic TiO2nanotube arrays.J.Hazard.Mater.260,434-441(2013).https://doi.org/10.1016/j.jhazmat.2013.05.047
    60.Z.Li,Y.Chen,J.Shen,X.Cui,Facile synthesis of a heterogeneous Li2TiO3/TiO2nanocomposite with enhanced photoelectrochemical water splitting.New J.Chem.41(14),6305-6314(2017).https://doi.org/10.1039/C7NJ00198C
    61.K.Huo,X.Zhang,H.Wang,L.Zhao,X.Liu,P.K.Chu,Osteogenic activity and antibacterial effects on titanium surfaces modified with Zn-incorporated nanotube arrays.Biomaterials34(13),3467-3478(2013).https://doi.org/10.1016/j.biomater ials.2013.01.071
    62.Y.Xin,J.Jiang,K.Huo,T.Hu,P.K.Chu,Bioactive SrTiO3nanotube arrays:strontium delivery platform on ti-based osteoporotic bone implants.ACS Nano 3(10),3228-3234(2009).https://doi.org/10.1021/nn9007675
    63.H.J.Lin,T.S.Yang,M.C.Wang,C.S.Hsi,Structural and photodegradation behaviors of Fe3?-doping TiO2thin films prepared by a sol-gel spin coating.J.Alloys Compd.610,478-485(2014).https://doi.org/10.1016/j.jallcom.2014.05.053
    64.X.Li,X.Zou,Z.Qu,Q.Zhao,L.Wang,Photocatalytic degradation of gaseous toluene over Ag-doping TiO2nanotube powder prepared by anodization coupled with impregnation method.Chemosphere 83(5),674-679(2011).https://doi.org/10.1016/j.chemosphere.2011.02.043
    65.Y.F.Tu,S.Y.Huang,J.P.Sang,X.W.Zou,Preparation of Fedoped TiO2nanotube arrays and their photocatalytic activities under visible light.Mater.Res.Bull.45(2),224-229(2010).https://doi.org/10.1016/j.materresbull.2009.08.020
    66.H.A.Hamedani,N.K.Allam,H.Garmestani,M.A.El-Sayed,Electrochemical fabrication of strontium-doped TiO2nanotube array electrodes and investigation of their photoelectrochemical properties.J.Phys.Chem.C 115(27),13480-13486(2011).https://doi.org/10.1021/jp201194b
    67.X.Zhang,B.Gao,L.Hu,L.Li,W.Jin,K.Huo,P.K.Chu,Hydrothermal synthesis of perovskite-type MTiO3(M=Zn Co,Ni)/TiO2nanotube arrays from an amorphous TiO2template.CrystEngComm 16(44),10280-10285(2014).https://doi.org/10.1039/C4CE00992D
    68.A.L.Castro,M.R.Nunes,A.P.Carvalho,F.M.Costa,M.H.Flore?ncio,Synthesis of anatase TiO2nanoparticles with high temperature stability and photocatalytic activity.Solid State Sci.10(5),602-606(2008).https://doi.org/10.1016/j.solid statesciences.2007.10.012
    69.Z.Wei,S.Fanfei,P.Kai,T.Guohui,J.Baojiang,R.Zhiyu,T.Chungui,F.Honggang,Well-ordered large-pore mesoporous anatase TiO2with remarkably high thermal stability and improved crystallinity:preparation,characterization,and photocatalytic performance.Adv.Funct.Mater.21(10),1922-1930(2011).https://doi.org/10.1002/adfm.201002535
    70.J.Ye,W.Liu,J.Cai,S.Chen,X.Zhao,H.Zhou,L.Qi,Nanoporous anatase TiO2mesocrystals:additive-free synthesis,remarkable crystalline-phase stability,and improved lithium insertion behavior.J.Am.Chem.Soc.133(4),933-940(2011).https://doi.org/10.1021/ja108205q
    71.C.Zhao,D.C.Zhu,X.Y.Cheng,S.X.Cao,Highly ordered AgTiO2nanocomposited arrays with high visible-light photocatalytic activity.Front.Mater.Sci.11(3),241-249(2017).https://doi.org/10.1007/s11706-017-0386-8
    72.Y.K.Lai,J.Y.Huang,H.F.Zhang,V.P.Subramaniam,Y.X.Tang et al.,Nitrogen-doped TiO2nanotube array films with enhanced photocatalytic activity under various light sources.J.Hazard.Mater.184(1),855-863(2010).https://doi.org/10.1016/j.jhazmat.2010.08.121
    73.M.Sathish,B.Viswanathan,R.P.Viswanath,C.S.Gopinath,Synthesis,characterization,electronic structure,and photocatalytic activity of nitrogen-doped TiO2nanocatalyst.Chem.Mater.17(25),6349-6353(2005).https://doi.org/10.1021/cm052047v
    74.H.Tokudome,M.Miyauchi,N-doped TiO2nanotube with visible light activity.Chem.Lett.33(9),1108-1109(2004).https://doi.org/10.1246/cl.2004.1108
    75.X.Hou,C.W.Wang,W.D.Zhu,X.Q.Wang,Y.Li et al.,Preparation of nitrogen-doped anatase TiO2nanoworm/nanotube hierarchical structures and its photocatalytic effect.Solid State Sci.29,27-33(2014).https://doi.org/10.1016/j.solid statesciences.2014.01.007
    76.S.Hoang,S.P.Berglund,N.T.Hahn,A.J.Bard,C.B.Mullins,Enhancing visible light photo-oxidation of water with tio2nanowire arrays via cotreatment with H2and NH3:synergistic effects between Ti3?and N.J.Am.Chem.Soc.134(8),3659-3662(2012).https://doi.org/10.1021/ja211369s
    77.R.P.Antony,T.Mathews,K.Panda,B.Sundaravel,S.Dash,A.K.Tyagi,Enhanced field emission properties of electrochemically synthesized self-aligned nitrogen-doped TiO2nanotube array thin films.J.Phys.Chem.C 116(31),16740-16746(2012).https://doi.org/10.1021/jp302578b
    78.C.W.Wang,W.D.Zhu,J.B.Chen,X.Hou,X.Q.Zhang,Y.Li,J.Wang,F.Zhou,Low-temperature ammonia annealed Ti O2nanotube arrays:synergy of morphology improvement and nitrogen doping for enhanced field emission.Thin Solid Films556,440-446(2014).https://doi.org/10.1016/j.tsf.2014.01.066
    79.W.Chenglin,W.Mengye,X.Kunpeng,W.Qi,S.Lan,L.Zhiqun,L.Changjian,Room temperature one-step synthesis of microarrays of N-doped flower-like anatase TiO2composed of well-defined multilayer nanoflakes by Ti anodization.Nanotechnology 22(30),305607(2011).https://doi.org/10.1088/0957-4484/22/30/305607
    80.S.Karthik,T.Kong Chhay,K.M.Gopal,A.G.Craig,An electrochemical strategy to incorporate nitrogen in nanostructured TiO2thin films:modification of bandgap and photoelectrochemical properties.J.Phys.D-Appl.Phys.39(11),2361(2006).https://doi.org/10.1088/0022-3727/39/11/008
    81.H.Cui,Y.Chen,S.Lu,S.Zhang,X.Zhu,Y.Song,TiO2nanotube arrays treated with(NH4)2TiF6dilute solution for better supercapacitive performances.Electrochim.Acta 253,455-462(2017).https://doi.org/10.1016/j.electacta.2017.09.080
    82.John K.Aijo,Manju Thankamoniamma,Joaquim Puigdollers,R.Anuroop,B.Pradeep,Thoudinja Shripathie,Rachel Reena Philip,Rapid room temperature crystallization of TiO2nanotubes.CrystEngComm 19(12),1585-1589(2017).https://doi.org/10.1039/C6CE02526A
    83.C.Cao,J.Yan,Y.Zhang,L.Zhao,Stability of titania nanotube arrays in aqueous environment and the related factors.Sci.Rep.6,23065(2016).https://doi.org/10.1038/srep23065
    84.X.Wang,L.Sun,S.Zhang,X.Wang,K.Huo,J.Fu,H.Wang,D.Zhao,A composite electrode of TiO2nanotubes and nanoparticles synthesised by hydrothermal treatment for use in dye-sensitized solar cells.RSC Adv.3(27),11001-11006(2013).https://doi.org/10.1039/c3ra23482g
    85.H.Imai,Y.Takei,K.Shimizu,M.Matsuda,H.Hirashima,Direct preparation of anatase TiO2nanotubes in porous alumina membranes.J.Mater.Chem.9(12),2971-2972(1999).https://doi.org/10.1039/a906005g
    86.I.D.Tevis,S.I.Stupp,Patterning of periodic high-aspect-ratio nanopores in anatase titanium dioxide from titanium fluoride hydrolysis.Nanoscale 3(5),2162-2165(2011).https://doi.org/10.1039/c0nr01010c
    87.I.Paramasivam,J.M.Macak,P.Schmuki,Photocatalytic activity of TiO2nanotube layers loaded with Ag and Au nanoparticles.Electrochem.Commun.10(1),71-75(2008).https://doi.org/10.1016/j.elecom.2007.11.001
    88.Q.Kang,S.Liu,L.Yang,Q.Cai,C.A.Grimes,Fabrication of PbS nanoparticle-sensitized TiO2nanotube arrays and their photoelectrochemical properties.ACS Appl.Mater.Interfaces3(3),746-749(2011).https://doi.org/10.1021/am101086t
    89.Y.Y.Song,Z.D.Gao,P.Schmuki,Highly uniform Pt nanoparticle decoration on TiO2nanotube arrays:a refreshable platform for methanol electrooxidation.Electrochem.Commun.13(3),290-293(2011).https://doi.org/10.1016/j.elecom.2011.01.006
    90.Y.Zhang,Y.Yang,P.Xiao,X.Zhang,L.Lu,L.Li,Preparation of Ni nanoparticle-TiO2nanotube composite by pulse electrodeposition.Mater.Lett.63(28),2429-2431(2009).https://doi.org/10.1016/j.matlet.2009.08.019
    91.X.Q.Gong,A.Selloni,Reactivity of anatase TiO2nanoparticles:the role of the minority(001)surface.J.Phys.Chem.B 109(42),19560-19562(2005).https://doi.org/10.1021/jp055311g
    92.D.J.Yang,H.Park,S.J.Cho,H.G.Kim,W.-Y.Choi,TiO2-nanotube-based dye-sensitized solar cells fabricated by an efficient anodic oxidation for high surface area.J.Phys.Chem.Solids 69(5),1272-1275(2008).https://doi.org/10.1016/j.jpcs.2007.10.107
    93.P.Roy,D.Kim,K.Lee,E.Spiecker,P.Schmuki,TiO2nanotubes and their application in dye-sensitized solar cells.Nanoscale 2(1),45-59(2010).https://doi.org/10.1039/B9NR00131J
    94.D.Kowalski,D.Kim,P.Schmuki,TiO2nanotubes,nanochannels and mesosponge:self-organized formation and applications.Nano Today 8(3),235-264(2013).https://doi.org/10.1016/j.nantod.2013.04.010
    95.J.R.Jennings,A.Ghicov,L.M.Peter,P.Schmuki,A.B.Walker,Dye-sensitized solar cells based on oriented TiO2nanotube arrays:transport,trapping,and transfer of electrons.J.Am.Chem.Soc.130(40),13364-13372(2008).https://doi.org/10.1021/ja804852z
    96.X.Luan,D.Guan,Y.Wang,Facile synthesis and morphology control of bamboo-type TiO2nanotube arrays for high-efficiency dye-sensitized solar cells.J.Phys.Chem.C 116(27),14257-14263(2012).https://doi.org/10.1021/jp305280q
    97.P.Albu Sergiu,D.Kim,P.Schmuki,Growth of aligned TiO2bamboo-type nanotubes and highly ordered nanolace.Angew.Chem.Int.Ed.120(10),1942-1945(2008).https://doi.org/10.1002/ange.200704144
    98.D.Kim,A.Ghicov,S.P.Albu,P.Schmuki,Bamboo-type TiO2nanotubes:improved conversion efficiency in dye-sensitized solar cells.J.Am.Chem.Soc.130(49),16454-16455(2008).https://doi.org/10.1021/ja805201v
    99.D.A.H.Hanaor,C.C.Sorrell,Review of the anatase to rutile phase transformation.J.Mater.Sci.46(4),855-874(2011).https://doi.org/10.1007/s10853-010-5113-0
    100.K.Yang,Y.Dai,B.Huang,Study of the nitrogen concentration influence on n-doped TiO2anatase from first-principles calculations.J.Phys.Chem.C 111(32),12086-12090(2007).https://doi.org/10.1021/jp067491f
    101.J.Zhang,P.Zhou,J.Liu,J.Yu,New understanding of the difference of photocatalytic activity among anatase,rutile and brookite TiO2.Phys.Chem.Chem.Phys.16(38),20382-20386(2014).https://doi.org/10.1039/C4CP02201G
    102.W.Ren,Z.Ai,F.Jia,L.Zhang,X.Fan,Z.Zou,Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2.Appl.Catal.B-Environ.69(3),138-144(2007).https://doi.org/10.1016/j.apcatb.2006.06.015
    103.C.Song,X.Wang,J.Zhang,X.Chen,C.Li,Enhanced performance of direct Z-scheme CuS-WO3system towards photocatalytic decomposition of organic pollutants under visible light.Appl.Surf.Sci.425,788-795(2017).https://doi.org/10.1016/j.apsusc.2017.07.082
    104.M.A.Mahadik,G.W.An,S.David,S.H.Choi,M.Cho,J.S.Jang,Fabrication of A/R-TiO2composite for enhanced photoelectrochemical performance:solar hydrogen generation and dye degradation.Appl.Surf.Sci.426,833-843(2017).https://doi.org/10.1016/j.apsusc.2017.07.179
    105.X.Li,W.Zhao,J.Zhao,Visible light-sensitized semiconductor photocatalytic degradation of 2,4-dichlorophenol.Sci.China Ser.B-Chem.45(4),421-425(2002).https://doi.org/10.1360/02yb9054
    106.Z.Zhang,G.Yuan,Y.Shi,L.Fang,H.Liang,L.Jin Ding,Photoelectrocatalytic activity of highly ordered TiO2nanotube arrays electrode for azo dye degradation.Environ.Sci.Policy41(17),6259-6263(2007).https://doi.org/10.1021/es070212x
    107.H.C.Liang,X.Z.Li,Effects of structure of anodic TiO2nanotube arrays on photocatalytic activity for the degradation of2,3-dichlorophenol in aqueous solution.J.Hazard.Mater.162(2),1415-1422(2009).https://doi.org/10.1016/j.jhazmat.2008.06.033
    108.Z.Liu,X.Zhang,S.Nishimoto,M.Jin,D.A.Tryk,T.Murakami,A.Fujishima,Highly ordered TiO2nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol.J.Phys.Chem.C 112(1),253-259(2008).https://doi.org/10.1021/jp0772732
    109.L.Cheng,Q.Xiang,Y.Liao,H.Zhang,CdS-Based photocatalysts.Energy Environ.Sci.(2018).https://doi.org/10.1039/C7EE03640J
    110.J.Fu,B.Chang,Y.Tian,F.Xi,X.Dong,Novel C3N4-CdScomposite photocatalysts with organic-inorganic heterojunctions:in situ synthesis,exceptional activity,high stability and photocatalytic mechanism.J.Mater.Chem.A 1(9),3083-3090(2013).https://doi.org/10.1039/c2ta00672c
    111.B.O’Regan,M.Gra¨tzel,A low-cost,high-efficiency solar cell based on dye-sensitized colloidal TiO2films.Nature 353(6346),737-740(1991).https://doi.org/10.1038/353737a0
    112.J.Qian,P.Liu,Y.Xiao,Y.Jiang,Y.Cao,X.Ai,H.Yang,TiO2-coated multilayered SnO2hollow microspheres for dye-sensitized solar cells.Adv.Mater.21(36),3663-3667(2009).https://doi.org/10.1002/adma.200900525
    113.B.E.Hardin,H.J.Snaith,M.D.McGehee,The renaissance of dye-sensitized solar cells.Nat.Photonics 6(6),162-169(2012).https://doi.org/10.1038/nphoton.2012.22
    114.W.Y.Cheng,J.R.Deka,Y.C.Chiang,A.Rogeau,S.Y.Lu,Onestep,surfactant-free hydrothermal method for syntheses of mesoporous TiO2nanoparticle aggregates and their applications in high efficiency dye-sensitized solar cells.Chem.Mater.24(16),3255-3262(2012).https://doi.org/10.1021/cm3017616
    115.S.H.Kang,S.H.Choi,M.S.Kang,J.Y.Kim,H.S.Kim,T.Hyeon,Y.E.Sung,Nanorod-based dye-sensitized solar cells with improved charge collection efficiency.Adv.Mater.20(1),54-58(2007).https://doi.org/10.1002/adma.200701819
    116.C.T.Yip,M.Guo,H.Huang,L.Zhou,Y.Wang,C.Huang,Open-ended TiO2nanotubes formed by two-step anodization and their application in dye-sensitized solar cells.Nanoscale4(2),448-450(2012).https://doi.org/10.1039/C2NR11317A
    117.M.Adachi,Y.Murata,J.Takao,J.Jiu,M.Sakamoto,F.Wang,Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2nanowires made by the oriented attachment mechanism.J.Am.Chem.Soc.126(45),14943-14949(2004).https://doi.org/10.1021/ja048068s
    118.Q.Chen,D.Xu,Large-scale,noncurling,and free-standing crystallized TiO2nanotube arrays for dye-sensitized solar cells.J.Phys.Chem.C 113(15),6310-6314(2009).https://doi.org/10.1021/jp900336e
    119.S.Yoriya,C.A.Grimes,Self-assembled TiO2nanotube arrays by anodization of titanium in diethylene glycol:approach to extended pore widening.Langmuir 26(1),417-420(2010).https://doi.org/10.1021/la9020146
    120.T.Stergiopoulos,A.Ghicov,V.Likodimos,D.S.Tsoukleris,J.Kunze,P.Schmuki,P.Falaras,Dye-sensitized solar cells based on thick highly ordered TiO2nanotubes produced by controlled anodic oxidation in non-aqueous electrolytic media.Nanotechnology 19(23),235602(2008).https://doi.org/10.1088/0957-4484/19/23/235602
    121.L.Sun,S.Zhang,X.Sun,X.He,Effect of the geometry of the anodized titania nanotube array on the performance of dyesensitized solar cells.J.Nanosci.Nanotechnol.10(7),4551-4561(2010).https://doi.org/10.1166/jnn.2010.1695
    122.M.Macak Jan,S.Aldabergerova,A.Ghicov,P.Schmuki,Smooth anodic TiO2nanotubes:annealing and structure.Phys.Status Solidi A 203(10),R67-R69(2006).https://doi.org/10.1002/pssa.200622214
    123.D.Kim,P.Roy,K.Lee,P.Schmuki,Dye-sensitized solar cells using anodic TiO2mesosponge:improved efficiency by TiCl4treatment.Electrochem.Commun.12(4),574-578(2010).https://doi.org/10.1016/j.elecom.2010.02.003
    124.P.Roy,D.Kim,I.Paramasivam,P.Schmuki,Improved efficiency of TiO2nanotubes in dye sensitized solar cells by decoration with TiO2nanoparticles.Electrochem.Commun.11(5),1001-1004(2009).https://doi.org/10.1016/j.elecom.2009.02.049
    125.J.Wang,Z.Lin,Dye-sensitized TiO2nanotube solar cells with markedly enhanced performance via rational surface engineering.Chem.Mater.22(2),579-584(2010).https://doi.org/10.1021/cm903164k
    126.J.E.Boercker,E.Enache-Pommer,E.S.Aydil,Growth mechanism of titanium dioxide nanowires for dye-sensitized solar cells.Nanotechnology 19(9),095604(2008).https://doi.org/10.1088/0957-4484/19/9/095604
    127.K.E.Lee,M.A.Gomez,S.Elouatik,G.P.Demopoulos,Further understanding of the adsorption mechanism of N719 sensitizer on anatase TiO2films for DSSC applications using vibrational spectroscopy and confocal raman imaging.Langmuir 26(12),9575-9583(2010).https://doi.org/10.1021/la100137u
    128.H.Zhou,Y.Zhang,Electrochemically self-doped TiO2nanotube arrays for supercapacitors.J.Phys.Chem.C 118(11),5626-5636(2014).https://doi.org/10.1021/jp4082883
    129.W.Hui,X.Chen,X.Jing,L.Linfeng,F.Zhiyong,C.Xiaoyuan,S.Ye,L.Dongdong,Enhanced supercapacitance in anodic TiO2nanotube films by hydrogen plasma treatment.Nanotechnology24(45),455401(2013).https://doi.org/10.1088/0957-4484/24/45/455401
    130.D.Yu,X.Zhu,Z.Xu,X.Zhong,Q.Gui,Y.Song,S.Zhang,X.Chen,D.Li,Facile method to enhance the adhesion of TiO2nanotube arrays to Ti substrate.ACS Appl.Mater.Interfaces6(11),8001-8005(2014).https://doi.org/10.1021/am5015716
    131.Z.Shao,H.Li,M.Li,C.Li,C.Qu,B.Yang,Fabrication of polyaniline nanowire/TiO2nanotube array electrode for supercapacitors.Energy 87,578-585(2015).https://doi.org/10.1016/j.energy.2015.05.025
    132.Y.Y.Song,F.Schmidt-Stein,S.Bauer,P.Schmuki,Amphiphilic TiO2nanotube arrays:an actively controllable drug delivery system.J.Am.Chem.Soc.131(12),4230-4232(2009).https://doi.org/10.1021/ja810130h
    133.S.Lin,D.Li,J.Wu,X.Li,S.A.Akbar,A selective room temperature formaldehyde gas sensor using TiO2nanotube arrays.Sens.Actuator B 156(2),505-509(2011).https://doi.org/10.1016/j.snb.2011.02.046
    134.Y.Lai,L.Lin,F.Pan,J.Huang,R.Song,Y.Huang,C.Lin,H.Fuchs,L.Chi,Bioinspired patterning with extreme wettability contrast on TiO2nanotube array surface:a versatile platform for biomedical applications.Small 9(17),2945-2953(2013).https://doi.org/10.1002/smll.201300187
    135.C.Moseke,F.Hage,E.Vorndran,U.Gbureck,TiO2nanotube arrays deposited on Ti substrate by anodic oxidation and their potential as a long-term drug delivery system for antimicrobial agents.Appl.Surf.Sci.258(14),5399-5404(2012).https://doi.org/10.1016/j.apsusc.2012.02.022
    136.K.Huo,X.Li,B.Gao,L.Wang,Q.Li,X.Peng,X.Zhang,J.Fu,P.K.Chu,Self-supporting and binder-free anode film composed of beaded stream-like Li4Ti5O12nanoparticles for highperformance lithium-ion batteries.ChemElectroChem 3(9),1301-1305(2016).https://doi.org/10.1002/celc.201600215
    137.K.Huo,Y.Li,R.Chen,B.Gao,C.Peng,W.Zhang,L.Hu,X.Zhang,P.K.Chu,Recyclable non-enzymatic glucose sensor based on Ni/NiTiO3/TiO2nanotube arrays.ChemPlusChem80(3),576-582(2015).https://doi.org/10.1002/cplu.201402288
    138.A.Ranga Rao,V.Dutta,Low-temperature synthesis of TiO2nanoparticles and preparation of TiO2thin films by spray deposition.Sol.Energy Mater.Sol.Cells 91(12),1075-1080(2007).https://doi.org/10.1016/j.solmat.2007.03.001
    139.J.Archana,M.Navaneethan,Y.Hayakawa,Solvothermal growth of high surface area mesoporous anatase TiO2nanospheres and investigation of dye-sensitized solar cell properties.J.Power Sources 242,803-810(2013).https://doi.org/10.1016/j.jpowsour.2013.05.126
    140.H.Li,W.Zhang,B.Li,W.Pan,Diameter-dependent photocatalytic activity of electrospun TiO2nanofiber.J.Am.Chem.Soc.93(9),2503-2506(2010).https://doi.org/10.1111/j.1551-2916.2010.03841.x
    141.H.-E.Wang,H.Cheng,C.Liu,X.Chen,Q.Jiang et al.,Facile synthesis and electrochemical characterization of porous and dense TiO2nanospheres for lithium-ion battery applications.J.Power Sources 196(15),6394-6399(2011).https://doi.org/10.1016/j.jpowsour.2011.03.085
    142.I.D.Kim,A.Rothschild,B.H.Lee,D.Y.Kim,S.M.Jo,H.L.Tuller,Ultrasensitive chemiresistors based on electrospun TiO2nanofibers.Nano Lett.6(9),2009-2013(2006).https://doi.org/10.1021/nl061197h
    143.N.Li,Q.Zhang,J.B.Joo,Z.Lu,M.Dahl,Y.Gan,Y.Yin,Water-assisted crystallization of mesoporous anatase TiO2nanospheres.Nanoscale 8(17),9113-9117(2016).https://doi.org/10.1039/C6NR01892K
    144.J.B.Joo,M.Dahl,N.Li,F.Zaera,Y.Yin,Tailored synthesis of mesoporous TiO2hollow nanostructures for catalytic applications.Energy Environ.Sci.6(7),2082-2092(2013).https://doi.org/10.1039/c3ee41155a
    145.Z.Chen,K.Zhou,Surface morphology,phase structure and property evolution of anodized titanium during water vapor exposure.Surf.Coat.Technol.263,61-65(2015).https://doi.org/10.1016/j.surfcoat.2014.12.056
    146.K.Fischer,M.Grimm,J.Meyers,C.Dietrich,R.Gla¨ser,A.Schulze,Photoactive microfiltration membranes via directed synthesis of TiO2nanoparticles on the polymer surface for removal of drugs from water.J.Membr.Sci.478,49-57(2015).https://doi.org/10.1016/j.memsci.2015.01.009
    147.L.L.Lai,W.Wen,J.M.Wu,Room-temperature hydrolysis of potassium titanyl oxalate and water-assisted crystallization for TiO2with high photocatalytic activity.ChemistrySelect 2(18),5025-5031(2017).https://doi.org/10.1002/slct.201700372
    148.Q.Luo,Y.Chen,D.Wang,J.An,X.Li,R.Yin,L.Shi,A facile method to prepare mesoporous anatase TiO2materials in water at lower temperatures.Mater.Res.Bull.67,140-145(2015).https://doi.org/10.1016/j.materresbull.2015.03.020
    149.L.W.Zhu,L.K.Zhou,H.X.Li,H.F.Wang,J.P.Lang,One-pot growth of free-standing CNTs/TiO2nanofiber membrane for enhanced photocatalysis.Mater.Lett.95,13-16(2013).https://doi.org/10.1016/j.matlet.2013.01.004
    150.Y.Suzuki,S.Pavasupree,S.Yoshikawa,R.Kawahata,Direct synthesis of an anatase-TiO2nanofiber/nanoparticle composite powder from natural rutile.Phys.Status Solidi A 204(6),1757-1761(2007).https://doi.org/10.1002/pssa.200675312
    151.L.Yang,W.F.Leung Wallace,Application of a bilayer TiO2nanofiber photoanode for optimization of dye-sensitized solar cells.Adv.Mater.23(39),4559-4562(2011).https://doi.org/10.1002/adma.201102717
    152.X.Zhang,S.Xu,G.Han,Fabrication and photocatalytic activity of TiO2nanofiber membrane.Mater.Lett.63(21),1761-1763(2009).https://doi.org/10.1016/j.matlet.2009.05.038
    153.K.Mondal,M.A.Ali,V.V.Agrawal,B.D.Malhotra,A.Sharma,Highly sensitive biofunctionalized mesoporous electrospun TiO2nanofiber based interface for biosensing.ACS Appl.Mater.Interfaces 6(4),2516-2527(2014).https://doi.org/10.1021/am404931f
    154.X.Jin,K.Yuan,C.Xu,X.Wang,L.Zhu,G.Zhang,D.Xu,Water steam modified crystallization and microstructure of mesoporous TiO2nanofibers.Ceram.Int.44(2),2158-2164(2018).https://doi.org/10.1016/j.ceramint.2017.10.168
    155.J.Sun,W.Wen,J.M.Wu,Low-temperature transformation of titania thin films from amorphous nanowires to crystallized nanoflowers for heterogeneous photocatalysis.J.Am.Chem.Soc.96(7),2109-2116(2013).https://doi.org/10.1111/jace.12378
    156.J.W.Lee,S.J.Park,W.S.Choi,H.C.Shin,Well-defined mesoto macro-porous film of tin oxides formed by an anodization process.Electrochim.Acta 56(17),5919-5925(2011).https://doi.org/10.1016/j.electacta.2011.03.144
    157.M.Wang,Y.Liu,D.Xue,D.Zhang,H.Yang,Preparation of nanoporous tin oxide by electrochemical anodization in alkaline electrolytes.Electrochim.Acta 56(24),8797-8801(2011).https://doi.org/10.1016/j.electacta.2011.07.085
    158.A.Palacios-Padros,M.Altomare,A.Tighineanu,R.Kirchgeorg,N.K.Shrestha,I.Diez-Perez,F.Caballero-Briones,F.Sanz,P.Schmuki,Growth of ordered anodic SnO2nanochannel layers and their use for H2gas sensing.J.Mater.Chem.A 2(4),915-920(2014).https://doi.org/10.1039/C3TA13704J
    159.I.Paulowicz,V.Hrkac,S.Kaps,V.Cretu,O.Lupan et al.,Three-dimensional SnO2 nanowire networks for multifunctional applications:from high-temperature stretchable ceramics to ultraresponsive sensors.Adv.Electron.Mater.1(8),1500081(2015).https://doi.org/10.1002/aelm.201500081
    160.H.C.Shin,J.Dong,M.Liu,Porous tin oxides prepared using an anodic oxidation process.Adv.Mater.16(3),237-240(2004).https://doi.org/10.1002/adma.200305660
    161.H.Bian,R.Dong,Q.Shao,S.Wang,M.F.Yuen et al.,Waterenabled crystallization of mesoporous SnO2as a binder-free electrode for enhanced sodium storage.J.Mater.Chem.A 5(45),23967-23975(2017).https://doi.org/10.1039/C7TA08228B
    162.X.Wang,Y.Liao,H.Zhang,T.Wen,D.Zhang et al.,Low temperature-derived 3D hexagonal crystalline Fe3O4nanoplates for water purification.ACS Appl.Mater.Interfaces 10(4),3644-3651(2018).https://doi.org/10.1021/acsami.7b17582
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.