Nb在高铝铁素体钢中的固溶析出行为
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Solid solution and precipitation behavior of Nb in Al-bearing ferritic steels
  • 作者:刘鹏程 ; 徐翔宇 ; 刘倩男 ; 李建赭 ; 刘丹 ; 延泽鹏 ; 孙明煜 ; 王学敏
  • 英文作者:LIU Peng-cheng;XU Xiang-yu;LIU Qian-nan;LI Jian-zhe;LIU Dan;YAN Ze-peng;SUN Ming-yu;WANG Xue-min;Collaborative Innovation Center of Steel Technology,University of Science and Technology Beijing;School of Materials Science and Engineering,University of Science and Technology Beijing;
  • 关键词:高铝铁素体钢 ; 碳化铌 ; 相互作用系数 ; 固溶度积 ; 物理化学相分析
  • 英文关键词:Al-bearing ferritic steel;;NbC;;interaction coefficients;;solid solubility;;physical and chemical phase analysis
  • 中文刊名:BJKD
  • 英文刊名:Chinese Journal of Engineering
  • 机构:北京科技大学钢铁共性技术协同创新中心;北京科技大学材料科学与工程学院;
  • 出版日期:2019-07-11 09:24
  • 出版单位:工程科学学报
  • 年:2019
  • 期:v.41;No.303
  • 语种:中文;
  • 页:BJKD201907006
  • 页数:7
  • CN:07
  • ISSN:10-1297/TF
  • 分类号:51-57
摘要
采用电解相分析方法,结合X射线衍射分析和电感耦合等离子体原子发射光谱仪(ICP)、扫描电镜(SEM)、透射电镜(TEM)等对高铝铁素体基体中的析出相颗粒粉末和电解液进行定性定量分析.试验结果表明,试验钢中固态析出相主要为NbC以及少量的Al_2O_3和Al N夹杂.通过扫描电镜观察不同再加热温度下NbC分布状态,发现随着固溶温度的升高,铸态组织中存在的NbC析出逐渐回溶,数量随之减少且发生明显的粗化行为.当温度升高到1100℃,大部分NbC已经回溶到高温铁素体基体中.在利用Thermo-Calc热力学计算软件分析Nb及其碳化物的热力学性质基础上,计算得到Al与Nb的相互作用系数,表明Al能够降低Nb在铁素体基体中的活度,提高其在基体中的固溶度,进一步得到了Nb C在高铝铁素体钢中的固溶度积公式,发展了高温铁素体中的Nb微合金化理论,为进一步的应用提供了理论基础.
        With the rapid development of the global economy,problems in energy production and environmental protection are becoming severe. To reduce fuel consumption and CO2 emissions,it is essential to reduce the weight of automobiles and other huge construction structures. Recently,a number of studies have been conducted on the use of low-density steels for automobile applications by incorporating aluminum in steel. The light elements can increase the lattice constant of steel while reducing the density of steel to achieve a lower atomic weight. Aluminum as a light element replaces the iron atoms in the unit cell,increasing the volume while reducing the weight,thereby reducing the density of steels. In this regard,ferritic Fe-8 % Al steels indicated a 10% reduction in density compared with the conventional steels. To clarify the solid solution and precipitation behavior of Nb in Al-bearing ferritic steels,heat treatment tests were carried out under a series of temperature. The precipitates of Nb C and the dissolved Nb solute in ferrite matrix with high Al content were studied using electrolytic dissolution technique,X-ray diffraction technique,and inductively coupled plasma-atomic emission spectrometry( ICP-AES). Scanning electron microscopy( SEM) and transmission electron microscopy( TEM) were also applied. The experimental results show that the precipitates are Nb C and also some Al2 O3 and Al N inclusions. It is also found that with increase in the solution temperatures,the Nb C in the as-cast samples becomes fewer and the coarsening behavior occurs. Moreover,when the temperature was over 1100 ℃,almost all the precipitates were dissolved. Furthermore,using Thermo-Calc software,the thermodynamic properties of Nb and relevant compounds were studied,and the interaction coefficient between Al an Nb was calculated.The results indicate that Al decreases the activity of Nb,and the solubility of Nb C increases. Finally,the solid solubility formula of Nb C was deduced,which can provide a basis for further application of ferritic steels with a high Al content.
引文
[1] Pramanik S,Koppoju S,Anupama A V,et al. Strengthening mechanisms in Fe-Al based ferritic low-density steels. Mater Sci Eng A,2018,712:574
    [2] Chen S P,Rana R,Haldar A,et al. Current state of Fe--Mn-AlC low density steels. Prog Mater Sci,2017,89:345
    [3] Xu X Y,Li J Z,Wang X M,et al. Softening and recrystallization behavior of a new class of ferritic steel. J. Iron Steel Res Int,2019,26(2):154
    [4] Gutierrez-Urrutia I,Raabe D. High strength and ductile low density austenitic Fe Mn Al C steels:simplex and alloys strengthened by nanoscale ordered carbides. Mater Sci Technol,2014,30(9):1099
    [5] Lilly A C,Deevi S C,Gibbs Z P. Electrical properties of iron aluminides. Mater Sci Eng A,1998,258(1-2):42
    [6] Rana R,Liu C,Ray R K. Low-density low-carbon Fe-Al ferritic steels. Scripta Mater,2013,68(6):354
    [7] Ghosh S,Mula S. Thermomechanical processing of low carbon NbTi stabilized microalloyed steel:microstructure and mechanical properties. Mater Sci Eng A,2015,646:218
    [8] Hu H J,Xu G,Wang L,et al. The effects of Nb and Mo addition on transformation and properties in low carbon bainitic steels. Mater Des,2015,84:95
    [9] Deardo A J. Niobium in modern steels. Int Mater Rev,2003,48(6):371
    [10] Baker T N. Microalloyed steels. Ironmaking Steelmaking,2016,43(4):264
    [11] Cao Y B,Xiao F R,Qiao G Y,et al. Strain-induced precipitation and softening behaviors of high Nb microalloyed steels. Mater Sci Eng A,2012,552:502
    [12] Hutchinson C R,Zurob H S,Sinclair C W,et al. The comparative effectiveness of Nb solute and NbC precipitates at impeding grain-boundary motion in Nb steels. Scripta Mater,2008,59(6):635
    [13] Wu H B,Ju B,Tang D,et al. Effect of Nb addition on the microstructure and mechanical properties of an 1800 MPa ultrahigh strength steel. Mater Sci Eng A,2015,622:61
    [14] Zhao H,Wynne B P,Palmiere E J. Effect of austenite grain size on the bainitic ferrite morphology and grain refinement of a pipeline steel after continuous cooling. Mater Charact,2017,123:128
    [15] Zheng L,Yong Q L,Sun Z B. Solubility of niobium carbide in a microalloy steel. Acta Metall Sin,1987,23(6):547(郑鲁,雍岐龙,孙珍宝.碳化铌在微合金钢中的溶解.金属学报,1987,23(6):547)
    [16] Wang F M,Li X P,Han Q Y,et al. A model for calculating interaction coefficients between elements in liquid and iron-base alloy. Metall Mater Trans B,1997,28(1):109
    [17] Hao S M. Material Thermodynamics. Beijing:Chemical Industry Press,2004(郝士明.材料热力学.北京:化学工业出版社,2004)
    [18] Shi L. Alloy Thermodynamics. Beijing:Mechanical Industry Press,1992(石霖.合金热力学.北京:机械工业出版社,1992)
    [19] Yong Q L. Secondary Phases in Steel. Beijing:Metallurgical Industry Press,2006(雍岐龙.钢铁材料中的第二相.北京:冶金工业出版社,2006)
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.