自适应边界层非奇异快速终端滑模控制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Novel Nonsingular Fast Terminal Sliding Mode Control with Adaptive Boundary Layer
  • 作者:张贝贝 ; 赵东亚 ; 高守礼 ; 张佳舒
  • 英文作者:ZHANG Bei-bei;ZHAO Dong-ya;GAO Shou-li;ZHANG Jia-shu;College of Chemical Engineer, China University of Petroleum;
  • 关键词:非奇异快速终端滑模 ; 剩余集 ; 自适应 ; 边界层 ; 非线性不确定系统
  • 英文关键词:Nonsingular fast terminal sliding mode;;residual set;;adaptive;;boundary layer;;nonlinear uncertain system
  • 中文刊名:JZDF
  • 英文刊名:Control Engineering of China
  • 机构:中国石油大学(华东)化学工程学院;
  • 出版日期:2019-04-20
  • 出版单位:控制工程
  • 年:2019
  • 期:v.26;No.172
  • 基金:国家自然科学基金资助项目(61473312)
  • 语种:中文;
  • 页:JZDF201904017
  • 页数:7
  • CN:04
  • ISSN:21-1476/TP
  • 分类号:107-113
摘要
针对传统非奇异快速终端滑模在平衡点附近收敛速率比经典终端滑模收敛速率慢的问题,提出了一种非线性不确定系统改进型非奇异快速终端滑模,在平衡点附近获得比经典终端滑模更快的收敛速率。其次,设计了一种自适应边界层非奇异快速终端滑模算法,使系统状态能有限时间收敛到一个剩余集。自适应边界层的应用进一步提高了系统控制精度,改善了系统鲁棒性。同时,根据Lyapunov理论证明系统的闭环稳定性。最后,通过Matlab仿真表明,对非线性不确定系统,该算法能大大提高系统的控制精度,改善系统鲁棒性。
        In order to solve the problem that the conventional nonsingular fast terminal sliding mode(NFTSM)control converges slower than classical terminal sliding mode(TSM) control. A novel NFTSM is proposed for nonlinear uncertain systems and faster convergence rate is achieved especially in the neighbor of equilibrium points in comparison with the classical TSM control. Then, a novel NFTSM control with adaptive boundary layer is proposed so as to make systematic variables converge to a residual set in finite time. Furthermore, the application of adaptive boundary layers achieves higher precision and stronger robustness. The stability of closed loop systems is confirmed by Lyapunov theory. Finally, the simulation results verify that higher control precision and superior systematic robustness can be obtained simultaneously by the proposed approach for nonlinear uncertain systems.
引文
[1] Bartolini G, Pisano A, Usai E. On the second-order sliding mode control of nonlinear systems with uncertain control direction[J].Automatica, 2009,45(12):2982-2985.
    [2]穆效江.机械臂的自适应神经滑模控制方法研究[J].控制工程,2015,22(4):780-784.Mu X. Research on Adaptive Neural Sliding Mode Control for Manipulator Robots[J]. Control Engineering of China, 2015,22(4):780-784.
    [3]侯小燕,薛文涛,李泰.气动弹性机翼的反演滑模控制[J].控制工程,2016,23(1):69-74.Hou X, Xue W, Li T. Backstepping Sliding Mode Control for Aerofoil System[J]. Control Engineering of China, 2016,23(1):69-74.
    [4] Zhao D, Zhu Q, Dubbeldam J. Terminal sliding mode control for continuous stirred tank reactor[J]. Chemical Engineering Research and Design, 2015,94:266-274.
    [5] Kao Y G, Wang C H, Xie J, et al. H∞sliding mode control for uncertain neutral-type stochastic systems with Markovian jumping parameters[J]. Information Sciences, 2015,314:200-211.
    [6] Zhihong M, Yu X H. Terminal sliding mode control of MIMO linear systems[C]//Decision and Control, 1996, Proceedings of the 35th IEEE Conference on.IEEE, 1996,4:4619-4624.
    [7] Feng Y, Yu X, Man Z. Non-singular terminal sliding mode control of rigid manipulators[J]. Automatica, 2002,38(12):2159-2167.
    [8] Yu S, Yu X, Shirinzadeh B, et al. Continuous finite-time control for robotic manipulators with terminal sliding mode[J]. Automatica,2005,41(11):1957-1964.
    [9] Yang L, Yang J. Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems[J]. International Journal of Robust and Nonlinear Control, 2011,21(16):1865-1879.
    [10]穆朝絮,余星火,孙长银.非奇异终端滑模控制系统相轨迹和暂态分析[J].自动化学报,2013,39(6):902-908.Mu C, Yu X, Sun C. Phase trajectory and transient analysis for nonsingular terminal sliding mode control systems[J]. Zidonghua Xuebao/Acta Automatica Sinica, 2013,39(6):902-908.
    [11] Suryawanshi P V, Shendge P D, Phadke S B. A boundary layer sliding mode control design for chatter reduction using uncertainty and disturbance estimator[J]. International Journal of Dynamics and Control, 2015:1-10.[12)Fuh C C. Variable-thickness boundary layers for sliding mode control[J]. Journal of Marine Science and Technology, 2008,16(4):288-294.
    [13] Saghafinia A, Ping H W, Uddin M N, et al. Adaptive fuzzy sliding-mode control into chattering-free IM drive[J]. IEEE Transactions on Industry Applications, 2015,51(1):692-701.
    [14] Chen M, Chen W H. Sliding mode control for a class of uncertain nonlinear system based on disturbance observer[J]. International Journal of Adaptive Control and Signal Processing, 2010, 24(1):51-64.
    [15] Boiko I M. Analysis of chattering in sliding mode control systems with continuous boundary layer approximation of discontinuous control[C]//Proceedings of the 2011 American Control Conference.IEEE, 2011:757-762.
    [16] Zou A M, Kumar K D, Hou Z G, et al. Finite-time attitude tracking control for spacecraft using terminal sliding mode and Chebyshev neural network[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B(Cybernetics), 2011, 41(4):950-963.
    [17] Chen S Y, Lin F J. Robust nonsingular terminal sliding-mode control for nonlinear magnetic bearing system[J]. IEEE Transactions on Control Systems Technology, 2011, 19(3):636-643.
    [18] Feng Y, Han F, Yu X. Chattering free full-order sliding-mode control[J]. Automatica, 2014,50(4):1310-1314.
    [19] Lei M, Guo W, Zhang Y W, et al. Design of time-variable boundary layer on sliding mode control[C]//2010 8th World Congress on Intelligent Control and Automation. 2010.
    [20] Plestan F, Shtessel Y, Bregeault V, et al. New methodologies for adaptive sliding mode control[J]. International journal of control,2010,83(9):1907-1919.
    [21] Plestan F, Shtessel Y, Bregeault V, et al. New methodologies for adaptive sliding mode control[J]. International journal of control,2010,83(9):1907-1919.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.