一类复合非光滑多目标优化的最优性条件与对偶
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合优化问题是一类非常重要的优化问题,因为它不仅涵盖了一般意义下的优化问题,同时也为研究许多算法的收敛性提供了统一的结构框架。而凸复合优化问题是一类十分重要且基础的优化问题,但绝大多数实际的优化问题均是非凸且是多目标的。为满足实际问题的需要,许多学者对凸性作了多种形式的推广,其中锥广义不变凸性是一类重要的推广形式。因此,在锥广义不变凸性下研究复合非光滑多目标优化问题具有十分重要的理论意义和较强的应用价值。本文在锥广义不变凸性下主要研究一类复合非光滑多目标优化问题的最优性条件、(弱)鞍点定理及对偶。
     第一章介绍复合优化问题及广义不变凸性的研究现状。
     第二章介绍全文所需要的一些预备知识。
     第三章主要研究复合非光滑多目标优化问题的最优性条件,其目标函数和约束函数均是局部Lipschitz和Gateaux可导的局部Lipschitz函数的复合。首先,利用广义择一定理和半无限Gordon定理,建立复合非光滑优化问题的最优性必要条件。其次,引入η?广义零空间条件概念,在此基础上给出复合非光滑多目标优化问题的最优性充分条件。最后,通过具体例子解释最优性充分条件。
     第四章在锥广义不变凸性下建立复合非光滑多目标优化问题的(弱)鞍点定理。
     第五章在锥广义不变凸性下,利用η?广义零空间条件,分别建立复合非光滑多目标优化问题的Mond-Weir型、Wolfe型以及混合型对偶结果。
     第六章对全文作了简单总结并提出了一些有待进一步研究的问题。
     本文的创新之处主要体现在第三章、第四章、第五章。
Composite optimization problem is a great important class of optimization problem. This is not only because it covers various common multiobjective problems, but it provides a unified framework for studying the convergence behaviour of many algorithms. Moreover, convex composite programming problem is an important and basic class of optimization problem. However, many programs in our real life are nonconvex and multiobjective. So as to meet the demands of solving practical problems, many generalizations to convexity have been made, among which the cone-invexity is an important form. Therefore, it is significant to study the composite nonsmmoth multiobjective programming under such generalized invexity. This paper is concerned with the optimality conditions, (weak) saddle point theorem and duality results for a class of composite nonsmooth multiobjective programs under the cone generalized invexity.
     The outline of the thesis is as follows.
     In chapter 1, we introduce the current situation of composite optimization problems and generalized invexity.
     In chapter 2, we present some preliminaries for the full article.
     In chapter 3, we focus on the optimality conditions of composite nonsmooth multiobjective programs, where objective function and the constraints are compositions of locally Lipschitz, and Gateaux differentiable and locally Lipschitz functions. First of all, the necessary optimality condition of composite nonsmooth programs is established by generalized alternative theorem and semi-infinite Gordon theorem. Furthermore, a new class of conditions namedη? generalized null space condition is formulated to discuss the sufficient optimality conditions. At last, some examples are given to show the sufficient optimality condition.
     In chapter 4, the weak saddle point theorem and saddle point theorem are derived for the composite nonsmooth multiobjective programming under the cone generalized invexity.
     In chapter 5, Mond-Weir、Wolfe and Mixed duality results are established for composite nonsmmoth multiobjective programs by the cone generalized invexity and η?generalized null space condition, which are weak dual theorems、strong dual theorems and restricted converse dual theorems.
     In chapter 6, we give a summary of this paper and put forward some problems for further study.
     The innovation of this thesis lies in the 3-th,4-th,5-th chapter.
引文
[1] A. D. Loffe. Necessary and sufficient conditions for a local minimum 2: Conditions of Levitin-Miljutin-Osmolovskii type[J]. SIAM Journal on Control and Optimization, 1979, 17:251-265.
    [2] R. Fletcher. Practical Methods of Optimization, Volume 2: Constrained Optimization[M]. New York, John Wiley & Sons, 1981.
    [3] A. Ben-Tal, J. Zowe.Necessary and sufficient optimality conditions for a class of nonsmooth minimization problems[J]. Mathematical Programming, 1982, 24(1): 70-91.
    [4] F. H. Clarke. Optimization and Nonsmooth Analysis[M]. New York: John Wiley, 1983.
    [5] J. V. Burke. Descent methods for composite nondifferentiable optimization problems[J]. Mathematical Programming, 1985, 33: 260-279.
    [6] R. T. Rockafellar. First and second order epi-differentiability in nonlinear programming[J]. Transactions of The American Mathematical Society, 1988, 307(1): 75-108.
    [7] V. Jeyakumar. Composite nonsmooth programming with Gateaux differentiability [J]. SIAM Journal on Optimization, 1991, 1(1): 30-41.
    [8] J. V. Burke, R. A. Poliquin. Optimality conditions for non-finite valued convex composite functions[J]. Mathematical Programming, 1992, 57: 103-120.
    [9] J. P. Penot. Optimality conditions in mathematical programming and composite optimization[J]. Mathematical Programming, 1994, 67: 225-245.
    [10] V. Jeyakumar, X. Q. Yang. Convex composite minimization with C1,1 functions[J] . Journal of Optimization Theory and Applications, 1995, 86(3): 631-648.
    [11] M. Studniarski, V. Jeyakumar. A generalized mean-value theorem and optimality conditions in composite nonsmooth minimization[J]. Nonlinear Analysis, Theory, Methods & Applications, 1995, 24(6): 883-894.
    [12] V. Jeyakumar, D. T. Luc, P. N. Tinh. Convex composite non–Lipschitz programming[J]. Mathematical Programming, 2002, 92: 177–195.
    [13] V. Jeyakumar, D. T. Luc. Sharp variational conditions for convex composite nonsmooth functions[J]. SIAM Journal on Optimization, 2003, 13(3): 904–920.
    [14] D. Dentcheva, A. Ruszczynski. Composite semi-infinite optimization[J]. Control and Cybernetics, 2007, 36: 633-646.
    [15] X. Y. Zheng, K. F. Ng. Strong KKT conditions and weak sharp solutions in convex-composite optimization[J]. Mathematical Programming, 2009, 126: 259-279.
    [16] V. Jeyakumar, X. Q. Yang. Convex composite multiobjective nonsmooth programming[J]. Mathematical Programming, 1993, 59: 325-343.
    [17] S. K. Mishra, R. N. Mukherjee. Generalized convex composite multiobjective nonsmooth programming and conditional proper efficiency[J]. Optimization, 1995, 34: 53-66.
    [18] S. K. Mishra, Lagrange multipliers saddle points and scalarizations in composite multiobjective nonsmooth programming[J]. Optimization, 1996, 38: 93-105.
    [19] X. Q. Yang, V. Jeyakumar. First and second-order optimality conditions for convex composite multiobjective optimization[J]. Journal of Optimization Theory and Applications, 1997, 95(1): 209-224.
    [20] L. V. Reddy, R. N. Mukherjee. Composite nonsmooth multiobjective programs with V ?ρ? invexity[J]. Journal of Mathematical Analysis and Applications, 1999, 235: 567-577.
    [21]杜延松,王浚岭.凸复合多目标优化问题的最优性条件[J].河北师范大学学报:自然科学版, 2001, 25: 29-31, 65.
    [22]王晓玲,颜秉忠. V ?ρ凸规划向量鞍点及其性质[J].内蒙古民族大学学报:自然科学版, 2006, 21(4): 264-266.
    [23] L. F. Gao, F. F. Hou. Several optimality sufficient conditions of composite multiobjective programming[C]. 2010 First International Conference on Networking and Distributed Computing, Hangzhou, 2010, 255-257.
    [24] R. T. Rockafellar. Convex Analysis[M]. New Jersey: Princeton University Press, 1969.
    [25] M. S. Bazaraa, H. D. Sherali, C. M. Shetty. Nonlinear Programming: Theory and Algorithms[M]. New York: John Wiley & Sons, 1979.
    [26] M. Avriel, W. E. Diewert, S. Schaible, I. Zang. Generalized Concavity[M]. New York: Plenum Press, 1988.
    [27]史树中.凸分析[M].上海:上海科学技术出版社, 1990.
    [28] B. D. Craven, B. Mond. Transposition theorems for cone-convex functions[J]. SIAM Journal on Applied Mathematics, 1973, 24: 603-612.
    [29] B. D. Craven. Sufficient Fritz John optimality conditions[J]. Bulletin of the Australian Mathematical Society, 1975, 13: 411-419.
    [30] B. D. Craven,B. Mond. Sufficient Fritz John optimality conditions for nondifferentiable convex programming[J] Journal of the Australian Mathematical Society: Series B, 1976, 19: 462-468.
    [31] J. M. Borwein. A note on Fritz John sufficiency[J]. Bulletin of the Australian Mathematical Society, 1976, 15: 293-296.
    [32] H. M. Massam. Optimality conditions for a cone-convex programming problem[J]. Journal ofthe Australian Mathematical Society: Series A, 1979, 27: 141-162.
    [33] J. M. Borwein, H. Wolkowicz. Characterization of optimality for the abstract convex program with finite dimensional range[J]. Journal of the Australian Mathematical Society: Series A, 1981, 30: 390-411.
    [34] P. Kanniappan. Duality theorems for convex programming without constraint qualification[J]. Journal of the Australian Mathematical Society: Series A, 1984, 36: 253-266.
    [35] D. T. Luc. Continuity properties of cone-convex functions[J]. Acta Mathematica Hungarica, 1990, 55(1--2): 57-61.
    [36] C. D. Alders, V. A. Sposito. On a sufficient optimality condition over convex feasible regions[J]. Bulletin of the Australian Mathematical Society, 1977, 16: 199-202.
    [37] Y. D. Hu, Y. F. Hu. Cone quasiconvexity and the connectedness of the sets of efficient and weak efficient solutions to multiobjective optimization[J]. Acta Mathematicae Applicatae Sinnia, 1989, 12(1): 115-123.
    [38] M. Hayashi, H. Komiya. Perfect duality for convexlike programs[J]. Journal of Optimization Theory And Applications, 1982, 38: 269-275.
    [39] V. Jeyakumar. A generalization of a minimax theorem of Fan via a theorem of the alternative[J]. Journal Of Optimization Theory And Applications, 1986, 48: 525-533.
    [40] X. M. Yang. Alternative theorems and optimality conditions with weakened convexity[J]. Opsearch, 1992, 29(2): 125-135.
    [41] H. W. Kuhn, A. W. Tucker. Nonlinear programming. [C] Proceedings of 2nd Berkeley Symposium on Mathematics Statist and Probability. Berkeley: University of California Press, 1951: 481–492.
    [42] P. A. Wolfe, A duality theorem for nonlinear programming[J]. Quarterly of Applied Mathematics, 1961, 19: 239-24.
    [43] M. A. Hanson. On sufficiency of the Kuhn-Tucker conditions[J]. Journal of Mathematical Analysis and Applications, 1981, 80(2): 545-550.
    [44] B. D. Craven. Duality for generalized convex fractional programs[A]. In S. Schaible, W. T. Ziemba. Generalized concavity in optimization and economics[M]. New York: Academic Press, 1981: 473-489.
    [45] D. H. Matin. The essence of invexity[J]. Journal of Optimization Theory and Applications, 1985, 47: 65-76.
    [46] R. Osuna-Gomez, A. Rufian-Lizana, P. Ruiz-Canales. Invex functions and generalized convexity in multiobjective programming[J]. Journal of Optimization Theory and Applications, 1998, 98: 651-661.
    [47] V. Jeyakumar. Strong and weak invexity in mathematical programming[J]. Methods of Operations Research,1985,55:109-125.
    [48] R. Pini. Invexity and generalized convexity[J]. Optimization, 1991, 22: 513-525.
    [49] T. W. Reiland. Nonsmooth invexity[J]. Bulletin of the Australian Mathematical Society, 1990, 42: 437-446.
    [50] M. A. Hanson. Invexity and the Kuhn-Tucker theorem[J]. Journal of Mathematical Analysis and Applications, 1999, 236: 594-604.
    [51] N. X. Ha, D. V. Luu. Sufficient conditions for invexity[J]. Bulletin of the Australian Mathematical Society, 2003, 68: 113-125.
    [52] B. D. Craven. Invex functions and constrained local minima[J]. Bulletin of the Australian Mathematical Society, 1981, 24: 357-366.
    [53] B. D. Craven, B. M. Glover. Invex functions and duality [J]. Journal of the Australian Mathematical Society: Series A, 1985, 39: 1-20.
    [54] T. Weir, V. Jeyakumar. A class of nonconvex functions and mathematical programming[ J]. Bulletin of the Australian Mathematical Society, 1988, 38: 177-189.
    [55] T. W. Reiland. Generalized invexity for nonsmooth vector-valued mappings[J]. Numerical Functional Analysis and Optimization, 1989, 10: 1191-1202.
    [56] N. D. Yen, P. H. Sach. On locally Lipschitz vector valued invex functions[J]. Bulletin of Australian Mathematical Society, 1993, 47: 259–271.
    [57] K. R. Kazmi. Some remarks on vector optimization problems[J]. Journal of Optimization Theory and Applications. 1998, 96(1): 133-138.
    [58] B. D. Craven, X. Q. Yang. A nonsmooth version of alternative theorem and nonsmooth multiobjective programming[J]. Utilitas Mathematics, 1991, 40: 117–128.
    [59] S. Khurana. Symmetric duality in multiobjective programming involving generalized cone-invex functions[J]. European Journal of Operational Research, 2005, 165: 592–597.
    [60] S. K. Suneja, S. Khurana, Vani. Generalized nonsmooth invexity over cones in vector optimization[J]. European Journal of Operational Research, 2008, 186: 28–40.
    [61] S. K. Suneja, S. Khurana, M. Bhatia. Optimality and duality in vector optimization involving generalized type I functions over cones[J]. Journal of Global Optimization, 2011, 49(1): 23-35.
    [62] V. Jeyakumar. On optimality conditions in nonsmooth inequality constrained minimization[J]. Numerical Functional Analysis and Optimization, 1987, 9(5, 6): 535– 546.
    [63] L. Coladas, Z. Li, S. Wang. Optimality conditions for multiobjective and nonsmooth minimization in abstract spaces[J]. Bulletin of Australian Mathematical Society, 1994, 50:205-218.
    [64] T. Tanino, Y. Sawaragi. Duality thoery of multiobjective optimization[J]. Journal of Optimization Theory and Applications. 1979,27: 509-529.
    [65] R. Hartley. Vector and parametric programming[J]. Journal of Operations Research Society, 1985, 36: 423-432.
    [66] D. T. Luc. Theory of Vector Optimization[M]. Berlin: Springer, 1989.
    [67] B. D. Craven. Nonsmooth multiobjective programming[J]. Numerical Functional Analysis and Optimization, 1989, 10(1,2): 49-64.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.