含铕、钕金属杂多核氰桥混配聚合物化学修饰铂电极的电催化与分析应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本博士学位论文利用电化学沉积法制备了两种含配位稀土离子甘氨酸合铕(Eu(Ⅲ)(Gly)x)和邻苯二甲酸合钕(Nd(Ⅲ)(o-phth)x)成份的金属杂多核氰桥混配聚合物化学修饰铂电极,在此基础上研究了此类修饰电极的电催化行为、并探讨了其在分析应用方面的特性。论文的主要内容如下:
     1、利用电化学沉积法成功制备了铕-铁-铬酸根类普鲁士蓝修饰铂电极。用扫描电子显微镜(SEM)、傅立叶变换红外光谱(FT-IR)、傅立叶变换拉曼光谱(FT-Raman)、固体表面荧光等技术对修饰物的材料性质进行了表征。用循环伏安法(CV)、方波伏安法(SWV)研究了该聚合物修饰铂电极上Ru(bpy)32+的电催化氧化行为。发现在0.40mol/L的硝酸钾电解质溶液中,Ru(bpy)32+在这种无机聚合物修饰铂电极上呈现出稳定、良好的电催化氧化伏安特性,用方波伏安法测得其催化氧化峰电流与Ru(bpy)32+浓度在0.001-1.0mmol/L范围内呈现良好的线性关系,其催化氧化效率提高至裸铂电极的3.5倍左右。同时发现,该修饰电极上发光探针分子Ru(bpy)32+的ECL总发光强度也相应得到提高。据此,提出了一个可以合理解释修饰电极表面上Ru(bpy)32+电致化学发光现象的新机理模型。作为分析应用可能性探索,发现当此修饰电极作为柱端电致化学发光-毛细管电泳联用分析仪的检测工作电极时,可使CE-ECL法检测探针物质三丙胺(TrPA)和三乙胺(TEA)样品的分析灵敏度提高约1个数量级。
     2、用电沉积法成功制备了一种新型的钕-铁-钼酸根金属杂多核氰桥配位聚合物修饰铂电极(Nd(Ⅲ)(o-phth)x-Fe-MoO42-/Pt),用扫描电子显微镜(SEM)、傅立叶变换红外光谱(FT-IR)、傅立叶变换拉曼光谱(FT-Raman)、X-ray粉末衍射(XRD)等技术对修饰物的材料性质进行了表征,并研究了此修饰电极的电催化活性和对CO等毒性中间体的耐受能力。采用弱酸性介质,用循环伏安法(CV)和计时安培法(CA)研究发现,乙醇在此钕-铁-钼酸根类普鲁士蓝修饰电极上的电催化氧化反应有5个明显的伏安峰存在。伏安法实验数据分析表明,阴极化扫描过程中乙醇的反扫氧化峰具有扩散控制的动力学特征,其成因可能源于乙醇经一步协同脱氢形成乙醛的反应。在此基础上推断乙醇在该修饰电极上可能遵循不同的脱氢机理,提出了一个可合理解释乙醇电催化氧化反应的脱氢机理新模型。
     3、以两步电化学沉积法成功制备了新型铂微粒/钕-铁-钼酸根类普鲁士蓝复合修饰铂电极(Pt-particle/Nd(Ⅲ)(o-phth)x-Fe-MoO42-/Pt),用循环伏安法(CV)和计时安培法(CA)研究了甲醇在该类普鲁士蓝复合修饰铂电极上的伏安行为。实验结果表明,在钕-铁-钼酸根类普鲁士蓝修饰电极基底上,由于铂微粒的分散均匀度好、铂的担载量适中,该复合修饰铂电极对甲醇有高效的电催化氧化作用。在弱酸性条件下,对0.25mol/L甲醇而言,其阳极化扫描过程中甲醇催化氧化峰的最高电流密度可达到120mA/cm2。此外,根据伏安实验数据分析,对涉及甲醇氧化反应四个相关伏安峰的性质分别给出了合理的解释。以此为据,推断甲醇在铂微粒/钕-铁-钼酸根类普鲁士蓝复合修饰铂电极的脱氢过程符合PtOH中间体促进下的多步单电子转移机理模型。
In the doctoral thesis, two kinds of platinum electrodes which were chemically modified with the hybrid-metallic cyano-bridged mixed coordination polymers containing the composition of the europium-glycine complex (Eu(Ⅲ)Gly)x) and the neodymium-phthalic acid complex (Nd(Ⅲ)(o-phth)x) were prepared respectively by electrodeposition methods. Furthermore, the electrocatalytic behavior of such a modified electrode was investigated and their characteristics in applications of analytical chemistry were explored. The main content of the paper is as follows:
     1. A platinum electrode modified with the Eu(Ⅲ)Gly)x-Fe-CrO42-coordination polymer was prepared successfully by electrodeposition methods. The scanning electron microscope (SEM), FT-IR, FT-Raman, and solid surface reflect fluorescence techniques were used to characterize properties of the modified material. The electrocatalytic oxidation behavior of tris(2,2'-bipyridyl)-ruthenium(II)(Ru(bpy)32+) was investigated in detail on the modified platinum electrode (Eu(Ⅲ)(Gly)x-Fe-CrO42-/Pt) by cyclic voltammetry (CV) and square wave voltammetry (SWV). In the electrolyte containing0.45mol/L potassium nitrate, Ru(bpy)32+exhibited the stable and good electrocatalytic oxidation characteristic on the Eu(Ⅲ)(Gly)x-Fe-CrO42-/Pt, and a linear relationship between the square wave peak current and Ru(bpy)32+concentration was shown in the range of0.001~1.0mmol/L. The catalytic oxidation efficiency of Ru(bpy)32+increased to3.5times on the modified platinum electrode comparing with its values on the bare platinum electrode. In addition, it was discovered that because of the enhancement of catalytic oxidation efficiency on the modified electrode surface, the total electrochemiluminescence intensity of Ru(bpy)32+system also increased under the same experimental condition. Based on the above evidences, a novel mechanism model was proposed to interpret the ECL behavior of Ru(bpy)32+system on the modified platinum electrode. As a possible analytical application for capillary electrophoresis coupled with end-column electrochemiluminescence detection, it was testified that when modified platinum electrode was used as a detector's working electrode, the sensitivity of CE-ECL for determining the probe samples containing tripropylamine (TrPA) and triethylamine (TEA) was positively improved by about one order of magnitude.
     2. A novel modified platinum electrode (Nd(Ⅲ)(o-phth)x-Fe-MoO42-/Pt) was prepared by electrodeposition methods. The scanning electron microscope (SEM), FT-IR, FT-Raman, and X-ray powder diffraction (XRD) techniques were used to characterize properties of the modified material. The electrocatalytic activity and CO-poisoning tolerance of the modified electrode had been studied on the decorated polycrystalline platinum surface for ethanol electrooxidation. In addition, the electrocatalytic oxidation of ethanol was studied in detail by using cyclic voltammetry (CV) and chronoamperometry (CA) in a weakly acidic condition, and the presence of five distinct current peaks related to the ethanol electrooxidation process was observed. From the voltammetric data analysis, the kinetic behavior of backward oxidation peak in negative-going sweep was considered to be a diffusion-controlled electrochemical process. Therefore, the nature of backward oxidation peak was reasonably attributed to the plentiful products of acetaldehyde via a one-step concerted dehydrogenation pathway of ethanol. These results implied that the electrooxidation of ethanol possibly had different dehydrogenation pathways on the decorated platinum electrode comparing with normal ones. Based on the particular experimental evidences, a new dehydrogenation model was proposed to explain preliminarily the mechanism of ethanol electrooxidation.
     3. A composite modified platinum electrode (Pt-particles/Nd(Ⅲ)(o-phth)x-Fe-MoO42-/Pt) was successfully prepared by the two-step electrodeposition method. The voltammetric behavior of methanol on the Pt-particle/Nd(Ⅲ)(o-phth)x-Fe-MoO42-/Pt composite modified electrode was studied by cyclic voltammetry (CV) and chronoamperometry (CA). The experimental results showed that because of the good dispersive uniformity and the feasible carrying capacity of Pt-particles on the modified electrode substrate, the high efficient electrocatalytic activity for methanol oxidation was available at the composite modified electrode. Under a weakly acidic condition, the current density of main oxidation peak in positive-going sweep for0.25mol/L methanol could achieve up to120mA/cm2. Furthermore, from the analysis to voltammetric data, the nature of four voltammetric peaks relating to the oxidation reaction of methanol was revealed respectively with a reasonable explanation. Therefore, it was inferred that the dehydrogenation mechanism of methanol on Pt-particles/Nd(Ⅲ)(o-phth)x-Fe-MoO42-/Pt electrode would undergo a multi-step single electron transfer process which was promoted by PtOH active intermediates.
引文
[1]K R. Dunbar and R. A. Heintz, Chemistry of Transition Metal Cyanide Compounds: Modern Perspectives, Progress in Inorganic Chemistry, Vol.45, Edited by K. D. Karlin., John Wiley & Sons, Inc.,1997.
    [2]F. Keggin and F. D. Miles, Stuctures and formulus of the Prussian blues and related compounds. Nature,1936,38:577-578.
    [3]董绍俊,车广礼,谢远武.化学修饰电极(修订版)[M],北京:科学出版社,2003.
    [4]K. Itaya, I. Uchida and V.D. Neff,Acc. Chem. Res.1986,19:162-168.
    [5]N.R. de Tacconi, K. Rajeshwar and R. O. Lezna, Metal Hexacyanoferrates: Electrosynthesis, in Site Characterization, and Applications, Chem. Mater. 2003,15:3046-3062
    [6]A. A. Karyakin, Prussian Blue and Its Analogues:Electrochemistry and Analytical Applications, Electro analysis,2001,13(10):813-819.
    [7]K. Itaya, T. Ataka and S. Toshima, Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes,J. Am. Chem. Soc., 1982,104(18):4767-4772.
    [8]K.-C. Ho, Cycling and at-rest stabilities of a complementary electrochromic device based on tungsten oxide and Prussian blue thin films, Electrochim. Acta,1999,44:3227-3235
    [9]D. Ellis, M. Eckhoff and V. D. Neff, Electrochromism in the Mixed-Valence Hexacyanides.1. Voltammetric and Spectral Studies of the Oxidation and Reduction of Thin Films of Prussian Blue, J. Phys. Chem.1981,85:1225-1231.
    [10]K.-C. Ho and C.-L. Lin, A novel potassium ion sensing based on Prussian blue thin films, Sens.Actuators, B,2001,76:512-518.
    [11]J. Balmaseda, E. Reguera, J. Rodriguez-Hernandez, L. Reguera and M. Autie, Behavior of transition metals ferricyanides as microporous materials, Microporous Mesoporous Mater.,2006,96:222-236.
    [12]C.P. Krap, J. Balmaseda, B. Zamora and E. Reguera, Hydrogen storage in the iron series of porous Prussian blue analogues, Int. J. Hydrogen Energy.,2010,35:10381-10386.
    [13]陈勇,王长发,无机多核过渡金属氰化物薄膜修饰电极的新进展,分析科学学报,2002,18(2):164-168.
    [14]A.S. Kumarl and J.-M. Zen, Characteristic and electrocatalytic behavior of ruthenium Prussian blue analogue film in strongly acidic media,J. MoL CataL A:Chem., 2006,252:63-69.
    [15]A. S. Kumar and J.-M. Zen, Organic Redox Probes for the Key Oxidation States in Mixed Valence Ruthenium Oxide/Cyanometallate (Ruthenium Prussian Blue Analogue) Catalysts, Electroanalysis,2004,16(15):1211-1220.
    [16]D.M. Pajerowski, T.Yamamoto, and Y.Einaga, Photomagnetic Ko.25Ni1-xCox [Fe(CN)6]-nH2O and K0.25Co[Fe(CN)6]o.75y[Cr(CN)6]o.75(1-y)-nH20 Prussian Blue Analogue Solid Solutions, Inorg. Chem.2012,51:3648-3655.
    [17]L. G. Beauvais and J. R. Long, Synthesis and Characterization of Prussian Blue Analogues Incorporating the Edge-Bridged Octahedral [Zr6BCn2]2+Cluster Core, Inorg. Chem.,2006,45(1):236-243.
    [18]H.-W. Chu, R. Thangamuthu and S.-M. Chen, Preparation, characterization and electrocatalytic behavior of zinc oxide/zinchexacyanoferrate and ruthenium oxide hexacyanoferrate hybrid film-modified electrodes, Electrochim. Acta,2008,53:2862-2869.
    [19]B.W. Pfennig, M. R. Norris, N. Zimmerman, J.R.Gallagher, and A. I. McCloskey, Synthesis, spectroscopy, electrochemistry, and photochemistry of cyano-bridged mixed-valence coordination compounds containing two different types of intervalent charge-transfer bands, Inorg. Chim.Acta,2009,362:1701-1708.
    [20]T.R.I. Cataldi, G. De Benedetto, and A. Bianchini, Enhanced stability and electrocatalytic activity of ruthenium-modified cobalt-hexacyanoferrate film electrode, J. ElectroanaL Chem,1999,471:42-47
    [21]L.H. Shi, T. Wu, P. He, D. Li, C.Y. Sun and J.H. Li, Amperometric Sensor for Hydroxylamine Based on Hybrid Nickel-Cobalt Hexacyanoferrate Modified Electrode, Electroanalysis,2005,17(23):2190-2194.
    [22]X. P. Cui, and X. Q. Lin, Electrochemical preparation, characterization and application of electrodes modified with hybrid hexacyanoferrates of copper and cobalt. J. ElectroanaL Chem.,2002,526(1-2):115-124.
    [23]P. J. Kulesza, M. A. Malik, J. Skorek, K. Miecznikowski, S. Zamponi, M. Berrettoni, M. Giorgetti, and R. Marassic, Hybrid Metal Cyanometallates Electrochemical Charging and Spectrochemical Identity of Heteronuclear Nickel/Cobalt Hexacyanoferrate,J. Electrochem. Soc.,1999,146(10):3757-3761.
    [24]P. J. Kulesza, M. A. Malik, R. Schmidt, A. Smolinska, K. Miecznikowski, S. Zamponi, A. Czerwinski, M. Berrettoni, and R. Marassi. Electrochemical preparation and characterization of electrodes modified with mixed hexacynoferrates of nickel and palladium. J. ElectroanaL Chem.,2000,487(1):57-65
    [25]Y.J. Ma, Y.L.Du, W.C. Ye, B.Q.Su, M.X. Yang and C.M.Wang. Electrocatalytic Oxidation of Ethanol on Platinum Electrode Decorated with Nd-Fe-Mo Hybrid-metallic Cyano-Bridged Mixing Coordination Polymer in Weak Acidic Medium, Int. J. Electrochem. Sei.,2012,7(3):2654-2679.
    [26]袁爱华,周虎,沈小平,氰基桥联配合物的研究进展[J],化学研究与应用,2005,5:582-586.
    [27]司书峰,廖代正,普鲁士蓝类分子磁体研究的新进展[J],结构化学2001,20(3):233-240.
    [28]S. Vaucher, M. Li and S. Mann, Synthesis of Prussian Blue Nanoparticles and Nanocrystal Superlattices in Reverse Microemulsions, Angew. Chem. Int. Ed,2000, 39(10):1793-1796.
    [29]E. Chelebaeva, Y. Guari, J. Larionova, A. Trifonov, and C. Guerin, Soluble Ligand-Stabilized Cyano-Bridged Coordination Polymer Nanoparticles, Chem. Mater. 2008,20:1367-1375.
    [30]G. Layrac, D. Tichit, J. Larionova, Y. Guari, and C. Guerin, Controlled Growth of Cyano-Bridged Coordination Polymers into Layered Double Hydroxides,J. Phys. Chem. C,2011,115:3263-3271.
    [31]C. C. Chang, and A. B. Bocarsly, Oxidation of halides by redox enhanced ferricyanide in the [FeⅡ-CN-PtⅣ]n coordination polymer:an optically triggered process.J. ElectroanaL Chem.1999,470:99-113.
    [32]S. Tanase, and J. Reedijk, Chemistry and magnetism of cyanido-bridged d-f assemblies, Coord. Chem. Rev.,2006,250:2501-2510.
    [33]M. Yamada, and S.-Y. Yonekura, Nanometric Metal-Organic Framework of Ln[Fe(CN)6]:Morphological Analysis and Thermal Conversion Dynamics by Direct TEM Observation,J. Phys. Chem. C,2009,113:21531-21537.
    [34]Y.-Z. Tang, Y.-M. Yang, X.-W. Wang, Q. Zhang, and H.-R. Wen, Synthesis, structure and XPS of a novel two-dimensional Cu(Ⅱ)-Eu(Ⅲ) heterometallic-organic framework, Inorg. Chem. Commun.,2011,14:613-617.
    [35]B.-Q. Ma, S. Gao, G Su, and G.-X. Xu, Cyano-Bridged 4f-3d Coordination Polymers with a Unique Two-Dimensional Topological Architecture and Unusual Magnetic Behavior, Angew. Chem. Int Ed.2001,40(2):434-437.
    [36]H.-Z. Kou, S. Gao, and X.L. Jin, Synthesis, Crystal Structure, and Magnetic Properties of Two Cyano-Bridged Bimetallic 4f-3d Arrays with One-Dimensional Chain and Two-Dimensional Brick Wall Molecular Structures, Inorg. Chem.2001,40:6295-6300.
    [37]R.Koner, M.GB. Drew, A. Figuerola, C. Diaz, and S. Mohanta, A new cyano-bridged one-dimensional GdⅢFeⅢ coordination polymer with o-phenanthroline as the blocking ligand:synthesis, structure, and magnetic properties, Inorg. Chim. Acta, 2005,358:3041-3047.
    [38]Y.-G. Huang, F.-L. Jiang, and M.-C. Hong, Magnetic lanthanide-transition -metal organic-inorganic hybrid materials:From discrete clusters to extended frameworks, Coord. Chem. Rev.,2009,253:2814-2834.
    [39]D. C. Wilson, S.M. Liu, X.N. Chen, E. A. Meyers, X.G. Bao, A. V. Prosvirin, K. R. Dunbar, C. M. Hadad, and S. G. Shore, Water-Free Rare Earth-Prussian Blue Type Analogues:Synthesis, Structure, Computational Analysis, and Magnetic Data of {LnⅢ(DMF)6FeⅢ(CN)6}∞ (Ln=Rare Earths Excluding Pm), Inorg. Chem. 2009,48:5725-5735.
    [40]G. M. Li, O. Sato, T. Akitsu, and Y. Einaga, Visible light-induced magnetization change of the cyano-bridged 3d-4f heterobimetallic, J. Solid. State. Chem., 2004,177:3835-3838.
    [41]G.M. Li, P.F. Yan, O. Sato, and Y. Einaga, The structure, photo-induced magnetization and correlation of the cyano-bridged two-dimensional hetero-bimetallic compounds, J. Solid. State. Chem.,2005,178:36-40.
    [42]B. Yan, H.-D. Wang, and Z.-D. Chen, Novel one-dimensional cyano-bridged chain complexes [Ln(bet)2(H2O)3Fe(CN)6]n (Ln=Nd, Pr, Sm, Gd; bet=betaine), synthesis, crystal structure and magnetochemistry, Polyhedron,2001,20:591-597.
    [43]T. Akitsu, and Y. Einaga, Structures and XPS studies of several 3d-4f cyano-bridged LnⅢ-Fe/CoⅢheterometallic complexes Novel one- dimensional cyano-bridged chain complexes [Ln(bet)2(H2O)3Fe(CN)6]n (Ln=Nd, Pr, Sm, Gd; bet=betaine), Polyhedron,2006,25:2655-2622.
    [44]T. Akitsu, and Y. Einaga, Structures, magnetic properties, and XPS of cyanide-bridged NdIII/SmⅢ/GdⅢ-CrⅢ complexes, Inorg.Chim.Acta.,2006,359:1421-1426.
    [45]W.-D. Song, S.-J. Li, D.-L. Miao, L.-L,Ji, S. W. Ng, E. R.T. Tiekink, and D.-Y. Ma, Construction of [EuZn(glycinate)(oxalate)2(H2O)2]n:An unusual heterometallic 3D 3d-4f coordination framework generated by in situ glycinate synthesis, Inorg.Chem.Commun.,2012,17:91-94.
    [46]Y.P. Shan, GC. Yang, J. Gong, X.L. Zhang, L.D. Zhu, and L.Y. Qu, Prussian blue nanoparticles potentiostatically electrodeposited on indium tin oxide/chitosan nanofibers electrode and their electrocatalysis towards hydrogen peroxide, Electrochim.Acta, 2008,53:7751-7755.
    [47]W. Siangproh, W. Dungchai, P. Rattanarat, and O. Chailapakul, Nanoparticle-based electrochemical detection in conventional and miniaturized systems and their bioanalytical applications:A review, Anal Chim.Acta,2011,690:10-25.
    [48]X.C. Li, Z.G Chen, Y.W. Zhong, F. Yang, J.B. Pan, and Y.J. Liang, Cobalt hexacyanoferrate modified multi-walled carbon nanotubes/graphite composite electrode as electrochemical sensor on microfluidic chip, AnaLChim.Acta,2012,710:118-124.
    [49]J.Tang, D.P. Tang, Q.F. Li, B.L. Su, B. Qiu, and G.N. Chen, Sensitive Electrochemical immunoassay of carcinoembryonic antigen with signal dual-amplification using glucose oxidase and an artificial catalase, Anal Chim.Acta,2011,697:16-22.
    [50]鞠烷先,电分析化学与生物传感技术[M],北京:科学出版社,2006.
    [51]F. Ricci, C. Goncalves, A. Amine, L. Gorton, G Palleschi, and D. Moscone, Electroanalytical Study of Prussian Blue Modified Glassy Carbon Paste Electrodes, Electroanalysis,2003,15(14):1204-1211.
    [52]A. Lisowska-Oleksiak, M. Wilamowska, and V. Jasulaitiene, Organic-inorganic composites consisted of poly(3,4-ethylenedioxythiophene) and Prussian Blue analogues, Electrochim.Acta,2011,56:3626-3632.
    [53]C.-X Cai, H.-X. Ju, and H.-Y. Chen, Catalytic oxidation of reduced nicotinamide adenine dinucleotide at a microband gold electrode modified with nickel hexacyanoferrate, Anal. Chimi.Acta,1995,310:145-151.
    [54]C.-X Cai, H.-X. Ju, and H.-Y. Chen, Cobalt hexacyanoferrate modified microband gold electrode and its electrocatalytic activity for oxidation of NADH,J. ElectroanaL Chem., 1995,397:185-190.
    [55]M.H. Pournaghi-Azar, and R. Sabzi, Electrochemical characteristics of a cobalt pentacyanonitrosylferrate film on a modified glassy carbon electrode and its catalytic effect on the electrooxidation of hydrazine,J. ElectroanaL Chem.,2003,543:115-125.
    [56]Y. L. Hu, J. H.Yuan, W Chen, K. Wang, and X.H. Xia, Photochemical synthesis of Prussia blue film from an acidic ferricyanide solution and application, Electrochem. Commun.,2005,7:1252-1256.
    [57]Y. Liu, Z.Y. Chu, and W.Q. Jin, A sensitivity-controlled hydrogen peroxide sensor based on self-assembled Prussian Blue modified electrode, Electrochem. Commun.,2009,11: 484-487.
    [58]N. Bagkar, C.A. Betty, P.A. Hassan, K. Kahali, J.R. Bellare, and J.V. Yakhmi, Self-assembled films of nickel hexacyanoferrate:Electrochemical properties and application in potassium ion sensing, Thin Solid Films,2006,497:259-266.
    [59]Y.Z. Xian, Y. Hua, F. Liu, Y. Xian, L J. Feng, and L.T. Jin, Template synthesis of highly ordered Prussian blue array and its application to the glucose biosensing, Biosens. Bioelectron.,2007,22:2827-2833.
    [60]M.H. Pournaghi-Azar, and H. Dastangoo, Palladized aluminum as a novel substrate for the non-electrolytic preparation of a Prussian Blue film modified electrode,J. Electroanal. Chem.,2004,573:355-364.
    [61]N. R. de Tacconi, K. Rajeshwar, and R. O. Lezna, Electrochemical impedance spectroscopy and UV-vis reflectance spectroelectrochemistry of cobalt hexacyanoferrate films, J. Electroanal. Chem.,2006,587:42-55.
    [62]R.O. Lezna, R. Romagnoli, N. R. de Tacconi, and K. Rajeshwar, Spectroelectrochemistry of palladium hexacyanoferrate films on platinum substrates,J. ElectroanaL Chem., 2003,554:101-106.
    [63]P. J. Kulesza, M.A. Malik, A. Denca and J. Strojek, In Situ FT-IR/ATR Spectroelectrochemistry of Prussian Blue in the Solid State, Anal. Chem.,1996,68: 2442-2446.
    [64]X.Y. Wang, Y.Yukawa, and Y.Masuda, Study on the boundary structures in a series of lanthanide hexacyanoferrate(Ⅲ) n-hydrates,J. Alloys Compd.,1999,290:85-90.
    [65]S.Yamada, K.Kuwabara, and K.Koumoto, Characterization of Prussian Blue analogues: nanocrystalline nickel-iron cyanide, Mater. Scl. Eng., B,1997,B49:89-94.
    [66]T.R.I. Cataldi, G E. D. Benedetto, and A. Bianchini, X-ray photoelectron spectroscopic investigation and electrochemistry of polynuclear indium(Ⅲ) hexacyanoferrate films, J. Electroanal. Chem.,1998,448:111-117.
    [67]X.P. Shen, S.K.Wu, Y. Liu, K.Wang, Z.Xu, and W. Liu, Morphology syntheses and properties of well-defined Prussian Blue nanocrystals by a facile solution approach,J. Colloid. Interface Sci,2009,329:188-195.
    [68]S. Demiri, M. Najdoski, and J.J. Velevska, A simple chemical method for deposition of electrochromic Prussian blue thin films, Mater. Res. Bull.,2011,46:2484-2488.
    [69]T. Mohiuddin, and D. E. Williams, Electrochemical microscopy of platinum clusters,J. ElectroanaL Chem.,2002,538/539:209-213.
    [70]S. Lupu, Electrochemical Impedance measurements on Prussian blue films deposited on platinum electrodes, U.P. B. Sci. Bull., Series B,2011,73(1):85-96.
    [71]Y. Mizuno, M. Okubo, D. Asakura, T. Saito, E. Hosono, Y. Saito, K. Oh-ishi, T. Kudo, and H. Zhou, Impedance spectroscopic study on interfacial ion transfers in cyanide-bridged coordination polymer electrode with organic electrolyte, Electrochim.Acta,2012,63:139-145.
    [72]C.-L. Lin, and K.-C. Ho, A study on the deposition efficiency, porosity and redox behavior of Prussian blue thin films using an EQCM, J.ElectroanaLChem, 2002,524:286-293.
    [73]T.R.I. Cataldi, G. E. de Benedetto, and C. Campa, Electrochemical quartz crystal microbalance study and electrochromic behavior of a novel ruthenium purple film, J. ElectroanaL Chenu.,1997,437:93-98.
    [74]Y. Wang, G.Y. Zhu, and E.K. Wang, Electrochemical quartz crystal microbalance study for vanadium hexacyanoferrates:monitoring of film growth and ion effects during redox reactions, J. ElectroanaL Chem.,1997,430:127-132.
    [75]S.-F. Hong, and L.-C. Chen, Stability-enhanced indium hexacyanoferrate electrodes: Morphological characterization, in situ EQCM analysis in nonaqueous electrolytes and application to a WO3 electrochromic device, Electrochim.Acta,2008,53:5306-5314.
    [76]A. A. Karyakin, and E. E. Karyakina, Prussian Blue-based'artificial peroxidase' as a transducer for hydrogen peroxide detection. Application to biosensors, Sens. Actuators B,1999,57:268-273.
    [77]T. R.1. Cataldi, D. Centonze, and A. Guerrieri, Mixed Valent Ruthenium Oxide-Ruthenium Cyanide Inorganic Film on Glassy Carbon Electrodes as an Amperometric Sensor of Aliphatic Alcohols, AnaL Chem.,1995,67:101-107.
    [78]D.M. Zhou, H.X. Ju, and H.-Y. Chen, Catalytic oxidation of dopamine at a microdisk platinum electrode modified by electrodeposition of nickel hexacyanoferrate and Nafion, J. ElectroanaL Chem.,1996,408:219-213.
    [79]H. Razmi, M. Agazadeh, and B. Habibi-A, Electrocatalytic oxidation of dopamine at aluminum electrode modified with nickel pentacyanonitrosylferrate films, synthesized by electroless procedure,J. ElectroanaL Chem.,2003,547:25-33.
    [80]M. Nakayama, M. lino and K. Ogura, In situ infrared spectroscopic investigations on the electrochemical properties of Prussiuan blue-polyaniline-modified electrodes with various anionic Fe(Ⅱ) complexes working as a mediator for the electroreduction of CO2, /. ElectroanaL Chem.,1997,440:251-257.
    [81]A. Venugopal, N. Kumar, S. Harish, J. Joseph, and K. L. Phani, Nix-Fe(1-x)Fe(CN)6 hybrid thin films electrodeposited on glassy carbon:Effect of tuning of redox potentials on the electrocatalysis of hydrogen peroxide, J. ElectroanaL Chem.,2011,659:128-133.
    [82]A. Eftekhari, Electrochemical behavior and electrocatalytic activity of a zinc hexacyanoferrate film directly modified electrode,J. ElectroanaL Chem., 2002,537:59-66.
    [83]M.H. Pournaghi-Azar, and F. Ahour Palladized aluminum electrode covered by Prussian blue film as an effective transducer for electrocatalytic oxidation and hydrodynamic amperometry of N-acetyl-cysteine and glutathione, J. ElectroanaL Chem.,2008,622: 22-28.
    [84]K.-C. Pan, C.-S. Chuang, S.-H. Cheng, and Y. O. Su, Electrocatalytic reactions of nitric oxide on Prussian blue film modified electrodes, J.ElectroanaLChem.,2001, 501:160-165.
    [85]P. Wang, Y. Yuan, X.X Wang, and G.Y. Zhu, Renewable three-dimensional Prussian blue modified carbon ceramic electrode,J. Electroanal. Chem.,2000,493:130-134.
    [86]F. Arduini, A. C. A. Amine, F. Ricci, D. Moscone, and G. Palleschi, Electrocatalytic oxidation of thiocholine at chemically modified cobalt hexacyanoferrate screen-printed electrodes,J. ElectroanaL Chem.,2009,626:66-74.
    [87]C.-X.Cai, K.-H. Xue, and S.-M. Xu, Electrocatalytic activity of a cobalt hexacyanoferrate modified glassy carbon electrode toward ascorbic acid oxidation, J. ElectroanaL Chem.,2000,486:111-118.
    [88]M.H. Pournaghi-Azar, and H. Dastangoo, Electrocatalytic oxidation of nitrite at an aluminum electrode modified by a chemically deposited palladium pentacyanonitrosylferrate film, J. ElectroanaL Chem.,2004,567:211-218.
    [89]M. F. De Oliveira, A.A. Saczk, J. A. G. Neto, P. S. Roldan, and N. R. Stradiotto, Flow injection amperometric determination of persulfate incosmetic products using a Prussian Blue film-modified electrode., Sensors,2003,3:371-380.
    [90]B. Haghighi, H. Hamidia, and L. Gortonb, Electrochemical behavior and application of Prussian blue nanoparticles modified graphite electrode, Sens. Actuators, B:Chem., 2010,147:270-276.
    [91]J. Zhang, J. Li, F. Yang, B.L. Zhang, and X.R. Yang, Pt nanoparticles-assisted electroless deposition of Prussian blue on the electrode:Detection of H2O2 with tunable sensitivity, J. ElectroanaL Chem.,2010,638:173-177.
    [92]X.-W. Liu, Z.J. Yao, Y.-F.Wang, and X.-W. Wei, Graphene oxide sheet-prussian blue nanocomposites:Green synthesis and their extraordinary electrochemical properties, Colloids Surf., B:Biointerfaces.,2010,81:508-512.
    [93]Y. Zhang, X.M. Sun, L.Z. Zhu, H.B. Shen, and N.Q. Jia, Electrochemical sensing based on graphene oxide/Prussian blue hybrid film modified electrode, Electrochim. Acta, 2011,56:1239-1245.
    [94]S.M.S. Kumar, and K. C. Pillai, Cetyltrimethyl ammonium bromide surfactant-assisted morphological and electrochemical changes in electrochemically prepared nanoclustered iron(Ⅲ) hexacyanoferrat, J. ElectroanaL Chem.,2006,589:167-175.
    [95]周秀英,新型配位铕离子掺杂类普鲁士蓝化学修饰电极的制备及分析应用研究[硕士论文],兰州:西北师范大学,2007.
    [96]吴萍,稀土铁氰化物修饰电极的制备及表征[硕士论文],南京:南京师范大学,2005.
    [97]李晓娟,金属铁氰化物修饰电极的制备及电催化应用[硕士论文],沈阳:辽宁师范大学,2009.
    [98]S.Q.Liu, and H.Y.Chen, Spectroscopic and voltammetric studies on a lanthanum hexacyanoferrate modified electrode, J. ElectroanaL Chem.,2002,528:190-195.
    [99]Q L Sheng, H. Yu, and J. B. Zheng, Sol-gel derived carbon ceramic electrode for the investigation of the electrochemical behavior and electrocatalytic activity of neodymium hexacyanoferrate, Electrochimi. Acta,2007,52:4506-4512.
    [100]P.Wu, and CX.Cai, The Solid State Electrochemistry of Dysprosium(Ⅲ) Hexacyanoferrate(Ⅱ), Electroanalysis,2005,17(17):1583-1588.
    [101]吴萍,蔡称心,陆天虹,铁氰化钐修饰电极的制备、表征及电催化[J],应用化学,2009,21(11):1101-1104.
    [102]B. Fang, Y.Wei, M.G. Li, G.F. Wang, and W. Zhang, Study on electrochemical behavior of tryptophan at a glassy carbon electrode modified with multi-walled carbon nanotubes embedded cerium hexacyanoferrate, Talanta,2007,72:1302-1306.
    [103]H.J. Yang, B.P. Lu, L.P. Guo, and B. Qi, Cerium hexacyanoferrate/ordered mesoporous carbon electrode and its application in electrochemical determination of hydrous hydrazine, J. ElectroanaL Chem.,2011,650:171-175.
    [104]马永钧,付周周,任小娜,宋青云,周秀英,2,4-二硝基苯酚在类普鲁士蓝修饰电极上的电化学行为及分析应用研究[J],分析化学2008,36(1):241-244.
    [105]Q.L. Sheng, H. Yu, and J.B. Zheng, Sol-gel derived terbium hexacyanoferrate modified carbon ceramic electrode:Electrochemical behavior and its electrocatalytical oxidation of ascorbic acid, J. ElectroanaL Chem.,2007,606:39-46.
    [106]D. Visinescu, L. M. Toma, O. Fabelo, and C. Ruiz-Perez, New 3d-4f supramolecular systems constructed by [Fe(bipy)(CN)4]" and partially blocked lanthanide cations, Polyhedron,2009,28:851-859.
    [107]Y.-K. He, H.-Y. An, and Z.-B. Han,3D pillar-layered coordination polymers based on 4d-4f heterometallic assembly, Solid State Sci.,2009,11:49-55.
    [108]M. C. Munoza, and J. A. Real, Thermo-, piezo-, photo- and chemo-switchable spin crossover iron(II)-metallocyanate based coordination polymers, Coord. Chem. Rev., 2011,255:2068-2093.
    [109]S. Wang, X.-H. Ding, Y.-H. Li, and W. Huang, Dicyanometalate chemistry:A type of versatile building block for the construction of cyanide-bridged molecular architectures, Coord. Chem. Rev.,2012,256:439-464.
    [110]李文先,张瑞平,夏海廷,邻苯二甲酸与氯化稀土配合物的固相合成及性质研究X[J],稀土,2005,26(5):1-3.
    [111]高胜利,陈三平,李焕勇,杨旭武,史启祯,稀土氨基酸配合物的相化学及新相的研究[J],中国稀士学报,2001,19(5):385-392.
    [112]S.Tanase, M. Evangelisti, L. J. de Jongh, J. M.M. Smits, and R. de Gelder. Crystal structure, magnetic and thermal properties of the one-dimensional complex [Nd(pzam)3(H2O)Mo(CN)8]·H2O, Inorg.Chim. Acta.,2008,361:3548-3554.
    [113]马永钧,杨梅霞,王伟峰,周敏,刘婧,李婷婷,陈慧.甲酸在Nd-Fe-W042-氰桥混配物修饰铂电极上的电催化氧化[J].化学学报,2011,69(3):262-268.
    [114]J. Q. Ang, B. T. T. Nguyen, and C.-S. Toh, A dual K+-Na+selective Prussian blue nanotubes sensor, Sens. Actuators, B:Chem.,2011,157:417-423.
    [115]J. Q. Ang, B. T. T. Nguyen, Y. Huang, and C.S. Toh, Ion-selective detection of non-intercalating Na+using competitive inhibition of K+intercalation in Prussian blue nanotubes sensor, Electrochim. Acta,2010,55:7903-7908.
    [116]A. Domenech, N. Montoya, and F. Scholz, Estimation of individual Gibbs energies of cation transfer employing the insertion electrochemistry of solid Prussian blue, J.ElectroanaL Chem.,2011,657:117-122.
    [117]K.-C. Ho, and C.-L.Lin, novel potassium ion sensing based on Prussian blue thin films, Estimation of individual Gibbs energies of cation transfer employing the insertion electrochemistry of solid Prussian blue, Sens. Actuators, B,2001,76:512-518.
    [118]R. Koncki, Chemical Sensors and Biosensors Based on Prussian Blues, Crit. Rev. Anal.Chem.,2002,32(1):79-96.
    [119]F. Ricci, and G. Palleschi, Sensor and biosensor preparation, optimization and applications of Prussian Blue modified electrodes, Biosens. Bioelectron,2005,21: 389-407.
    [120]R. Koncki, and O. S. Wolfbeis, Optical chemical sensing based on thin films of Prussian Blue, Sens. Actuators, B,1998,51:355-358.
    [121]S. J. R. Prabakar, and S. S. Narayanan, Amperometric determination of hydrazine using a surface modified nickel hexacyanoferrate graphite electrode fabricated following a new approach, J.Electroanal. Chem.,2008,617:111-120.
    [122]F. Xu, M. G. Gao, L. Wang, T.S. Zhou, L.T. Jin, and J.Y. Jin, Amperometric determination of morphine on cobalt hexacyanoferrate modified electrode in rat brain microdialysates, Talanta,2002,58:427-432.
    [123]D. R. Shankaran, and S. S. Narayanan, Amperometric sensor for thiosulphate based on cobalt hexacyanoferrate modified electrode, Sens.Actuators, B,2002,86:180-184.
    [124]T. Garcia, E. Casero, E. Lorenzo, and F. Pariente, Electrochemical sensor for sulfite determination based on iron hexacyanoferrate film modified electrodes, Sens. Actuators, B,2005,106:803-809.
    [125]A. Eftekhari, Aluminum electrode modified with manganese hexacyanoferrate as a chemical sensor for hydrogen peroxide, Talanta,2001,55:395-402.
    [126]I. L. de Mattos, L. Gorton, and T. Ruzgas, Sensor and biosensor based on Prussian Blue modified gold and platinum screen printed electrodes, Biosens. Bioelectron,2003, 18:193-200.
    [127]A.A. Kayakin, O. V. Gitelmacher, and E. E. Kayakina, Prussian Blue-Based First-Generation Biosensor. A Sensitive Amperometric Electrode for Glucose, AnaL Chem.,1995,67:2419-2423.
    [128]X.J. Chen, Z.X. Chen, R. Tian, W. Yan, and C. Yao, Glucose biosensor based on three dimensional ordered macroporous self-doped polyaniline/Prussian blue bicomponent film, AnaLChim.Acta.,2012,723:94-100.
    [129]L. Li, Q. L. Sheng, J.B. Zheng, and H.F. Zhang, Facile and controllable preparation of glucose biosensor based on Prussian blue nanoparticles hybrid composites, Bioelectrochem.,2008,74:170-175.
    [130]R.Garjonyte, and A.Malinauskas, Glucose biosensor based on glucose oxidase immobilized in electropolymerized polypyrrole and poly(o-phenylenediamine)/films on a Prussian Blue-modified electrode, Sens. Actuators, B,2000,63:122-128.
    [131]M.H. Xue, Q.Xu, M. Zhou, and J.-J. Zhu, In situ immobilization of glucose oxidase in chitosan-gold nanoparticle hybrid film on Prussian Blue modified electrode for high-sensitivity glucose detection, Electrochem.Commun.,2006,8:1468-1474.
    [132]A.P. Baioni, M.Vidotti, P. A. Fiorito, and S. I. C. de Torresi, Copper hexacyanoferrate nanoparticles modified electrodes:A versatile tool for biosensors, J.ElectroanaL Chem., 2008,622:219-224.
    [133]T. Li, Z.H. Yao, and L. Ding, Development of an amperometric biosensor based on glucose oxidase immobilized through silica sol-gel film onto Prussian Blue modified electrode, Sens.Actuators, B,2004,101:155-160.
    [134]P. A. Fiorito, and S. I. C. de Torresi, Hybrid nickel hexacyanoferrate/polypyrrole composite as mediator for hydrogen peroxide detection and its application in oxidase-based biosensors,J. ElectroanaL Chem.,2005,581:31-37.
    [135]W. Zhao, J.-J. Xu, C.-G Shi, and H.-Y. Chen, Multilayer Membranes via Layer-by-Layer Deposition of Organic Polymer Protected Prussian Blue Nanoparticles and Glucose Oxidase for Glucose Biosensing, Langmuir,2005,21:9630-9634.
    [136]I. L. de Mattos, L. Gorton, T. Laurell, A. Malinauskas, and A. A. Karyakin, Development of biosensors based on hexacyanoferrates, Talanta,2000,52:791-799.
    [137]D.W. Pan, J.H. Chen, L.H. Nie, W.Y. Tao, and S.Z. Yao, Amperometric glucose biosensor based on immobilization of glucose oxidase in electropolymerized o-aminophenol film at Prussian blue-modified platinum electrode, Electrochim. Acta,2004,49:795-801.
    [138]G. C. Komplin and W. J. Pietro, Redox coenzyme functionalization of electrochemically grown Prussian blue films, Sens. Actuators, B,1996,30:173-178.
    [139]M. Kowalsk, F. Tian, M. Smehilova, P. Galuszk, I. Frebort, R. Napier, and N.Dale, Prussian Blue acts as a mediator in a reagentless cytokinin biosensor, AnaLChim. Acta, 2011,701:218-223.
    [140]李建平,彭图治,溶胶一凝胶法固定胆固醇氧化酶偶联普鲁士蓝化学修饰电极的研究[J],高等学校化学学报,2003,24(5):798-802.
    [141]李建平,彭图治,聚吡咯固定胆固醇氧化酶/普鲁士蓝安培传感器的研制[J],分析化学,2003,3 1(6):669-673.
    [142]F. Ricci, A. Amine, G. Palleschi, and D. Moscone, Prussian Blue based screen printed biosensors with improved characteristics of long-term lifetime and pH stability, Biosens. Bioelectron,2003,18:165-174.
    [143]A.A.Karyakin, E.E. Karyakina, and L.Gorton, Prussian-Blue-based amperometric biosensors in flow-injection analysis, Talanta,1996,43:1596-1606.
    [144]D. Moscone, D. D'Ottavi, D. Compagnone, and G. Palleschi, Construction and Analytical Characterization of Prussian Blue-Based Carbon Paste Electrodes and Their Assembly as Oxidase Enzyme Sensors, Anal Chem.2001,73:2529-2535.
    [145]J.-G. Guan, Y.-Q. Miao, and J.-R. Chen, Prussian blue modified amperometric FIA biosensor:one-step immunoassay for α-fetoprotei, Biosens. Bioelectron,2004,19: 789-794.
    [146]S.H. Chen, R. Yuan, Y.Q. Chai, Y. Xu, L.G. Min, and Na Li, A new antibody immobilization technique based on organic polymers protected Prussian blue nanoparticles and gold colloidal nanoparticles for amperometric Immunosensors, Sens. Actuators, B:Chem.,2008,135:236-244.
    [147]T. Li, M.H. Yang, and H. Li, Label-free electrochemical detection of cancer marker based on graphene-cobalt hexacyanoferrate nanocomposite, J.Electroanal. Chem.,2011, 655:50-55.
    [148]S.Lupu,In situ electrochemical preparation and characterization of PEDOT-Prussian blue composite materials, Synth. Met,2011,161:384-390.
    [149]A. Lisowska-Oleksiak, M. Wilamowskaa, and V. Jasulaitiene, Organic-inorganic composites consisted of poly(3,4-ethylenedioxythiophene) and Prussian Blue analogues, Electrochim. Acta,2011,56:3626-3632.
    [150]X. Zhong, R. Yuan, and Y.-Q. Chai, Synthesis of chitosan-Prussian blue-graphene composite nanosheets for electrochemical detection of glucose based on pseudobienzyme channeling, Sens. Actuators, B,2012,162:334-340.
    [151]L. V. Lukachova, E. A. Kotel'nikova, D. D'Ottavi, E. A. Shkerin, E. E. Karyakina, D. Moscone, G. Palleschi, A. Curulli, and A. A. Karyakin, Electrosynthesis of poly-o-diaminobenzene on the Prussian Blue modified electrodes for improvement of hydrogen peroxide transducer characteristics, Bioelectrochem.,2002,55:145-148.
    [152]A. S. Kumar, P. Barathi, and K. C. Pillai, In situ precipitation of Nickel-hexacyanoferrate within multi-walled carbon nanotube modified electrode and it selective hydrazine electrocatalysis in physiological pH. J.ElectroanaLChem.,2011, 654:85-95.
    [153]R. J. Mortimer, Electrochemical responses of bilayer electrodes with Prussian blue as the 'inner' layer and electroactive cation-incorporated Nafion@ as the'outer'layer, J.ElectroanaL Chem.,1995,39:79-86.
    [154]李丽花 徐琴 王海燕 胡效亚, 普鲁士蓝-多壁碳纳米管复合材料修饰电极测定过氧化氢[J],分析化学2007,35(6):835-838.
    [155]Q.Zhang, L. Zhang, and J.H.Li, Fabrication and electrochemical study of monodisperse and size controlled Prussian blue nanoparticles protected by biocompatible polymer, Electrochim. Acta,2008,53:3050-3055.
    [156]M.H.Pournaghi-Azar and B.Habibi, Nickel hexacyanoferrate film immobilized on the aluminum electrode as an inorganic matrix for dispersion of platinum and some platinum alloys particles for electrocatalytic oxidation of methanol, J.Electroanal. Chem.,2007,605:136-144.
    [157]M. H. Pournaghi-Azar and H. Nahalparvari, Electroless preparation and electrochemical behavior of a platinum-doped nickel hexacyanoferrate film-zinc modified electrode: catalytic ability of the electrode for electrooxidation of methanol, J Solid State Eletrochem,2004,8:550-557.
    [158]R. D. Gerardi, N. W. Barnett, and S. W. Lewis, Analytical applications of tris(2,2'-bipyridyl)ruthenium(Ⅲ) as a chemiluminescent reagent, AnaLChim.Acta,1999, 378:1-41.
    [159]M. M. Richter, Electrochemiluminescence (ECL), Chem. Rev.2004,104:3003-3036.
    [160]李云辉,王春燕,电化学发光[M],北京:化学工业出版社,2008.
    [161]W.J. Miao, Electrogenerated Chemiluminescence and Its Biorelated Applications, Chem. Rev.,2008,108(7):2506-2553.
    [162]H.Wei and E.K.Wang, Electrochemiluminescence of tris(2,2'-bipyridyl)ruthenium and its applications in bioanalysis:a review, Luminescence,2011,26:77-85.
    [163]林金明,赵利霞,王栩,化学发光免疫分析[M],北京:化学工业出版社,2008,
    [164]陶颖林志杰陈晓梅陈曦,联吡啶钌修饰电极固相电致化学发光[J],化学进展,2007,20(2/3):362-367.
    [165]I.Rubinstein and A. J. Bard, Polymer Films on Electrodes.4. Nafion-Coated Electrodes and Electrogenerated Chemiluminescence of Surface-Attached Ru(bpy)32+, J. Am. Chem. Soc. 1980,102:6641-6642.
    [166]K. A. Fahnrich, M. Pravda, and G. G. Guilbaul, Recent applications of electrogenerated chemiluminescence in chemical analysis, Talanta,2001,54:531-559.
    [167]A. F. Martin and T. A. Nieman, Glucose quantitation using an immobilized glucose dehydrogenase enzyme reactor and a tris(2,2'-bipyridyl) ruthenium(Ⅱ) chemiluminescent sensor, AnaLChim. Acta,1993,281(3):475-481.
    [168]T.-T. Jia, Z.-M. Cai, X.-M. Chen, Z.-J. Lin, X.-L. Huang, X. Chen, and G.-N. Chen, Electrogenerated chemiluminescence ethanol biosensor based on alcohol dehydrogenase functionalized Ru(bpy)32+doped silica nanoparticles, Biosens. Bioelectron,2009, 25:263-267.
    [169]L.H. Zhang, Z.A. Xu, X.P. Sun, and S.J. Dong, A novel alcohol dehydrogenase biosensor based on solid-state electrogenerated chemiluminescence by assembling dehydrogenase to Ru(bpy)32+-Au nanoparticles aggregates, Biosens. Bioelectron, 2007,22:1097-1100.
    [170]Z.A.Xu, Z.H. Guo, and S.J. Dong,Electrogenerated chemiluminescence biosensor with alcohol dehydrogenase and tris(2,2'-bipyridyl) ruthenium(Ⅱ) immobilized in sol-gel hybrid material, Biosens. Bioelectron,2005,21:455-461.
    [171]H.Wei and E.K. Wang, Solid-state electrochemiluminescence of tris(2,2'-bipyridyl) ruthenium, Trends Anal. Chem,2008,27(5):447-459.
    [172]H. N. Choi, J.-Y. Lee, Y.-K. Lyu, and W.-Y. Lee. Tris(2,2'-bipyridyl) ruthenium(Ⅱ) electrogenerated chemiluminescence sensor based on carbon nantube dispersed in sol-gel-derived titania-Nafion composite films. Anal.Chim.Acta,2006,565(1):48-55.
    [173]E. Pelizzetti, and E.Pramauro, Electron Transfer of Ru(bpy)32+in Micellar Solutions, Inorg. Chem,1979,18(3):882-883.
    [174]M. Kaneko, X.-H. Hou, and A. Yamada, Specific Quenching of the Photoexcited State of Tris(2,2'-bipyridine)ruthenium(Ⅱ) by Colloidal Prussian Blue,J. Chem. Soc. Faraday Trans.I,1986,82:1637-1642.
    [175]K. Sone, and M. Yagi, Influencing factors on electrochromic hysteresis performance of ruthenium purple produced by a WO3/Tris(2,2'-bipyridyl)ruthenium(Ⅱ)/polymer hybrid film, Electrochim. Acta,2008,53:6535-6541.
    [176]周秀英,周敏,付周周,任小娜,宋青云.铕离子掺杂类普鲁士蓝化学修饰电对三联吡啶钌(Ⅱ)的电催化氧化研究[J].西北师范大学学报(自然科学版),2007,43(1):54-58.
    [177]M. Zhou, YJ. Ma, X.N. Ren, X.Y. Zhou, L. Li, and H. Chen, Determination of sinomenine in Sinomenium acutum by capillary electrophoresis with electrochemiluminescence detection, AnaLChim. Acta,2007,587:104-109.
    [178]X.-B.Yin and E.K.Wang, Capillary electrophoresis coupling with electrochemiluminescence detection:a review, AnaLChim.Acta,2005,533:113-120.
    [179]M.Su, W.Wei, and S.Q. Liu, Analytical applications of the electrochemiluminescence of tris(2,2'-bipyridyl)ruthenium(Ⅱ) coupled to capillary/microchip electrophoresis:A review, Anal. Chim. Acta,2011,704:16-32.
    [180]S.N.Ding, J.-J. Xu, and H.Y.Chen, Tris(2,2'-bipyridyl)ruthenium(Ⅱ)-zirconia-Nafion composite films applied as solid-state electrochemiluminescence detector for capillary electrophoresis, Electrophoresis.,2005,26:1737-1744.
    [181]H.J. Liu, R. Yuan, Y.Q. Chai, L. Mao, X. Yang, Y. Zhuo, and Y.L. Yuan, A novel solid-state electrochemiluminescence detector for capillary electrophoresis based on tris(2,2'-bipyridyl)ruthenium(Ⅱ) immobilized in Nafion/PTC-NH2 composite film, Talanta,2011,84:387-392.
    [182]W.D. Cao, J.B. Jia, X.R.Yang, S.J.Dong, and E.K. Wang. Capillary electrophoresis with solid-state electrochemiluminescence detector, Electrophoresis.,2002,23(21): 3692-3698.
    [183]G.M. Cao, Q. Liu, Y. Huang, W. Li, and S.Z. Yao. Generation of gold nanostructures at the surface of platinum electrode by electrodeposition for ECL detection for CE., Electrophoresis,2010,31(6):1055-1062.
    [184]M.T.Chiang and C. W. Whang, Tris(2,2'-bipyridyl)ruthenium(Ⅲ) based electrochemiluminescence detector with indium/tin oxide working electrode for capillary electrophoresis, J. Chromatogr. A,2001,934:59-66.
    [185]M. Jayalakshmi and F. Scholz, Charge-discharge characteristics of a solid-state Prussian blue secondary cell, J. Power Sources.,2000,87:212-217.
    [186]A. Eftekhari, Fabrication of all-solid-state thin-film secondary cells using hexacyanometallate-based electrode materials,J. Power Sources.,2004,132:291-295.
    [187]A. Eftekhari, Potassium secondary cell based on Prussian blue cathode,J. Power Sources,2004,126:221-228.
    [188]A. Eftekhari, A high-voltage solid-state secondary cell based on chromium hexacyanometallates, J. Power Sources,2003,117:249-254.
    [189]M. Wilamowska, and A. Lisowska-Oleksiak, Hybrid electrodes composed of electroactive polymer and metal hexacyanoferrates in aprotic electrolytes, J. Power Sources.,2009,194:112-117.
    [190]M. Okubo, D. Asakura, Y. Mizuno, J.-D. Kim, T. Mizokawa, T. Kudo, and I. Honma, Switching Redox-Active Sites by Valence Tautomerism in Prussian Blue Analogues AxMny[Fe(CN)6]nH2O (A:K, Rb):Robust Frameworks for Reversible Li Storage, J. Phys. Chem. Lett.,2010,1:2063-2071.
    [191]N. Imanishi, T. Morikawa, J. Kondo, R. Yamane, Y. Takeda, O. Yamamoto, H. Sakaebe, and M. Tabuchi, Lithium intercalation behavior of iron cyanometallates, J.Power Sources,1999,81-82:530-534.
    [192]N. Imanishi, T. Morikawa, J. Kondo, Y. Takeda, O. Yamamoto, N. Kinugasa, and T. Yamagishi, Lithium intercalation behavior into iron cyanide complex as positive, J.Power Sources,1999,79:215-219.
    [193]J.Chen, K.L. Huang, and S.Q. Liu, Insoluble metal hexacyanoferrates as supercapacitor electrodes, Electrochem. Commun.,2008,10:1851-1855.
    [194]M. Jayalakshmi, P. Radhika, and M. M. Rao, Anew electrode consisting of Prussian blue/Dibenzo-18-crown-6 ion-pair complex for electrochemical capacitor applications, J.Power Sources,2006,158:801-805.
    [195]A. Lisowska-Oleksiak, and A. P. Nowak, Metal hexacyanoferrate network synthesized inside polymer matrix for electrochemical capacitors, J. Power Sources,2007, 173:829-836.
    [196]S.K. Kamarudin, F. Achmad and W.R.W. Daud, Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices, Int. J. Hydrogen. Energy, 2009,34:6902-6916.
    [197]B.D. McNicol, D.A.J. Rand and K.R. Williams, Direct methanol-air fuel cells for road transportation, J. Power Sources.,1999,83:15-31.
    [198]A. Heinzel, C. Hebling, M. Muller, M. Zedda and C. Moller, Fuel cells for low power applications, J. Power Sources.,2002,105:250-255.
    [199]G.J.K. Acres, Recent advances in fuel cell technology and its applications, J. Power Sources.,2001,100:60-66.
    [200]J. Kua and W. A. Goddard Ⅲ, Oxidation of Methanol on 2nd and 3rd Row Group VIII Transition Metals (Pt, Ir, Os, Pd, Rh, and Ru):Application to Direct Methanol Fuel Cells,J.,Am. Chem. Soc.,1999,121:10928-10941.
    [201]J. H.Zhou, J. P. He, T.Wang, X.Chen and D.Sun, Synergistic effect of RE2O3 (RE= Sm, Eu and Gd) on Pt/mesoporous carbon catalyst for methanol electro-oxidation, Electrochim.Acta.,2009,54:3103-3108.
    [202]D.M.F. Santosa, P.G. Saturninoa, R.F.M. Lobob, and C.A.C. Sequeiraa, Direct borohydride/peroxide fuel cells using Prussian Blue cathodes,J. Power Sources, 2012,208:131-137.
    [203]G. Selvarani, S.K. Prashant, A.K. Sahu, P. Sridhar, S. Pitchumani, and A.K. Shukla, A direct borohydride fuel cell employing Prussian Blue as mediated electron-transfer hydrogen peroxide reduction catalyst, J. Power Sources,2008,178:86-91.
    [204]P. K. Addo, R. L. Arechederra, and S. D. Minteer, Towards a rechargeable alcohol biobattery, J. Power Sources,2011,196:3448-3451.
    [205]刘卫光主编,稀土材料与应用技术[M],北京:化学工业出版社,2005.
    [1]R. D. Gerardi, N. W. Barnett, and S. W. Lewis, Analytical applications of tris(2,2'-bipyridyl)ruthenium(Ⅱ) as a chemiluminescent reagent, Anal.Chim.Acta, 1999,378:1-41.
    [2]W.R.Leet and T. A. Nieman, Evaluation of Use of Tris(2,2'-bipyridyl)ruthenium(Ⅱ) as a Chemiluminescent Reagent for Quantitation in Flowing Streams, Anal.Chem.1995,67: 1789-1796.
    [3]H. Wei and E. K. Wang, Electrochemiluminescence of tris(2,2'-bipyridyl) ruthenium and its applications in bioanalysis:a review, Luminescence,2011,26:77-85.
    [4]B. A. Gorman, P. S. Francis and N. W. Barnett, Tris(2,2'-bipyridyl)ruthenium(Ⅱ) chemiluminescence, Analyst,2006,131:616-639.
    [5]X.B.Yin, S.J.Dong, and E.K.Wang, Analytical applications of the electrochemiluminescence of tris (2,2'-bipyridyl)ruthenium and its derivatives, Trends Anal. Chem.,2004,23(6):432-441.
    [6]M.M. Richter, Electrochemiluminescence (ECL), Chem. Rev.2004,104:3003-3036.
    [7]W.Gao,X.-H Xia, J.-J. Xu, and H.-Y. Chen, Three-Dimensionally Ordered Macroporous Gold Structure as an Efficient Matrix for Solid-State Electrochemiluminescence of Ru(bpy)32+/TPA System with High Sensitivity, J. Phys. Chem. C, 2007,111:12213-12219.
    [8]E. Pelizzetti, and E.Pramauro, Electron Transfer of Ru(bpy)32+ in Micella Solutions, Inorg. Chem,1979,18(3):882-883.
    [9]M. Kaneko, X.-H. Hou, and A. Yamada, Specific Quenching of the Photoexcited State of Tris(2,2'-bipyridine)ruthenium(Ⅱ) by Colloidal Prussian Blue,J. Chem. Soc. Faraday Trans.I,1986,82:1637-1642.
    [10]K. Sone, M. Yagi, Influencing factors on electrochromic hysteresis performance of ruthenium purple produced by a WO3/Tris(2,2'-bipyridyl)ruthenium(Ⅱ)/polymer hybrid film, Electrochim. Acta,2008,53:6535-6541.
    [11]周秀英,周 敏,付周周,任小娜,宋青云.铕离子掺杂类普鲁士蓝化学修饰电极对三联吡啶钌(Ⅱ)的电催化氧化研究[J].西班师范大学学报(自然科学版),2007,43(1):54-58.
    [12]M. Zhou, Y.-J. Ma, X.-N. Ren, X.-Y. Zhou, L. Li, H. Chen, Determination of sinomenine in Sinomenium acutum by capillary electrophoresis with electrochemiluminescence detection, Anal.Chim.Acta,2007,587:104-109.
    [13]W. D. Cao, J.F. Liu, X.R. Yang, E.K.Wang, New technique for capillary electrophoresis directly coupled with end-column electrochemiluminescence detection, Electrophoresis, 2002,23:3683-3691
    [14]B.-K. Kim, S. Son, K. Lee, H. Yang, J. Kwak, Dopamine Detection Using the Selective and Spontaneous Formation of Electrocatalytic Poly(dopamine) Films on Indium-Tin Oxide Electrodes, Electroanalysis,2012,24:1-4.
    [15]王艳玲,刘海燕,张国荣,多巴胺在聚甘氨酸化学修饰电极上的催化氧化及其痕量测定[J],化学传感器,2002,22(1):44-51.
    [16]吴萍,蔡称心,陆天虹,铁氰化钐修饰电极的制备、表征及电催化[J],应用化学2004,(11):1101-1104.
    [17]X.Y. Sun.,W.L. Li, and Z.R. Hong, The electroluminescent investigation of double layer Eu-complex organic electronic luminescence diodes, Microelectron. J.,2007, 38:231-234.
    [18]S.Q.Liu, H.Y.Chen, Spectroscopic and voltammetric studies on a lanthanum hexacyanoferrate modified electrode,J. ElectroanaL Chem.,2002,528:190-195.
    [19](日)中本一雄著,黄得如、汪仁庆译,无机和配位化合物的红外与拉曼光谱[M],北京:化学工业出版社,1986.
    [20]刘宗怀,宋迪生,刘诩纶,RE(NO3)3(Gly)4固体配合物的合成及表征[J],化学通报,1995,5:39-42.
    [21]高胜利,石进超,任德厚,硝酸稀土与甘氨酸固体配合物的合成及表征[J],科学通报,1996,41(9):791-794.
    [22]赵丽,陶颖,陈曦,玻碳电极上Ru(bpy)32+的吸附及其电致化学发光的研究[J],化学学报,2006,64(4):320-324.
    [23]A. Fitch, A. Agyeman, A. Wagdy, and Z. Terranova, Electroactive Planar Waveguide Studies of Ru(bpy)32+Intercalated in a Thin Clay Film:I. Transport and Electrochemical Phenomena, Langmuir,2011,27(1):452-460.
    [24]许娟,姚夙,李红,钌配合物的电化学性质及其在电致化学发光中的应用[J],分析测试学报,2007,36(4):598-602.
    [25]陈国南,林荣儿,谢增鸿,段建平,张林,[Ru(bpy)2(L-Trp)]C104-KCl水溶液体系的电致化学发光研究[J],化学学报,1998,56:433-438.
    [26]G. C. Fiaccabrino, M. Koudelka-Hep, Y.-T. Hsueh, S. D. Collins, and R. L. Smith, Electrochemiluminescence of Tris(2,2'-bipyridiyl)ruthenium in Water at Carbon Microelectrodes, AnaL Chem.1998,70:4157-4161.
    [27]L.Y. Zheng, Y.W. Chi, Q.Q. Shu, Y.Q. Dong, L. Zhang, and G.N. Chen, Electrochemiluminescent Reaction between Ru(bpy)32+and Oxygen in Nation Film,J. Phys. Chem. C,2009,113:20316-20321.
    [28]刘洋,杨秀荣,序介孔材料SBA-15吸附Ru(bpy)32+修饰电极的电化学发光研究[J],高等学校化学学报建,2007,28(4):640-644.
    [29]Y.Sato, K.Uosaki, Electrochemical and electrogenerated chemiluminescence properties of tris(2,2'-bipyridine)ruthenium(II)-tridecanethiol derivative on ITO and gold electrodes,J. ElectroanaL Chem.,1995,384:57-66.
    [30]L.H. Zhang, F. Wang, S.J. Dong, Layer-by-layer assembly of functional silica and Au nanoparticles for fabricating electrogenerated chemiluminescence sensor, Electrochim. Acta,2008,53:6423-6427.
    [31]J. Li, M.H. Huang, X.Q. Liu, H. Wei, Y.H. Xu, G.B. Xu and E.K. Wang, Enhanced electrochemiluminescence sensor from tris(2,2'-bipyridyl)ruthenium(II) incorporated into MCM-41 and an ionic liquid-based carbon paste electrode, Analyst, 2007,132:687-691.
    [32]C. Matachescu, S. Kulmala, T. Ala-Kleme, and H. Joela, Mechanism and Analytical Applicability of Luminol-Specific Extrinsic Lyoluminescence of UV-Irradiated Potassium Peroxodisulfate, Anal. Client,1997,69:3385-3390.
    [32]Q.H.Jiang, M. H. kansson, J. Suomi, T. Ala-Kleme, and S. Kulmala, Cathodic electrochemiluminescence of lucigenin at disposable oxide-coated aluminum electrodes,J. ElectroanaL Chem.,2006,591:85-92.
    [33]Y.h. Li, C.Y. Wang, J.Y. Sun, Y.C. Zhou,T.Y.You, E.K. Wang, and Y.S, Fung, Determination of dioxopromethazine hydrochloride by capillary electrophoresis with electrochemiluminescence detection, Anal. Chim. Acta,2005,550:40-46.
    [34]J.F. Liu, J.L. Yan, X.R. Yang, and E.K. Wang, Miniaturized Tris(2,2'-bipyridyl)ruthenium(Ⅱ) Electrochemiluminescence Detection Cell for Capillary Electrophoresis and Flow Injection Analysis, Anal. Chem.2003,75:3637-3642.
    [1]J.M.Andujar and F.Segura, Fuel cells:History and updating. A walk along two centuries, Renewable and Sustainable Energy Reviews.,2009,13:2309-2322.
    [2]C.Lamy, A.Lima, V.Lerhun, F.Delime, C. Coutanceau and J.-M. Leger, Recent advances in the development of direct alcohol fuel cells (DAFC), J. Power Sources.,2002, 105:283-296.
    [3]S.Q.Song and P.Tsiakaras, Recent progress in direct ethanol proton exchange membrane fuel cells (DE-PEMFCs), Appl.Catal.B:Environ.,2006,63(3-4):187-193.
    [4]U.B.Demirci, Direct liquid-feed fuel cells:Thermodynamic and environmental concerns, J. Power Sources.,2007,169:239-246.
    [5]S.Rousseau, C.Coutanceau, C.Lamy and J.-M. Leger, Direct ethanol fuel cell (DEFC): Electrical performances and reaction products distribution under operating conditions with different platinum-based anodes, J. Power Sources.,2006,158:18-24.
    [6]D.D.James, D.V. Bennett, G.C.Li, A.Ghumman, R.J. Helleur and P.G. Pickup, Online analysis of products from a direct ethanol fuel cell, Electrochem. Commun., 2009,11:1877-1880.
    [7]L.Colmenares, H.Wang, Z.Jusys, L.Jiang, S.Yan, G.Q.Sun and R.J. Behm, Ethanol oxidation on novel, carbon supported Pt alloy catalysts-Model studies under defined diffusion conditions, Electrochim. Acta,2006,52:221-233.
    [8]G. Andreadis, V. Stergiopoulos, S. Song, and P.Tsiakaras, Direct ethanol fuel cells:The effect of the cell discharge current on the products distribution, Appl.Catal.B:Environ., 2010,100:157-164.
    [9]F. Vigier, S. Rousseau, C. Coutanceau, J.-M. Leger and C. Lamy, Electrocatalysis for the direct alcohol fuel cell, Top. Catal.,2006,40(1-4):111-121.
    [10]E.Antolini, Platinum-based ternary catalysts for low temperature fuel cells Part Ⅱ. Electrochemical properties, AppL Catal. B:Environ.,2007,74:337-350.
    [11]E.Antolini, Catalysts for direct ethanol fuel cells, J. Power Sources.,2007,170:1-12.
    [12]A.C.Chen and P. Holt-Hindle, Platinum-Based Nanostructured Materials:Synthesis, Properties, and Applications, Chem. Rev.,2010,110:3767-3804.
    [13]E.Antolini and E.R.Gonzalez, Effect of synthesis method and structural characteristics of Pt-Sn fuel cell catalysts on the electro-oxidation of CH3OH and CH3CH2OH in acid medium, Catal. Today.,2011,160:28-38.
    [14]J.P.I.de Souza, S.L. Queiroz, K.Bergamaski, E.R.Gonzalez and F.C.Nart, Electro-Oxidation of Ethanol on Pt, Rh, and PtRh Electrodes. A Study Using DEMS and in-Situ FTIR Techniques, J. Phys. Chem. B,2002,106(23):9825-9830.
    [15]B.Liu, J.H. Chen, X.X. Zhong, K.Z.Cui, H.H.Zhou and Y.F.Kuang, Preparation and electrocatalytic properties of Pt-SiO2 nanocatalysts for ethanol electrooxidation, J. Colloid Interface Sei.,2007,307:139-144.
    [16]H. B. Suffredini, G. R.Salazar-Banda and L. A. Avaca, Enhanced ethanol oxidation on PbOx-containing electrode materials for fuel cell applications, J. Power Sources.,2007,171:355-362.
    [17]H.L.Pang, J.H.Chen, L.Yang, B. Liu, X.X. Zhong and X.G. Wei, Ethanol electrooxidation on Pt/ZSM-5 zeolite-C catalyst, J. Solid State Electrochem.,2008,12:237-243.
    [18]E.Antolini and E.R. Gonzalez, Ceramic materials as supports for low-temperature fuel cell catalysts, Solid State Ionics.,2009,180:746-743.
    [19]W.J.Zhou, Z.H. Zhou, S.Q. Song, W.Z. Li, GQ.Sun, P.Tsiakaras and Q. Xin, Pt based anode catalysts for direct ethanol fuel cells, AppL Catal. B:Environ.,2003,46:273-285.
    [20]H.Wang, Z.Jusys and R.J. Behm, Electrooxidation on a Carbon-Supported Pt Catalyst:Reaction Kinetics and Product Yields, J. Phys. Chem. B, 2004,108:19413-19424.
    [21]W. C.Coutanceau, S.Brimaud, C.Lamy, J.-M. Leger, L.Dubau, S.Rousseau and F.Vigier, Review of different methods for developing nanoelectrocatalysts for the oxidation of organic compounds, Electrochim.Acta,2008,53:6865-6880.
    [22]Y. Liu, S. Yamamoto and Y. Sueishi, Ethanol electrooxidation on novel carbon supported Pt/SnOx/C catalysts with varied Pt:Sn ratio, Electrochim.Acta, 2008,53:377-389.
    [23]J.Ribeiro, D. M. dos Anjos, J.-M. Lcger, F. Hahn, P. Olivi, A. R. de Andrade, G Tremiliosi-Filho and K.B.Kokoh, Effect of W on PtSn/C catalysts for ethanol electrooxidation,J. AppL Electrochem.,2008,38(1):653-662.
    [24]N.Fujiwara, K.A.Friedrich and U.Stimming, Ethanol oxidation on PtRu electrodes studied by differential electrochemical mass spectrometry, J. ElectroanaL Chem,1999, 472:120-125.
    [25]G.A.Camara, R.B.de Lima and T. Iwasita, The influence of PtRu atomic composition on the yields of ethanol oxidation:A study by in situ FTIR spectroscopy, J. ElectroanaL Chem,2005,585:128-131.
    [26]J.S.Spendelow and A.Wieckowski, Noble metal decoration of single crystal platinum surfaces to create well-defined bimetallic electrocatalysts, Phys.Chem.Chem.Phys., 2004,6:5094-5118.
    [27]F.C.Simoes, D.M.dos Anjos, F.Vigier, J.-M.Lcger, F.Hahn, C.Coutanceau, E.R.Gonzalez, GTremiliosi-Filho, A.R.de Andrade, P.Olivi, K.B. Kokoh, Electroactivity of tin modified platinum electrodes for ethanol electrooxidation, J. Power Sources.,2007,167:1-10.
    [28]A.A.Abd-El-Latif, E.Mostafa, S.Huxter, G.Attard and H.Baltruschat, Electrooxidation of ethanol at poly crystalline and platinum stepped singlecrystals:A study by differential electrochemical mass spectrometry, Electrochim.Acta.,2010,55:7951-7960.
    [29]R.T.S.Oliveira, M.C.Santos, B.G.Marcussi, S.T.Tanimoto, L.O.S.Bulhoes and E.C.Pereira, Ethanol oxidation using a metallic bilayer Rh/Pt deposited over Pt as electrocatalyst, J. Power Sources.,2006,157:212-216.
    [30]V.P.Santos, V.D. Colle, R.B.de Lima and G. Tremiliosi-Filho, In situ FTIR studies of the catalytic oxidation of ethanol on Pt(111) modified by bi-dimensional osmium nanoislands, Electrochim.Acta.,2007,52:2376-2385.
    [31]Y.X.Bai, J.J.Wu, X.P.Qiu, J.Y.Xi, J.S.Wang, J.F. Li, W.T.Zhu and L.Q.Chen, Electrochemical characterization of Pt-CeO2/C and Pt-CexZr1-xO2/C catalysts for ethanol electro-oxidation, Appl. CataL B:Environ.,2007,73:144-149.
    [32]A.O.Neto, M. Linardi, D.M.dos Anjos, G.Tremiliosi-Filho and E.V.Spinace, Electro-oxidation of ethanol on PtSn/CeO2-C electrocatalyst, J.Appl.Electrochem., 2009,39:1153-1156.
    [33]R. M. S.Rodrigues, M. M.Tusi, M. H.Chikasawa, C.A.L.G.O.Forbicini, M.Linardi, E.V.Spinace and A.O.Neto, Preparation and characterization of PtRu/C-rare earth using an alcohol-reduction process for ethanol electro-oxidation, Ionics.,2011,17:189-193.
    [34]J. M.Anderson, J.Patel, A. S Karakoti, N. Greeneltch, D. J. Diaz and S. Seal, Aging effects of nanoscale ceria in ceria-platinum composite electrodes for direct alcohol electro-oxidation, Electrochim.Acta.,2011,56:2541-2545.
    [35]J. H.Zhou, J. P.He, T.Wang, X.Chen and D.Sun, Synergistic effect of RE2O3 (RE=Sm, Eu and Gd) on Pt/mesoporous carbon catalyst for methanol electro-oxidation, Electrochim.Acta.,2009,54:3103-3108.
    [36]N. R. de Tacconi, K.Rajeshwar and R. O. Lezna, Metal Hexacyanoferrates: Electrosynthesis, in Situ Characterization, and Applications, Chem. Mater., 2003,15:3046-3062.
    [37]G. Selvarani, S.K.Prashant, A.K.Sahu, P.Sridhar, S.Pitchumani and A.K.Shukla, A direct borohydride fuel cell employing Prussian Blue as mediated electron-transfer hydrogen peroxide reduction catalyst, J. Power Sources.,2008,178:86-91.
    [38]M.Jayalakshmi and F.Scholz, Performance characteristics of zinc hexacyanoferrater/ Prussian blue and copper hexacyanoferrater/Prussian blue solid state secondary cells, J. Power Sources.,2000,91:217-223.
    [39]M.H.Pournaghi-Azar and B.Habibi, Nickel hexacyanoferrate film immobilized on the aluminum electrode as an inorganic matrix for dispersion of platinum and some platinum alloys particles for electrocatalytic oxidation of methanol,J. ElectroanaLChem,2007,605:136-144.
    [40]T.R.I.Cataldl, D. Centonze and A.Guerrieri, MixedmValent Ruthenium Oxide-Ruthenium Cyanide Inorganic Film on Glassy Carbon Electrodes as an Amperometric Sensor of Aliphatic Alcohols, Anal Chem,1995,67:101-107.
    [41]S.Tanase and J. Reedijk, Chemistry and magnetism of cyanido-bridged d-f assemblies, Coord. Chem. Rev.,2006,250:2501-2510.
    [42]R.Koner, M.G. B. Drew, A.Figuerola, C. Diaz and S.Mohanta, A new cyano-bridged one-dimensional GdⅢFeⅢ coordination polymer with o-phenanthroline as the blocking ligand:synthesis, structure, and magnetic properties, Inorg. Chim. Acta., 2005,358:3041-3047.
    [43]E.Chelebaeva, Y.Guari, J.Larionova, A.Trifonov and C. Guerin, Soluble Ligand-Stabilized Cyano-Bridged Coordination Polymer Nanoparticles, Chem. Mater.,2008,20:1367-1385.
    [44]M.Yamada and S.Yonekura, Nanometric Metal-Organic Framework of Ln[Fe(CN)6]: Morphological Analysis and Thermal Conversion Dynamics by Direct TEM Observation, J. Phys. Chem. C,2009,113:21531-21537.
    [45]Y. J. Ma, Y. Y.Pan, W. F.Wang, M. X.Yang and M. Zhou, Electrocatalytic oxidation of methanol at platinum electrode modified with Eu-Fe cyanide-bridged binuclear complexes, Chin. Chem. Lett.,2010,21:337-340.
    [46]Y. J. Ma, M. X.Yang, W. F.Wang, M. Zhou, J.Liu, T.T. Li and H. Chen,甲酸在Nd-Fe-W042-氰桥配位物修饰铂电极上的电催化氧化[J],化学学报,2011,69:262-269.
    [47]Q.L.Sheng, H.Yu and J.B.Zheng, Sol-gel derived carbon ceramic electrode for the investigation of the electrochemical behavior and electrocatalytic activity of neodymium hexacyanoferrate, Electrochim.Acta.,2007,52:4506-4512.
    [48]S.J.Dong and Z.Jin, Molybdenum hexacyanoferrate film modified electrodes, J. ElectroanaL Chem,1988,256:193-198.
    [49]V. M. Schmidt, R.Ianniello, E.Pastor and S.Gonzalez, Electrochemical Reactivity of Ethanol on Porous Pt and PtRu:Oxidation/Reduction Reactions in 1 M HC1O4 J. Phys. Chem.,1996,100:17901-17908.
    [50]X.Y. Wang, Y.Yukawa and Y.Masuda, Study on the boundary structures in a series of Lanthanide hexacyanoferrate(III) n-hydrates,J. Alloys Compd.,1999,290:85-90.
    [51]S. Q. Liu and H.Y.Chen, Spectroscopic and voltammetric studies on a lanthanum hexacyanoferrate modified electrode, J. Electroanal. Chem,2002,528:190-195.
    [52]X.L. Wu, M. H. Cao, C.W. Hu and X.Y. He, Sonochemical Synthesis of Prussian Blue Nanocubes from a Single-Source Precursor, Cryst.Growth Des.,2006,6(1):26-28.
    [53]K.D. Snell and A.G. Keenan, Effect of anions and pH on ethanol electrooxidation at a platinum electrode, Electrochinu Acta.,1982,27(12):1683-1696.
    [54]S.C.S.Lai, S.E.F.Kleijn, F.T.Z. Ozturk, V.C.van Rees Vellinga, J. Koning, P. Rodriguez and M.T.M. Koper, Effects of electrolyte pH and composition on the ethanol electro-oxidation reaction, CataL Today.,2010,154:92-104.
    [55]M. Heinen, Z. Jusysand R.J. Behm, Ethanol, Acetaldehyde and Acetic Acid Adsorption/Electrooxidation on a Pt Thin Film Electrode under Continuous Electrolyte Flow:An in Situ ATR-FTIRS Flow Cell Study, J. Phys. Chem. C, 2010,114:9850-9864.
    [56]S.C.S. Lai, S.E.F. Kleyn, V. Rosca and M.T.M. Koper, Mechanism of the Dissociation and Electrooxidation of Ethanol and Acetaldehyde on Platinum As Studied by SERS, J. Phys. Chem. C,2008,112:19080-19087.
    [57]R.B.Kutz,B.Braunschweig, P.Mukherjee, R.L.Behrens, D.D.Dlott and A.Wieckowski, Reaction pathways of ethanol electrooxidation on polycrystalline platinum catalysts in acidic electrolytes,J. CataL.,2011,278:181-188.
    [58]I. Kim, O.H. Han, S.A. Chae, Y. Paik, S.H. Kwon, K,S. Lee, Y.E. Sung and H. Kim, Catalytic Reactions in Direct Ethanol Fuel Cells, Angew.Chem. Int. Ed.,2011, 50:2270-2274.
    [59]R.S. Ferreira Jr., V.R.Oliveira, R.G.C.S. Reis, G.Maia and G.A.Camara, Preliminary study of ethanol electrooxidation in the presence of sulfate on polycrystalline platinum, J. Power Sources.,2008,185:863-856.
    [60]S. Basu, A. Agarwal and H. Pramanik, Improvement in performance of a direct ethanol fuel cell:Effect of sulfuric acid and Ni-mesh, Electrochem. Commun., 2008,10:1254-1257.
    [61]H. Razmi, E.Habibi and H. Heidari, Electrocatalytic oxidation of methanol and ethanol at carbon ceramic electrode modified with platinum nanoparticles, Electrochim.Acta.,2008, 53:8178-8185.
    [62]E.Mendez, J. L.Rodriguez, M. C. Arevalo and E.Pastor, Comparative Study of Ethanol and Acetaldehyde Reactivities on Rhodium Electrodes in Acidic Media, Langmuir, 2002,18:763-772.
    [63]B. Braunschweig, P. Mukherjee, D.D. Dlott and A. Wieckowski, Real-Time Investigations of Pt(111) Surface Transformations in Sulfuric Acid Solutions,J. Am. Chem. Soc. 2010,132:14032-14038.
    [64]M.H.Chen, Y.X. Jiang, S.R.Chen, R. Huang, J.L.Lin, S.P.Chen and S.G. Sun, Synthesis and Durability of Highly Dispersed Platinum Nanoparticles Supported on Ordered Mesoporous Carbon and Their Electrocatalytic Properties for Ethanol Oxidation,J. Phys. Chem. C,2010,114:19055-19061.
    [65]H. Hitmi, E.M. Belgsir, J.-M. Leger, C. Lamy and R.O. Lezna, A kinetic analysis of the electro-oxidation of ethanol at a platinum electrode in acid medium, Electrochim.Acta., 1994,39(3):407-415.
    [66]J. Otomo, S. Nishida, H. Takahashi and H. Nagamoto, Electro-oxidation of methanol and ethanol on carbon-supported Pt catalyst at intermediate temperature,J. ElectroanaL Chem.,2008,615:84-90.
    [67]G. A. Camara and T. Iwasita, Parallel pathways of ethanol oxidation:The effect of ethanol concentration, J. Electroanal. Chem.,2005,578:315-321.
    [68]J. F. Gomes, B. Busson and A. Tadjeddine, SFG Study of the Ethanol in an Acidic Medium-Pt(110) Interface:Effects of the Alcohol Concentration,J. Phys. Chem. C, 2006,110:5508-5514.
    [69]M. J. Giz and G.A.Camara, The ethanol electrooxidation reaction at Pt (111):The effect of ethanol concentration,J. ElectroanaL Chem.,2009,625:117-122.
    [70]E.P. Leao, M.J. Giz, G.A. Camara and G. Maia, Rhodium in presence of platinum as a facilitator of carbon-carbon bond break:A composition study, Electrochim.Acta.,2011, 56:1337-1343.
    [71]C.G. Lee, M.Umeda and I. Uchida, Cyclic voltammetric analysis of C1-C4 alcohol electrooxidations with Pt/C and Pt-Ru/C microporous electrodes. J. Power Sources.,2006,160:78-89.
    [72]Z.Y. Zhou, D.J. Chen, H. Li, Q. Wang and S.G Sun, Electrooxidation of Dimethoxymethane on a Platinum Electrode in Acidic Solutions Studied by in Situ FTIR Spectroscopy,J. Phys. Chem. C,2008,112:19012-19017.
    [73]H. Huang, C. Fierro, D. Scherson and E. B. Yeager, In Situ Fourier Transform Infrared Spectroscopic Study of CO2 Reduction on Polycrystalline Platinum in Acid Solutions, Langmuir,1991,7:1154-1157.
    [74]M. Nakayama, M. lino and K. Ogura, In situ infrared spectroscopic investigations on the electrochemical properties of Prussiuan blue-polyaniline-modified electrodes with various anionic Fe(Ⅱ) complexes working as a mediator for the electroreduction of CO2, J. ElectroanaL Chem.,1997,440:251-257.
    [75]R. Sousa Jr., D. M. dos Anjos, G Tremiliosi-Filho, E.R. Gonzalez, C. Coutanceau, E. Sibert, J.-M. Leger and K. B. Kokoh, Modeling and simulation of the anode in direct ethanol fuels cells, J. Power Sources.,2008,180:283-293.
    [76]M. Li, W.Y. Guo, R.B. Jiang, L.M. Zhao, X.Q. Lu, H.Y. Zhu, D.L. Fu and H.H. Shan, Density Functional Study of Ethanol Decomposition on Rh(111), J. Phys. Chem. C,2010, 114:21493-21503.
    [77]H.F. Wang and Z.P. Liu, Selectivity of Direct Ethanol Fuel Cell Dictated by a Unique Partial Oxidation Channel, J. Phys. Chem. C,2007,111:12157-12160.
    [78]I. G. Casella and E. Desimoni, XPS, SEM and Electrochemical Characterization of a Platinum-Based Glassy Carbon Modified Electrode. Electrocatalytic Oxidation of Ethanol in Acidic Medium, Electroanalysis,1996,8(5):447-453.
    [79]B. Rasch and T. Iwasita.The electrochemical adsorption and oxidation of acetaldehyde on polycrystalline platinum in acidic solution--A SNIFTIRS study,Electrochim.Acta., 1990,35(6):989-993.
    [80]M.J.S. Farias, GA. Camara, A.A. Tanaka and T. Iwasita, Acetaldehyde electrooxidation: The influence of concentration on the yields of parallel pathways, J. ElectroanaL Chem., 2007,600:236-242.
    [81]S. Sun, M.C. Halseid, M. Heinen, Z. Jusys and R.J. Behm, Ethanol electrooxidation on a carbon-supported Pt catalyst at elevated temperature and pressure:A high-temperature/high-pressure DEMS study,J. Power Sources.,2009,190:2-13.
    [82]S. Q. Song, Y. Wang and P. K. Shen, Thermodynamic and Kinetic Considerations for Ethanol Electrooxidation in Direct Ethanol Fuel Cells, Chin. J. CataL,2009, 28(9):752-754.
    [83]J. Mann, N.Yao and A. B.Bocarsly, Characterization and Analysis of New Catalysts for a Direct Ethanol Fuel Cell, Langmuir,2006,22:10432-10436.
    [84]J.-M. Leger, S. Rousseau, C. Coutanceau, F. Hahn and C. Lamy, How bimetallic electrocatalysts does work for reactions involved in fuel cells? Example of ethanol oxidation and comparison to methanol, Electrochim.Acta.,2005,50:5118-5125.
    [85]J.F.Gomes, B.Busson, A.Tadjeddine and G.Tremiliosi-Filho, Ethanol electro-oxidationover Pt (h k 1):Comparative study on the reaction intermediates probed by FTIR and SFG spectroscopies, Electrochim.Acta.,2008,53:6899-6905.
    [86]X. H. Xia, H.-D. Liess and T. Iwasita, Early stages in the oxidation of ethanol at low index single crystal platinum electrodes,J. ElectroanaL Chem.,1997,437:233-240.
    [87]J. Melke, A. Schoekel, D. Dixon, C. Cremers, D. E. Ramaker and C. Roth, Ethanol Oxidation on Carbon-Supported Pt, PtRu, and PtSn Catalysts Studied by Operando X-ray Absorption Spectroscopy,J. Phys. Chem. C,2010,114:5914-5925.
    [88]M.H. Shao and R.R. Adzic, Electrooxidation of ethanol on a Pt electrode in acid solutions: in situ ATR-SEIRAS study, Electrochim.Acta.,2005,50:2415-2422.
    [89]P. Katikawong, T. Ratana and W. Veerasai, Temperature dependence studies on the electro-oxidation of aliphatic alcohols with modified platinum electrodes, J. Chem. Scl.,2009,121(3):329-337.
    [90]J. Willsau and J. Heitbaum, Elementary steps of ethanol oxidation on Pt in sulfuric acid as evidenced by isotope labeling,J. ElectroanaL Chem.,1985,194:27-35.
    [1]S.K. Kamarudin, F. Achmad and W.R.W. Daud, Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices, Int J. Hydrogen. Energy., 2009,34:6902-6916.
    [2]B.D. McNicol, D.A.J. Rand and K.R. Williams, Direct methanol-air fuel cells for road transportation,J. Power Sources.,1999,83:15-31.
    [3]A. Heinzel, C. Hebling, M. Miiller, M. Zedda and C. Moller, Fuel cells for low power applications,J. Power Sources.,2002,105:250-255.
    [4]G.J.K. Acres, Recent advances in fuel cell technology and its applications, J. Power Sources.,2001,100:60-66.
    [5]X.M. Ren, P. Zelenay, S.Thomas, J. Davey, and S. Gottesfeld, Recent advances in direct methanol fuel cells at Los Alamos National Laboratory, J. Power Sources.,2000, 86:111-116.
    [6]T. Iwasita, Electrocatalysis of methanol oxidation, Electrochim Acta.,2002, 47:3663-3674.
    [7]J. Kua and W. A. Goddard III, Oxidation of Methanol on 2nd and 3rd Row Group VIII Transition Metals (Pt, Ir, Os, Pd, Rh, and Ru):Application to Direct Methanol Fuel Cells, J. Am Chem. Soc.,1999,121:10928-10941
    [8]C. Coutanceau, S. Brimaud, C. Lamy, J.-M. Leger, L. Dubau, S. Rousseau and F. Vigier, Review of different methods for developing nanoelectrocatalysts for the oxidation of organic compounds, Electrochim. Acta.,2008,53:6865-6880.
    [9]J.P. MacDonald, B. Gualtieri, N. Runga, E. Teliz, and C.F. Zinola, Modification of platinum surfaces by spontaneous deposition:Methanol oxidation electrocatalysis, Int. J. Hydrogen. Energy.,2008,33:7048-7061.
    [10]T. Huang, J.L.Liu, R.S.Li, W.B.Cai and A.S. Yu, A novel route for preparation of PtRuMe (Me=Fe, Co, Ni) and their catalytic performance for methanol electrooxidation, Electrochem. Commun.,2009,11:643-646.
    [11]Z.Jusys,T. J.Schmidt, L.Dubau, K.Lasch, L.Jorissen, J.Garche, and R.J.Behm, Activity of PtRuMeOx (Me= W, Mo or V) catalysts towards methanol electrooxidation and their characterization, J. Power Sources.,2002,105:297-304.
    [12]N. Tsiouvaras, M.V. Martinez-Huerta, O. Paschos, U. Stimming, J.L.G. Fierro and M.A. Pena, PtRuMo/C catalysts for direct methanol fuel cells:Effect of the pretreatment on the structural characteristics and methanol electrooxidation, Int J. Hydrogen. Energy.,2010,35:11478-11488.
    [13]W.S.Li, L.P.Tian, Q.M.Huang, H.Y.Chen and X.P.Lian, Catalytic oxidation of methanol on molybdate-modified platinum electrode in sulfuric acid solution, J. Power Sources.,2002,104:281-288.
    [14]M.V. Martinez-Huerta, N. Tsiouvaras, M.A. Pnna, J.L.G. Fierro, J.L. Rodriguez and E. Pastor, Electrochemical activation of nanostructured carbon-supported PtRuMo electrocatalyst for methanol oxidation, Electrochim. Acta.,2010,55:7634-7642.
    [15]T. Huang, D. Zhang, L.G. Xue,W. B. Cai and A.S. Yu,A facile method to synthesize well-dispersed PtRuMoOx and PtRuWOx nanoparticles and their electrocatalytic activities for methanol oxidation, J. Power Sources.,2009,192:285-290.
    [16]D.M. Han, Z.P. Guo, R. Zeng, C.J. Kim, Y.Z. Meng, and H.K. Liu, Multiwalled carbon nanotube-supported Pt/Sn and Pt/Sn/PMo12 electrocatalysts for methanol electro-oxidation, Int J. Hydrogen. Energy.,2009,34:2426-2434.
    [17]Z.H. Zhou, W.S. Li, Z. Fu and X.D. Xiang, Carbon nanotube-supported Pt-HxMoO3 as electrocatalyst for methanol oxidation, Int J. Hydrogen. Energy.,2010,35:936-941.
    [18]Y.-P.Gan, H. Huang and W.-K. Zhang, Electrocatalytic oxidation of methanol on carbon-nanotubes/graphite electrode modified with platinum and molybdenum oxide nanoparticles, Trans. Nonferrous Met Soc. Chin.2007,17:214-219.
    [19]J. H.Zhou, J. P.He, T.Wang, X.Chen and D.Sun, Synergistic effect of RE2O3 (RE= Sm, Eu and Gd) on Pt/mesoporous carbon catalyst for methanol electro-oxidation, Electrochim.Acta.,2009,54:3103-3108.
    [20]S.-Y. Huang, C.-M. Chang, C.-T. Yeh, Promotion of platinum-ruthenium catalyst for electro-oxidation of methanol by ceria, Journal of Catalysis,2008,241:400-406.
    [21]J.S.Wang, X.Z.Deng, J.Y. Xi, L.Q. Chen, W.T. Zhu, and X.P. Qiu, Promoting the current for methanol electro-oxidation by mixing Pt-based catalysts with CeO2 nanoparticles,J. Power Sources.,2007,170:297-302.
    [22]M. A. Scibioh, S.-K. Kim, E. A. Cho, T.-H. Lim, S.-A. Hong, and H. Y. Ha, Pt-CeO2/C anode catalyst for direct methanol fuel cells, AppL CataL B:Environ.,2008, 84:773-782.
    [23]Z.C. Tang and GX.Lu, High performance rare earth oxides LnOx (Ln=Sc, Y, La, Ce, Pr and Nd) modified Pt/C electrocatalysts for methanol electrooxidation, J. Power Sources., 2006,162:1067-1072.
    [24]S. Wasmus, and A. Kuver, Methanol oxidation and direct methanol fuel cells:a selective review,J. ElectroanaLChem,1999,461:14-34.
    [25]Y. Qiao and C. M. Li, Nanostructured catalysts in fuel cells,J. Mater. Chenm., 2011,21:4027-4036
    [26]S. Sharm and B. G. Pollet, Support materials for PEMFC and DMFC electrocatalysts-A review, J. Power Sources.,2012,208:96-119.
    [27]E. Antolini, Carbon supports for low-temperature fuel cell catalysts, AppLCataLB: Environ.,2009,88(1-2):1-24.
    [28]H.J. Wang, H. Yu, F. Peng, and P. Lv, Methanol electrocatalytic oxidation on highly dispersed Pt/sulfonated-carbon nanotubes catalysts, Electrochem. Commun.,2006,8: 499-504.
    [29]H. X. Huang, S. X. Chen, and C. Yuan, Platinum nanoparticles supported on activated carbon fiber as catalyst for methanol oxidation, J. Power Sources.,2008,175:166-174.
    [30]Y. Wang, C.X. He, A. Brouzgou, Y. Liang, R.W. Fu, D.C. Wu, P. Tsiakaras, and S.Q. Song, A facile soft-template synthesis of ordered mesoporous carbon/tungsten carbide composites with high surface area for methanol electrooxidation, J. Power Sources., 2012,200:8-13.
    [31]L.Y. Bian, Y.H. Wang, J.B. Zang, J.K. Yu and H. Huang, Electrodeposition of Pt nanoparticles on undoped nanodiamond powder for methanol oxidation electrocatalysts, J. ElectroanaLChem,2010,644:85-88.
    [32]C.-H. Lee, C.-W. Lee, D.-I, Kim and S.-E. Bae, Characteristics of methanol oxidation on Pt-Ru catalysts supported by HOPG in sulfuric acid, Int. J. Hydrogen. Energy.,2002,27:445-450.
    [33]D.S. Yuan, S.Z. Tan, Y.L. Liu, J.H. Zeng, F.P. Hu, X.Wang and P.K. Shen, Pt supported on highly graphitized lace-like carbon for methanol electrooxidation, Carbon.,2008,46: 531-536.
    [34]Y.Q. Huang, H.L. Huang, Y.J.Liu, Y. Xie, Z.R. Liang and C.H. Liu, Facile synthesis of poly(amidoamine)-modified carbon nanospheres supported Pt nanoparticles for direct methanol fuel cells, J. Power Sources.,2012,201:81-87.
    [35]G. Wu, D.Y. Li, C.S. Dai, D.L. Wang, and N. Li, Well-Dispersed High-Loading Pt Nanoparticles Supported by Shell-Core Nanostructured Carbon for Methanol Electrooxidation, Langmuir,2008,24:3566-3575
    [36]J.M. Sieben, M.M.E. Duarte and C.E. Mayer, Methanol oxidation on carbon supported Pt-Ru catalysts prepared by electrodeposition-Evaluation of Nafion(?)117 film effect, Int J. Hydrogen. Energy.,2010,35:2018-2024.
    [37]H. Gao, J.-B. He, Y. Wang and N. Deng, Advantageous combination of solid carbon paste and a conducting polymer film as a support of platinum electrocatalyst for methanol fuel cell, J. Power Sources.,2012,205:164-172.
    [38]H.J. Huang, H.Q. Chen, D.P. Sun and X. Wang, Graphene nanoplate-Pt composite as a high performance electrocatalyst for direct methanol fuel cells, J. Power Sources.,2012, 204:46-52.
    [39]C.W. Yang, D.L.Wang, X.G. Hu, C.S. Dai and L. Zhang, Preparation and characterization of multi-walled carbon nanotube (MWCNTs)-supported Pt-Ru catalyst for methanol electrooxidation,J. Alloys Compd,2008,448:109-115.
    [40]Q.F. Shi and S.L. Mu, Preparation of Pt/poly(pyrogallol)/graphene electrode and its electrocatalytic activity for methanol oxidation, J. Power Sources.,2012,203:48-56.
    [41]L.-M. Huang, W.-R. Tang and T.-C. Wen, Spatially electrodeposited platinum in polyaniline doped with poly(styrene sulfonic acid) for methanol oxidation, J. Power Sources.,2007,164:519-526.
    [42]F.Ren, R. Zhou, F. Jiang, W. Zhou, Y. Du, J. Xu, and C.Wang, Preparation of Platinum-Poly(Odihydroxybenzene) Composite Catalyst and Its Electrocatalytic Activity Toward Methanol and Formic Acid Oxidation, Fuel Cell.,2012,12:116-123.
    [43]Z.H. Wang, G.Q. Gao, H.F. Zhu, Z.D.Sun, H.P. Liu and X.L. Zhao, Electrodeposition of platinum microparticle interface on conducting polymer film modified nichrome for electrocatalytic oxidation of methanol, Int J. Hydrogen. Energy.,2009,34:9334-9340.
    [44]S. Patra and N. Munichandraiah, Electrooxidation of Methanol on Pt-Modified Conductive Polymer PEDOT, Langmuir,2009,25:1732-1738.
    [45]B. Habibi, M.H. Pournaghi-Azarb, H. Abdolmohammad-Zadeha and H. Razmia Electrocatalytic oxidation of methanol on mono and bimetallic composite films:Pt and Pt-M (M, Ru, Ir and Sn) nanoparticles in poly(o-aminophenol), Int. J. Hydrogen. Energy.,2009,34:2880-2892.
    [46]A.A. Mikhaylova, E.B. Molodkina, O.A. Khazova and V.S. Bagotzky, Electrocatalytic and adsorption properties of platinum microparticles electrodeposited into polyaniline films, J. ElectroanaL Chem,2001,509:119-127.
    [47]W.Q. Zhou, Y.K.Du, F.F. Ren, C.Y. Wang, J.K.Xu and P. Yang, High efficient electrocatalytic oxidation of methanol on Pt/polyindoles composite catalysts, Int. J. Hydrogen. Energy.,2010,35:3270-3279.
    [48]C.-S. Chen, and F.-M. Pan, Electrocatalytic activity of Pt nanoparticle deposited on porous TiO2 supports toward methanol oxidation, AppL Catal. B:Environ., 2009,91:663-669.
    [49]C.-S. Chen and F.-M. Pan, Effects of the PdO nanoflake support on electrocatalytic activity of Pt nanoparticles toward methanol oxidation in acidic solutions,J. Power Sources.,2012,208:9-17.
    [50]A. Schlange, A. R. dos Santos, B. Hasse, B. J.M. Etzold, U. Kunz and T. Turek,Titanium carbide-derived carbon as a novel support for platinum catalysts in direct methanol fuel cell application, J. Power Sources.,2012,199:22-28.
    [51]H.L. Pang, X.H. Zhang, X.X. Zhong, B. Liu, X.G. Wei, Y.F. Kuang and J.H. Chen, Preparation of Ru-doped SnO2-supported Pt catalysts and their electrocatalytic properties for methanol oxidation, J. Colloid Interface ScL.,2008,319:193-198.
    [52]R.H.Wang, C.G.Tian, L.Wang, B.L. Wang, H.B. Zhang and H.G. Fu, In situ simultaneous synthesis of WC/graphitic carbon nanocomposite as a highly efficient catalyst support for DMFC, Chem. Commun.,2009,45:3104-3106
    [53]D.-J. Guo, X.-P. Qiu, W.-T. Zhu, and L.-Q. Chen, Synthesis of sulfated ZrO2/MWCNT composites as new supports of Pt catalysts for direct methanol fuel cell application, Appl. Catal. B:Environ.,2009,89:597-601.
    [54]M.H.Pournaghi-Azar and B.Habibi, Nickel hexacyanoferrate film immobilized on the aluminum electrode as an inorganic matrix for dispersion of platinum and some platinum alloys particles for electrocatalytic oxidation of methanol,J. ElectroanaLChem,2007, 605:136-144.
    [55]M. H. Pournaghi-Azar, and H. Nahalparvari, Electroless preparation and electrochemical behavior of a platinum-doped nickel hexacyanoferrate film-zinc modified electrode: catalytic ability of the electrode for electrooxidation of methanol, J Solid State Eletrochem,2004,8:550-557
    [56]Y. J. Ma, Y. Y.Pan, W. F.Wang, M. X.Yang and M. Zhou, Electrocatalytic oxidation of methanol at platinum electrode modified with Eu-Fe cyanide-bridged binuclear complexes, Chin. Chem. Lett.,2010,21:337-340.
    [57]Y. J. Ma, M. X.Yang, W. F.Wang, M. Zhou, J.Liu, T.T. Li and H. Chen,甲酸在Nd-Fe-WO42-氰桥配位物修饰铂电极上的电催化氧化[J],化学学报,2011,69:262-269.
    [58]Y.J. Ma, Y.L. Du, W.C. Ye, B.Q. Su, M.X. Yang, and C.M. Wang, Electrocatalytic Oxidation of Ethanol on Platinum Electrode Decorated with Nd-Fe-Mo Hybrid-metallic Cyano-Bridged Mixing Coordination Polymer in Weak Acidic Medium, Int. J. Electrochem. Sei.,2012,7:2654-2679
    [59]杨梅霞,含钕类普鲁士蓝化学修饰电极对甲酸的电催化氧化研究[硕士论文],兰州:西北师范大学,2011.
    [60]J.-T. Li, Q.-S. Chen and S.-G. Sun, In situ microscope FTIR studies of methanol adsorption and oxidation on an individually addressable array of nanostructured Pt microelectrodes, Electrochim.,Acta.,2007,52:5725-5732.
    [61]J. Sobkowski, K. Franaszczuk and K. Dobrowolska, Effect of anions and pH on the adsorption and oxidation of methanol on a platinum electrode, J. Electroanal. Chem, 1992,330:529-540.
    [62]X.C.Zhou, T.H. Lu, W. Xing and C.P. Liu, Effect of cations in solution on the oxidation of methanol on the surface of platinum electrode, Electrochim. Acta., 2006,52:1688-1691.
    [63]H.S. Wang, L. R. Alden, F. J. DiSalvo, and H.D. Abruna, Methanol Electrooxidation on PtRu Bulk Alloys and Carbon-Supported PtRu Nanoparticle Catalysts:A Quantitative DEMS Study, Langmuir,2009,25:7725-7735.
    [64]J. Otomo, S. Nishida, H. Takahashi and H. Nagamoto, Electro-oxidation of methanol and ethanol on carbon-supported Pt catalyst at intermediate temperature, J. ElectroanaLChem,2008,615:84-90.
    [65]L. Li, and Y.C. Xing, Methanol Electro-Oxidation on Pt-Ru Alloy Nanoparticles Supported on Carbon Nanotubes, Energies,2009,2:789-804.
    [66]L. W. Liao, S. X. Liu, Q. Tao, B.Geng, P. Zhang, C. M. Wang, Y. X. Chen and S. Ye, A method for kinetic study of methanol oxidation at Pt electrodes by electrochemical in situ infrared spectroscopy, J. Electroanal. Chem,2011, 650:233-240.
    [67]S.L. Gojkovica, T.R. Vidakovic, and D.R. Durovic, Kinetic study of methanol oxidation on carbon-supported PtRu electrocatalyst, Electrochim. Acta.,2003,48:3607-3614.
    [68]Z.L. Liu, and L. Hong, Electrochemical characterization of the electrooxidation of methanol, ethanol and formic acid on Pt/C and PtRu/C electrode,J Appl Electrochem, 2007,37:505-510.
    [69]J. Zhu, F. Cheng, Z.L. Tao, and J. Chen, Electrocatalytic Methanol Oxidation of Pt0.5Ru0.5-xSnx/C (x=0-0.5), J. Phys. Chem. C,2008,112:6337-6345.
    [70]A. Halder, S. Sharma, M. S. Hegde, and N. Ravishankar, Controlled Attachment of Ultrafine Platinum Nanoparticles on Functionalized Carbon Nanotubes with High Electrocatalytic Activity for Methanol Oxidation, J. Phys. Chem. C, 2009,113:1466-1473.
    [71]J.B. Jia, L.Y.Cao, and Z.H. Wang, Platinum-Coated Gold Nanoporous Film Surface: Electrodeposition and Enhanced Electrocatalytic Activity for Methanol Oxidation, Langmuir,2008,24:5932-5936.
    [72]C.GLee, M.Umeda and I. Uchida, Cyclic voltammetric analysis of C1-C4 alcohol electrooxidations with Pt/C and Pt-Ru/C microporous electrodes. J. Power Sources., 2006,160:78-89.
    [73]I. Danaee, M. Jafarian, A. Mirzapoor, F. Gobal and M.G. Mahjani, Electrooxidation of methanol on NiMn alloy modified graphite electrode, Electrochim. Acta., 2010,55:2093-2100.
    [74]R. Chen and T.S. Zhao, W.L. Xu, T.H. Lu, C.P. Liu, and W. Xing, Electrooxidation of COad Intermediated from Methanol Oxidation on Polycrystalline Pt Electrode, J. Phys. Chem. B,2006,110:4802-4807.
    [75]T. Yajima, H. Uchida, and M Watanabe, In-Situ ATR-FTIR Spectroscopic Study of Electro-oxidation of Methanol and Adsorbed CO at Pt-Ru Alloy,J. Phys. Chem. B, 2004,108:2654-2659.
    [76]S.H. Park,Y. Xie and M. J. Weaver, Electrocatalytic Pathways on Carbon-Supported Platinum Nanoparticles:Comparison of Particle-Size-Dependent Rates of Methanol, Formic Acid, and Formaldehyde Electrooxidation, Langmuir,2002,18:5792-5798.
    [77]A.D. Modestova, M.R. Tarasevich and Hongting Pu, Investigation of methanol electrooxidation on Pt and Pt-Ru in H3PO4 using MEA with PBI-H3PO4 membrane,/. Power Sources.,2012,205:207-214.
    [78]M. Neurock, M. Janik and A. Wieckowski, A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt, Faraday Discuss.,2009,140:363-378.
    [79]E.A. Batista, G.R.P. Malpass, A.J. Motheo, and T. Iwasita, New mechanistic aspects of methanol oxidation, J. Electroanal.Chem,2004,571:273-282.
    [80]T. H. M. Housmans, A. H. Wonders, and M. T. M. Koper, Structure Sensitivity of Methanol Electrooxidation Pathways on Platinum:An On-Line Electrochemical Mass Spectrometry Study,J. Phys. Chem. B,2006,110:10021-10031
    [81]K. Jambunathan, S. Jayaraman, and A. C. Hillier, A Multielectrode Electrochemical and Scanning Differential Electrochemical Mass Spectrometry Study of Methanol Oxidation on Electrodeposited PtxRuy, Langmuir,2004,20:1856-1863.
    [82]R.G. Freitas, E.P. Antunes and E.C. Pereira, CO and methanol electrooxidation on Pt/Ir/Pt multilayers electrodes, Electrochim. Acta,2009,54:1999-2003.
    [83]E.A. Batista, G.R.P. Malpass, A.J. Motheo, and T. Iwasita, New insight into the pathways of methanol oxidation, Electrochem. Commun.,2003,5:843-846.
    [84]Z. Fu, W.S. Li, W.G. Zhang, F.Q. Sun, Z.H. Zhou and X.D. Xiang, Preparation and activity of carbon-supported porous platinum as electrocatalyst for methanol oxidation, Int. J. Hydrogen. Energy.,2010,35:8101-8105.
    [85]A.N.Golikand, M. G. Maragheh, S. S. Sherehjini, K. M. Taghi-Ganji, and M.Yari, Carbon-Supported Pt Particles as a Catalyst for Electrooxidation of Methanol and Cyclic Voltammetry Studies Under Acidic Conditions, Electro analysis, 2006,18:911-917.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.