操作冲击下特高压酒杯塔边相空气间隙放电电压预测
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Air Gap Discharge Voltage Prediction of UHV Cup-tower Outer Phase Under Switching Impulse
  • 作者:王学宗 ; 邱志斌 ; 阮江军 ; 金颀 ; 黄道春
  • 英文作者:WANG Xuezong;QIU Zhibin;RUAN Jiangjun;JIN Qi;HUANG Daochun;School of Electrical Engineering and Automation, Wuhan University;Department of Electrical and Automation Engineering, Nanchang University;
  • 关键词:导线-杆塔空气间隙 ; 操作冲击 ; 放电电压预测 ; 支持向量机 ; 电场特征量
  • 英文关键词:line-tower air gap;;switching impulse;;discharge voltage prediction;;support vector machine;;electric field features
  • 中文刊名:GDYJ
  • 英文刊名:High Voltage Engineering
  • 机构:武汉大学电气与自动化学院;南昌大学电气与自动化工程系;
  • 出版日期:2019-05-28
  • 出版单位:高电压技术
  • 年:2019
  • 期:v.45;No.318
  • 基金:中国博士后科学基金(2016M602354);; 中央高校基本科研业务费专项资金(2042017kf1009;2042018kf0020)~~
  • 语种:中文;
  • 页:GDYJ201905009
  • 页数:7
  • CN:05
  • ISSN:42-1239/TM
  • 分类号:76-82
摘要
准确获取空气间隙的放电电压是高电压工程领域长期追求的目标,开展放电电压预测研究具有重要的工程意义。基于数据驱动的思想,以750 kV同塔双回输电线路和1 000 k V交流紧凑型输电线路杆塔空气间隙为训练样本,通过电场计算获取了间隙的空间电场分布;然后从高压端金具到塔身的最短路径上提取电场特征量作为输入量用以表征间隙结构,并采用支持向量机建立了杆塔空气间隙标准操作冲击放电电压预测模型;最后对1 000kV酒杯塔边相空气间隙的放电电压进行了预测。与放电特性试验结果对比表明:4~8 m长间隙放电电压预测值的最大误差在10%以内,平均绝对误差为3.66%,并验证了预测方法的有效性。该方法以多种杆塔结构空气间隙放电试验数据为基础,利用机器学习手段预测得到了另外一种杆塔间隙的放电电压,为获取输变电工程间隙的放电电压提供了一种新的思路。
        It is a long term goal for high voltage engineering field to acquire the discharge voltage of air gap accurately,and the research for discharge voltage prediction has important engineering significance. Based on data driven theory, the line-tower air gaps of 750 kV one tower double-circuit and 1 000 kV compact tower transmission lines were selected as training samples, and the electric field distribution of the gap was calculated. In order to characterize the structure of air gaps electric field features were extracted along the shortest path from the high voltage end fitting to the tower as input parameters. A discharge voltage prediction model of line-tower air gaps under standard switching impulse was built using support vector machine. Finally, the discharge voltages of UHV cup-tower outer phase air gaps were predicted. Compared with the experimental values in discharge characteristic test, the maximum error of predicted values with gap distances between 4 and 8 m is within 10%, while mean absolute error is 3.66%. The results verify the effectiveness of the prediction method. Based on discharge test data of various tower structures, the discharge voltage of other line-tower air gaps can be predicted by machine learning algorithm, which can provide a new way for the acquisition of discharge voltages in engineering gap.
引文
[1]曾嵘,庄池杰,余占清,等.长空气间隙放电研究的挑战与进展[J].高电压技术,2014,40(10):2945-2955.ZENG Rong,ZHUANG Chijie,YU Zhanqing,et al.Challenges and achievement in long air gap discharge research[J].High Voltage Engineering,2014,40(10):2945-2955.
    [2]李立浧,饶宏,董旭柱,等.计算高电压工程学的思考与展望[J].高电压技术,2018,44(11):3441-3453.LI Licheng,RAO Hong,DONG Xuzhu,et al.Prospect of computational high voltage engineering[J].High Voltage Engineering,2018,44(11):3441-3453.
    [3]GALLET G,LEROY G,LACEY R,et al.General expression for positive switching impulse strength valid up to extra long air gaps[J].IEEE Transactions on Power Apparatus and Systems,1975,94(6):1989-1993.
    [4]CORTINA R,GARBAGNATI E,PIGINI A,et al.Switching impulse strength of phase-to-earth UHV external insulation-research at the1 000 kV project[J].IEEE Transactions on Power Apparatus and Systems,1985,104(11):3161-3168.
    [5]BARSCH J A,SEBO S A,KOLCIO N.Power frequency AC sparkover voltage measurements of small air gaps[J].IEEE Transactions on Power Delivery,1999,14(3):1096-1101.
    [6]PARIS L,CORTINA R.Switching and lightning impulse discharge characteristics of large air gaps and long insulator strings[J].IEEETransactions on Power Apparatus and Systems,1968,87(4):947-957.
    [7]CARRARA G,THIONE L.Switching surge strength of large air gaps:a physical approach[J].IEEE Transactions on Power Apparatus and Systems,1976,95(2):512-524.
    [8]MOSCH W,LEMKE E,LARIONOV V P,et al.An estimation of the voltage-time characteristic of long rod plane gaps in air at positive switching impulse voltages[C]∥13th International Conference on Phenomena in Ionized Gases.Berlin,Germany:IEEE,1977:427-430.
    [9]RIZK F A M.A model for switching impulse leader inception and breakdown of long air-gaps[J].IEEE Transactions on Power Delivery,1989,4(1):596-606.
    [10]HUTZLER B,HUTZLER-BARRE D.Leader propagation model for predetermination of switching surge flashover voltage of large air gaps[J].IEEE Transactions on Power Apparatus and Systems,1978,97(4):1087-1096.
    [11]BECERRA M,COORAY V.A simplified physical model to determine the lightning upward connecting leader inception[J].IEEE Transactions on Power Delivery,2006,21(2):897-908.
    [12]FOFANA I,BEROUAL A,RAKOTONANDRASANA J H.Application of dynamic models to predict switching impulse withstand voltages of long air gaps[J].IEEE Transactions on Dielectrics and Electrical Insulation,2013,20(1):89-97.
    [13]谢耀恒,贺恒鑫,陈维江,等.操作冲击下正极性长间隙放电物理仿真模型[J].中国电机工程学报,2013,33(31):177-184.XIE Yaoheng,HE Hengxin,CHEN Weijiang,et al.A physical model to simulate long air gap discharge at positive switching impulse voltage[J].Proceedings of the CSEE,2013,33(31):177-184.
    [14]张秋实,王力农,方雅琪,等.带电作业组合间隙放电特性仿真分析方法[J].高电压技术,2018,44(4):1292-1301.ZHANG Qiushi,WANG Linong,FANG Yaqi,et al.Simulation method for discharge characteristics of live working complex gap[J].High Voltage Engineering,2018,44(4):1292-1301.
    [15]李赢,舒乃秋.基于模糊聚类和完全二叉树支持向量机的变压器故障诊断[J].电工技术学报,2016,31(4):64-70.LI Ying,SHU Naiqiu.Transformer fault diagnosis based on fuzzy clustering and complete binary tree support vector machine[J].Transactions of China Electrotechnical Society,2016,31(4):64-70.
    [16]林顺富,汤继开,汤波,等.典型电能质量稳态指标预测模型研究[J].电网技术,2018,42(2):614-620.LIN Shunfu,TANG Jikai,YANG Bo,et al.Study on forecasting model of typical power quality steady state indices[J].Power System Technology,2018,42(2):614-620.
    [17]邱志斌,阮江军,黄道春,等.基于支持向量机的棒-板空气间隙击穿电压预测方法及其应用[J].电工技术学报,2017,32(19):220-228.QIU Zhibin,RUAN Jiangjun,HUANG Daochun,et al.Breakdown voltage prediction method of rod-plane air gaps based on support vector machine and its applications[J].Transactions of China Electrotechnical Society,2017,32(19):220-228.
    [18]邱志斌,阮江军,徐闻婕,等.典型电极短空气间隙的击穿电压混合预测[J].高电压技术,2018,44(6):2012-2018.QIU Zhibin,RUAN Jiangjun,XU Wenjie,et al.Hybrid prediction of the breakdown voltages of short air gaps with typical electrodes[J].High Voltage Engineering,2018,44(6):2012-2018.
    [19]李岩,滕云,冷欧阳,等.数据驱动的输电线路在线监测装置可靠性评估[J].中国电机工程学报,2018,38(15):4410-4419.LI Yan,TENG Yun,LENG Ouyang,et al.Reliability evaluation of on-line monitoring device over transmission line based on data driven concept[J].Proceedings of the CSEE,2018,38(15):4410-4419.
    [20]霍锋.特高压输电线路长空气间隙绝缘特性及电场分布研究[D].武汉:武汉大学,2012.HUO Feng.Study on insulation characteristics and electric field distribution of long air-gaps for UHV power transmission line[D].Wuhan,China:Wuhan University,2012.
    [21]VAPNIK V N.The nature of statistical learning theory[M].New York,USA:Springer,2000.
    [22]STONE M.Cross-validatory choice and assessment of statistical predictions[J].Journal of the Royal Statistical Society,1974,36(2):111-147.
    [23]陈勇,孟刚,谢梁,等.750 kV同塔双回输电线路空气间隙放电特性研究[J].高电压技术,2008,34(10):2118-2123.CHEN Yong,MENG Gang,XIE Liang,et al.Research on air-gap discharge characteristics of 750 kV one tower double-circuit transmission line[J].High Voltage Engineering,2008,34(10):2118-2123.
    [24]霍锋,胡伟,徐涛,等.1 000 kV交流紧凑型输电线路杆塔空气间隙放电特性[J].高电压技术,2011,37(8):1875-1881.HUO Feng,HU Wei,XU Tao,et al.Air-gaps flashover characteristics for 1 000 kV AC compact tower[J].High Voltage Engineering,2011,37(8):1875-1881.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.