碳纳米管/氧化铟锡复合材料的制备与电磁性能研究(英文)
详细信息    查看官网全文
摘要
采用一种简单的化学共沉淀法合成了MWCNTs/ITO复合材料。使用XRD、FESEM和TEM对复合材料的组织结构和微观形貌进行了表征,采用同轴法测量了复合材料在2~18 GHz频段内的电磁参数。结果表明,通过控制ITO和MWCNTs的添加比例、共沉淀pH值以及煅烧处理温度,可以成功制备MWCNTs/ITO纳米复合材料。通过优化的工艺参数制备的MWCNTs/ITO复合材料具有良好的电磁性能。15wt%MWCNTs/ITO复合材料小于-5 dB的吸收频带宽最大,为5.04 GHz;20wt%MWCNTs/ITO复合材料具有最大反射率峰值,在9.68 GHz处的反射率达-33.81 dB。
Indium tin oxide(ITO) nanoparticles were coated on the multi-walled carbon nanotubes(MWCNTs) through a simple chemical co-precipitation method.XRD,FESEM and TEM were applied to characterize the structure and morphology of the MWCNTs/ITO composites.Coaxial method was used to measure the electromagnetic parameters of the composites in the frequency range of 2-18 GHz.The results indicate that MWCNTs/ITO nanocomposites can be successfully synthesized via controlling the mass ratio of ITO and MWCNTs? the final co-precipitation pH and the calcination temperature of precursor.The MWCNTs/ITO composites prepared by optimized preparation parameters have excellent electromagnetic properties.15wt%MWCNTs/ITO composite has the maximum absorption bandwidth(more than 5.04 GHz,10.28-15.32 GHz) corresponding to the Rl below-5 dB.20wt%MWCNTs/ITO composite has the minimum R_L which is-33.81 dB at 9.68 GHz.
引文
1 Hill J J,Banks N,Haller K,et al.An interfacial and bulk charge transport model for dye-sensitized solar cells based on photoanodes consisting of core-shell nanowire arrays[J].J Am Chem Soc,2011,133:18663.
    2 Cairns D R,Witte II R P,Sparacin D K,et al.Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates[J].Appl Phys Lett,2000,76:1425.
    3 Wan Q,Dattoli E N,Fung W Y,et al.High-performance transparent conducting oxide nanowires[J].Nano Lett,2006,6:2909.
    4 Sunde T O L,Garskaite E,Otter B,et al.Transparent and conducting ITO thin films by spin coating of an aqueous precursor solution[J].J Mater Chem,2012,22:15740.
    5 Wang T,Radovanovic P V.Free electron concentration in colloidal indium tin oxide nanocrystals determined by their size and structure[J].J Phys Chem C,2011,115:406.
    6 Meng H J,Zhao X W,Wang X X,et al.Synthesis of Ni/ITO nanocomposite with excellent electromagnetic absorption via in situ reducing reaction[J].Mater Lett,2014,124:165.
    7 Fu L S,Jiang J T,Zhen L,et al.FeNis/indium tin oxide(ITO)composite nanoparticles with excellent microwave absorption performance and low infrared emissivity[J].Mater Sci Eng B.2013,178:225.
    8 Hong I P.Transparent electromagnetic absorber for stable angle of incidence[J].Micro Opt Technol Lett,2015,57:2023.
    9 Yu M F,Lourie O,Dyer M J,et al.Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load[J].Science,2000,287:637.
    10 Deng F,Ito M,Noguchi T,et al.Elucidation of the reinforcing mechanism in carbon nanotube/rubber nanocomposites[J].ACS Nano,2011,5:3858.
    11 Xie H Q,Chen L F.Review on the preparation and thermal performances of carbon nanotube contained nanofluids[J].J Chem Eng Data,2011,56:1030.
    12 Garrrtt D J,Brooksby P A,Rawson F J,et al.Reproducible fabrication of robust,renewable vertically aligned multiwalled carbon nanotube/epoxy composite electrodes[J].Anal Chem,2011,83:8347.
    13 Bindl DJ,Wu M Y,Prehn F C,et al.Efficiently harvesting excitons from electronic type-controlled semiconducting carbon nanotube films[J].Nano Lett,2011,11:455.
    14 Song Y Y,Zheng J,Liu X J,et al.Facile synthesis of BaTiO_3 on multiwalled carbon nanotubes as a synergistic microwave absorber[J].J Mater Sci:Mater Electron,2016,27:3390.
    15 Yang Q X,Liu L,Hui D,et al.Microstructure,electrical conductivity and microwave absorption properties ofγ-FeNi decorated carbon nanotube composites[J]Composites Part B,2016,87:256.
    16 Yang R B,Reddy P M,Chang C J,et al.Synthesis and characterization of Fe_3O_4/polypyrrole/carbon nanotube composites with tunable microwave absorption properties:Role of carbon nanotube and polypyrrole content[J].Chem Eng J,2016,285:497.
    17 Zhang Q,Zhu M,Zhang Q H,et al.Fabrication and characterization of indium tin oxide-carbon nanotube nanocomposites[J].J Phys Chem C2009,113:15538.
    18 Zervos M,Mihailescu C N,Giapintzakis J,et al.Surface passivation and conversion of SnO_2 to SnS_2 nanowires[J].Mater Sci Eng B,2015,198:307.
    19 Bennet J,Tholkappiyan R,Vishista K,et al.Attestation in selfpropagating combustion approach of spinel AFe_2O_4(A=Co,Mg and Mn)complexes bearing mixed oxidation states:Magnetostructural properties[J]Appl Surf Sci,2016,383:113.
    20 Mallick A,Mahapatra A S,Mitra A,et al.Soft magnetic property and enhanced microwave absorption of nanoparticles of Co_(0.5)Zn_(0.5)-Fe_2O_4 incorporated in MWCNT[J].J Magn Magn Mater,2016,416:181.
    21 Micheli D,Apollo C,Pastore R,et al.X-band microwave characterization of carbon-based nanocomposite material,absorption capability comparison and RAS design simulation[J].Compos Sci Technol,2010,70:400.
    22 Zhao B,Shao G,Fan B B,et al.Facile synthesis of Ni/ZnO composite:Morphology control and microwave absorption properties[J].J Magn Magn Mater,2015,382:78.
    23 Liu G,Wang L Y,Chen G M,et al.Enhanced electromagnetic absorption properties of carbon nanotubes and zinc oxide whisker microwave absorber[J].J Alloys Compd,2012,514:183.
    24 Cao M S,Zhu J,Yuan J,et al.Computation design and performance prediction towards a multi-layer microwave absorber[J].Mater Des,2002,23,557.
    25 Liang C Y,Liu C Y,Wang H,et al.SiC-Fe_3O_4 dielectric-magnetic hybrid nanowires:Controllable fabrication,characterization and electromagnetic wave absorption[J].J Mater Chem A,2014,2:16397.
    26 Lv H L,Ji G B,Wang M,et al.Hexagonal-cone like of Fe_(50)Co_(50)with broad frequency microwave absorption:Effect of ultrasonic irradiation time[J].J Alloys Compd,2014,615:1037.
    27 Naito Y,Suetake K.Application of ferrite to electromagnetic wave absorber and its characteristics[J].IEEE Trans Microwave Theory Technol,1971,19:65.
    28 Michielssen E,Sajer J,Ranjithan S,et al.Design of lightweight,broad-band microwave absorbers using genetic algorithms[J].IEEE Trans Microwave Theory Technol,1993,41:1024.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.