Hydrogen-assisted fracture features of a high strength ferrite-pearlite steel
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Hydrogen-assisted fracture features of a high strength ferrite-pearlite steel
  • 作者:Yuefeng ; Jiang ; Bo ; Zhang ; Dongying ; Wang ; Yu ; Zhou ; Jianqiu ; Wang ; En-Hou ; Han ; Wei ; Ke
  • 英文作者:Yuefeng Jiang;Bo Zhang;Dongying Wang;Yu Zhou;Jianqiu Wang;En-Hou Han;Wei Ke;CAS Key Laboratory of Nuclear Materials and Safety Assessment,Institute of Metal Research,Chinese Academy of Sciences;School of Materials Science and Engineering,University of Science and Technology of China;Shenyang Blower Works Group Corporation;
  • 英文关键词:Ferrite-pearlite steel;;TEM;;Fracture;;Hydrogen embrittlement
  • 中文刊名:CLKJ
  • 英文刊名:材料科学技术(英文版)
  • 机构:CAS Key Laboratory of Nuclear Materials and Safety Assessment,Institute of Metal Research,Chinese Academy of Sciences;School of Materials Science and Engineering,University of Science and Technology of China;Shenyang Blower Works Group Corporation;
  • 出版日期:2019-06-15
  • 出版单位:Journal of Materials Science & Technology
  • 年:2019
  • 期:v.35
  • 基金:financially supported by the Joint Funds of the National Natural Science Foundation of China(Grant No.U1608257)
  • 语种:英文;
  • 页:CLKJ201906016
  • 页数:7
  • CN:06
  • ISSN:21-1315/TG
  • 分类号:127-133
摘要
Up to now, the exact reason of hydrogen-induced fracture for ferrite-pearlite(FP) steel is still not fully understood. This study presents detail observations of the feature beneath the fracture surface with the aim to reveal the hydrogen-induced cracking initiation and propagation processes. Slow strain rate tensile(SSRT) testing shows that the FP steel is sensitive to hydrogen embrittlement(HE). Focused ion beam(FIB)was used to prepare samples for TEM observations after HE fracture. The corresponding fractographic morphologies of hydrogen charged specimen exhibit intergranular(IG) and quasi-cleavage(QC) fracture feature. Pearlite colony, ferrite/pearlite(F/P) boundary and the adjacent ferrite matrix are found to be responsible for the initial HE fracture and the subsequent propagation. With increasing of the stress intensity factor, fracture mode is found to change from mixed IG and QC to entire QC feature which only occurs at the ferrite matrix. No crack is observed at the ferrite/cementite(F/C) interface. This may be mainly due to the limited pearlite lamella size and relatively low interface energy.
        Up to now, the exact reason of hydrogen-induced fracture for ferrite-pearlite(FP) steel is still not fully understood. This study presents detail observations of the feature beneath the fracture surface with the aim to reveal the hydrogen-induced cracking initiation and propagation processes. Slow strain rate tensile(SSRT) testing shows that the FP steel is sensitive to hydrogen embrittlement(HE). Focused ion beam(FIB)was used to prepare samples for TEM observations after HE fracture. The corresponding fractographic morphologies of hydrogen charged specimen exhibit intergranular(IG) and quasi-cleavage(QC) fracture feature. Pearlite colony, ferrite/pearlite(F/P) boundary and the adjacent ferrite matrix are found to be responsible for the initial HE fracture and the subsequent propagation. With increasing of the stress intensity factor, fracture mode is found to change from mixed IG and QC to entire QC feature which only occurs at the ferrite matrix. No crack is observed at the ferrite/cementite(F/C) interface. This may be mainly due to the limited pearlite lamella size and relatively low interface energy.
引文
[1] Y.K. Zhao, M.Y. Seok, I.C. Choi, Y.H. Lee, S.J. Park, U. Ramamurty, J.Y. Suh, J.I.Jang, Scr. Mater. 107(2015)46–49.
    [2] M. Dadfarnia, M.L. Martin, A. Nagao, P. Sofronis, I.M. Robertson, J. Mech. Phys.Solids 78(2015)511–525.
    [3] M. Sun, K. Xiao, C. Dong, X. Li, P. Zhong, Corros. Sci. 89(2014)137–145.
    [4] A. Nagao, M.L. Martin, M. Dadfarnia, P. Sofronis, I.M. Robertson, Acta Mater. 74(2014)244–254.
    [5] M. Koyama, H. Springer, S.V. Merzlikin, K. Tsuzaki, E. Akiyama, D. Raabe, Int. J.Hydrogen Energy 39(2014)4634–4646.
    [6] M. Hatano, M. Fujinami, K. Arai, H. Fujii, M. Nagumo, Acta Mater. 67(2014)342–353.
    [7] T. Doshida, K. Takai, Acta Mater. 79(2014)93–107.
    [8] M. Koyama, E. Akiyama, K. Tsuzaki, D. Raabe, Acta Mater. 61(2013)4607–4618.
    [9] A. Nagao, C.D. Smith, M. Dadfarnia, P. Sofronis, I.M. Robertson, Acta Mater. 60(2012)5182–5189.
    [10] K. Shibanuma, Y. Nemoto, T. Hiraide, K. Suzuki, S. Sadamatsu, Y. Adachi, S.Aihara, Acta Mater. 144(2018)386–399.
    [11] C. Park, N. Kang, S. Liu, Corros. Sci. 128(2017)33–41.
    [12] G.T. Park, S.U. Koh, H.G. Jung, K.Y. Kim, Corros. Sci. 50(2008)1865–1871.
    [13] M.L. Martin, J.A. Fenske, G.S. Liu, P. Sofronis, I.M. Robertson, Acta Mater. 59(2011)1601–1606.
    [14] Y. Nemoto, K. Shibanuma, K. Suzuki, S. Sadamatsu, Y. Adachi, S. Aihara, ISIJ Int.57(2017)746–754.
    [15] S. Wang, A. Nagao, P. Sofronis, I.M. Robertson, Acta Mater. 144(2018)164–176.
    [16] I. Moro, L. Briottet, P. Lemoine, E. Andrieu, C. Blanc, G. Odemer, Mater. Sci. Eng.A 527(2010)7252–7260.
    [17] E.J. McEniry, T. Hickel, J. Neugebauer, Acta Mater. 150(2018)53–58.
    [18] M. Dadfarnia, P. Novak, D.C. Ahn, J.B. Liu, P. Sofronis, D.D. Johnson, I.M.Robertson, Adv. Mater. 22(2010)1128–1135.
    [19] I.M. Robertson, P. Sofronis, A. Nagao, M.L. Martin, S. Wang, D.W. Gross, K.E.Nygren, Metall. Mater. Trans. B 46(2015)1085–1103.
    [20] W. Choo, J.Y. Lee, Metall. Trans. A 13(1982)135–140.
    [21] S.-M. Lee, J.-Y. Lee, Metall. Trans. A 17(1986)181–187.
    [22] H.E. Kissinger, Anal. Chem. 29(1957)1702–1706.
    [23] M. Meisnar, M. Moody, S. Lozano-Perez, Corros. Sci. 98(2015)661–671.
    [24] K. Takai, R. Watanuki, ISIJ Int. 43(2003)520–526.
    [25] K.-i. Takai, Y. Chiba, K. Noguchi, A. Nozue, Metall. Mater. Trans. A 33(2002)2659–2665.
    [26] R.B. McLellan, J. Phys. Chem. Solids 49(1988)1213–1217.
    [27] V. Gavriljuk, V. Bugaev, Y.N. Petrov, A. Tarasenko, B. Yanchitski, Scr. Mater. 34(1996)903–907.
    [28] Y. Tateyama, T. Ohno,Phys. Rev. B 67(2003), 174105.
    [29] R. Nazarov, T. Hickel, J. Neugebauer,Phys. Rev. B 82(2010), 224104.
    [30] Y. Jiang, B. Zhang, Y. Zhou, J. Wang, E.-H. Han, W. Ke, J. Mater. Sci. Technol. 34(2018)1344–1348.
    [31] Y. Fan, B. Zhang, H. Yi, G. Hao, Y. Sun, J. Wang, E.-H. Han, W. Ke, Acta Mater.139(2017)188–195.
    [32] Z.-D. Li, G. Miyamoto, Z.-G. Yang, T. Furuhara, Scr. Mater. 60(2009)485–488.
    [33] Y. Zhang, C. Esling, M. Gong, G. Vincent, X. Zhao, L. Zuo, Scr. Mater. 54(2006)1897–1900.
    [34] H. Fecht, E. Hellstern, Z. Fu, W. Johnson, Metall. Trans. A 21(1990)2333.
    [35] P. Novak, R. Yuan, B.P. Somerday, P. Sofronis, R.O. Ritchie, J. Mech. Phys. Solids58(2010)206–226.
    [36] D. Zhou, G. Shiflet, Metall. Trans. A 23(1992)1259–1269.
    [37] Y. Zhang, C. Esling, M. Calcagnotto, X. Zhao, L. Zuo, J. Appl. Crystallogr. 40(2007)849–856.
    [38] E. Orowan, Internal Stress in Metals and Alloys, The Institute of Metals,London, 1948, pp. 451.
    [39] W.-Y. Chu, T.-H. Liu, C.-M. Hsiao, S.-Q. Li, Corrosion 37(1981)320–327.
    [40] H.-L. Li, K. Gao, L. Qiao, Y. Wang, W. Chu, Corrosion 57(2001)295–299.
    [41] Y. Zhang, D. Shi, W. Chu, L. Qiao, Y. Shi, S. Zheng, S. Wang, Mater. Sci. Eng. A471(2007)34–37.
    [42] W. Gerberich, J. Gary, J. Lessar, Grain size and concentration effects in internal and external hydrogen embrittlement, in:Effect of Hydrogen on Behavior of Materials, 1976, pp. 70–82.
    [43] V. Tvergaard, J.W. Hutchinson, J. Mech. Phys. Solids 40(1992)1377–1397.
    [44] S. Lynch, Hydrogen embrittlement(HE)phenomena and mechanisms, in:Stress Corrosion Cracking, Elsevier, 2011, pp. 90–130.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.