HA强化污染物降解技术进展及其应用前景分析
详细信息    查看官网全文
摘要
腐殖酸(HA)是动植物残体通过复杂的生物、化学作用形成的,天然HA广泛存在于土壤、河流底泥、海洋沉积物和填埋场中,而腐殖酸作为电子传递体对污染物的降解和转化具有重要意义。本文介绍了腐殖酸强化污染物降解技术与机理、腐殖酸去除氯苯类化合物技术、以及腐殖酸还原微生物的研究进展,在此基础上,结合生活垃圾填埋场、河湖底泥等厌氧环境中存在的特征,分析提出开展厌氧填埋环境中HCB还原脱氯途径及HA对其作用机制研究的需求,为填埋场中CBs类化合物脱氯原位厌氧修复技术研究提供理论支撑。
引文
[1]华彤文.普通化学原理[M].北京:北京大学出版社,1993:62-63.
    [2]蔡全英,莫测辉,吴启堂,等.部分城市污泥中氯苯类化合物的初步研究[J].环境化学,2002,21(2):139-143.
    [3]Mayumi H,Katsumi S,Motoyuki M.Reduction process of Cr(VI)by Fe(II)and humic acid analyzed using high time resolution XAFS analysis[J].Hazardous Materials,2015,285(3):140-147.
    [4]DT Scott,D M McKnight,E L Blunt-Harris et al.Environ.Sci.Tech,1998,32(19):2984-2989.
    [5]蔡茜茜,袁勇,胡佩.腐殖质电化学特性及其介导的胞外电子传递研究进展[J].应用与环境生物学报,2015,21(6):996-1002.
    [6]Gu B,Chen J.Enhanced microbial reduction of Cr(VI)and U(VI)by different natural organic matter fractions[J].Geochim Cosmochim Acta,2003,67(19):3575-3582.
    [7]Claudio C,Giuseppe P,Vincenzo MS,et al.Stability of coprecipitated natural humic acid and ferrous iron under oxidative conditions[J].Geochemical Exploration,2015,151(4):50-56.
    [8]Ortega-Gomez E,Martin M M B,Carratala A,et al.Principal parameters affecting virus inactivation by the solar photo-Fenton process at neutral pH and u,M concentrations of H_2O_2 and Fe~(2+/3+)[J].Applied Catalysis B:Environmental,2015,174:395-402.
    [9]Liu Tongzhou,Rao Pinhua,Irene M.C.Lo.Influences of humic acid,bicarbonate and calcium on Cr(VI)reductive removal by zero-valent iron[J].Science of the total environment,2009,407(10):3407-3414.
    [10]Romo-Rodriguez P,Acevedo-Aguilar F J,Lopez-Torres A,et al.Cr(VI)reduction by gluconolactone and hydrogen peroxide,the reaction products of fungal glucose oxidase:Cooperative interaction with organic acids in the biotransformation of Cr(VI)[J].Chemosphere,2015,134:563-570.
    [11]Wang Yibo,Wu Chunyuan,Wang Xiaojing,et al.The role of humic substances in the anaerobic reductive dechlorination of 2,4-dichlorophenoxyacetic acid by Comamonas koreensis strain CY01[J].Hazardous Materials,2009,164(3):941-947.
    [12]Cervantes F J,Mancilla A R,Rios-del Toro E E,et al.Anaerobic degradation of benzene by enriched consortia with humic acids as terminal electron acceptors[J].Journal of hazardous materials,2011,195:201-207.
    [13]Wolf S,Mouille G,Pelloux J.Homogalacturonan methyl-esterification and plant development[J].Molecular plant,2009,2(5):851-860.
    [14]Kappler A,Benz M,Schink B,et al.Electron shuttling via humic acids in microbial iron(III)reduction in a freshwater sediment[J].FEMS microbiology ecology,2004,47(1):85-92
    [15]Minderlein S,Blodau C.Humic-rich peat extracts inhibit sulfate reduction,methanogenesis,and anaerobic respiration but not acetogenesis in peat soils of a temperate bog[J].Soil Biology and Biochemistry,2010,42(12):2078-2086.
    [16]Ma Chen,Zhou Shungui,Lu Qin,et al.Decolorization of Orange I under alkaline and anaerobic conditions by a newly isolated humus-reducing bacterium,Planococcus sp.MC01[J].International Biodeterioration&Biodegradation,2013,83(9):17-24.
    [17]Hernandez-Montoya V,Alvarez L H,Montes-Moran M A,et al.Reduction of quinone and non-quinone redox functional groups in different humic acid samples by Geobacter sulfurreducens[J].Geoderma,2012,183-184(8):25-31.
    [18]Roden E E,Kappler A,Bauer I,et al.Extracellular electron transfer through microbial reduction of solid-phase humic substances[J].Nature Geoscience,2010,3(6):417-421.
    [19]方艺民,许玉东.垃圾渗滤液中微量有机物分类及其污染特性[J].能源与环境,2013,(5):103-104.
    [20]Regadio M,Ruiz AI,Soto IS,et al.Pollution profiles and physicochemical parameters in old uncontrolled landfills[J].Waste Management,2012,32(3):482-497.
    [21]Klokov S.V.,Lokteva E.S.,Golubina E.V.,et al.Effective Pd/C catalyst for chlorobenzene and hexachlorobenzene hydrodechlorination by direct pyrolysis of sawdust impregnated with palladium nitrate[J].Catalysis Communications,2016,77(5):37-41.
    [22]Mikhail A.V,Ilnaz T.R,Artashes A.K,et al.Effect of halogen substitution on the enthalpies of solvation and hydrogen bonding of organic solutes in chlorobenzene and 1,2-dichlorobenzene derived using multi-parameter correlations[J].Thermochimica Acta,2015,617(10):8-20.
    [23]Nwakamma A,Kalpit S,Behdad M,et al.Formation of chlorobenzenes by oxidative thermal decomposition of 1,3-dichloropropene[J].Combustion and Flame,2015,162(6):2414-2421.
    [24]Caitlyn M.M,Dennis G.P.Electrochemical dechlorination of 4,4'-(2,2,2-trichloroethane-1,1-diyl)bis(chlorobenzene)(DDT)at silver cathodes[J].Electrochimica Acta,2014,137(10):423-430.
    [25]Ina.O.S,Jens.P.E.B.,Gunnar T.,et al.Environmental hexachlorobenzene exposure and human male reproductive function[J].Reproductive Toxicology,2015,58:8-14
    [26]C.Maggi,A.Ausili,R.Boscolo,et al.Sediment and biota in trend monitoring of contaminants in transitional waters[J].TrACTrends in Analytical Chemistry,2012,36(7):82-91.
    [27]Sayali S.P,Utkarsha U.S,Adam T,et al.Entitled to full text Nanoparticles for environmental clean-up:Areview of potential risks and emerging solutionsReview[J].Environmental Technology&Innovation,2016,5:10-21.
    [28]Jonathan L.B,Andrew J.S,Dolf v W,et al.Hexachlorobenzene in the global environment:Emissions,levels,distribution,trends and processes[J].Science of the Total Environment,2005,349(1):1-44.
    [29]Pedro A,Paula V,Tereza V,et al.Emission profiles of polychlorinated dibenzodioxins,polychlorinated dibenzofurans(PCDD/Fs),dioxin-like PCBs and hexachlorobenzene(HCB)from secondary metallurgy industries in Portugal[J].Chemosphere,2012,88(11):1332-1339.
    [30]孙建辉,王国良,张干,等.黄河表层沉积物中有机氯农药的相关性分析与风险评价[J].环境科学学报,2008,28(2):342-348.
    [31]杨嘉谟,王赟,苏青青,等.长江武汉段水体悬浮物中有机氯农药的残留状况[J].环境科学研究,2004,17(6):27-38.
    [32]Zhang Haiyan,Wang Yawei,Sun Cheng,et al.Levels and Distributions of Hexachlorobutadiene and Three Chlorobenzenes in Biosolids from Wastewater Treatment Plants and in Soils within and Surrounding a Chemical Plant in China[J].Environmental science&technology,2014,48,1525-1531.
    [33]Santhi V A,Mustafa A M.Assessment of organochlorine pesticides and plasticisers in the Selangor River basin and possible pollution sources[J].Environmental monitoring and assessment,2013,185(2):1541-1554.
    [34]吴荣芳,解清杰,黄卫红,等.六氯苯的环境危害及其污染控制[J].化学与生物工程,2006,23(8):7-10.
    [35]万大娟,贾晓珊.耕作土壤中多氯代有机污染物的含量与分布特征—以珠江三角洲部分地区为例[J].环境科学学报,2005,25(8):1078-1084.
    [36]袁旭音,王禹,陈骏,等.太湖沉积物中有机氯农药的残留特征及风险评估[J].环境科学,2003,24(1):121-125.
    [37]蒋新,许士奋,D Martens,等.长江南京段水、悬浮物及沉积物中多氯有毒有机污染物[J].中国环境科学,2000,20(3):193-197.
    [38]庞智勇.长江口取代芳烃类污染物的生态风险评价[D].北京:北京化工大学,2010.
    [39]Roland Weber.Persistent organic pollutantsand landfills-a review of pastexperiences and future challenges[J].Waste Management&Research,2011.
    [40]Loukia Chrysikou.Distribution of persistent organic pollutants,polycyclic aromatic hydrocarbons and trace elements in soil and vegetation following a large scale landfill fire in northern Greece[J].Environment International,2008.
    [41]王子健,吕怡兵,王毅,等.淮河水体取代苯类污染及其生态风险[J].环境科学学报,2002,22(3):300-303
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.