Polι与PolιS5在移行细胞癌组织的表达及对UVC导致的DNA损伤复制的功能对比研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景与目的
     肿瘤分子遗传学研究普遍认为肿瘤的发生发展是多基因改变多步骤的过程。目前肿瘤的病因学主要包括:病毒、化学因素、物理因素、激素因素。膀胱癌在我国男性泌尿生殖系肿瘤中发生率第一,而且近年有发生率增加和年轻化趋势。较为明确的膀胱癌危险因素为:a、吸烟;b、化工染料(如苯胺);c、药物(如非那西丁、环磷酰胺)等,上述危险因素均为DNA损伤剂。一般认为,致癌物质及其代谢产物是通过尿液排泄的,这样它们可以直接作用于尿路上皮的粘膜层。那么DNA损伤剂是如何导致基因突变,最终导致肿瘤的发生,其分子机制一直不清楚。直到近年在生物细胞发现一系列的Y家族DNA聚合酶及相应的DNA损伤耐受机制,在这一领域才有了新的突破。Y家族DNA聚合酶一方面通过高灵活的碱基配对跨损伤复制DNA,以保证DNA复制的正常进行,另一方面缺乏错配碱基的校正阅读功能,以上均导致其对DNA复制有很高的碱基错配倾向。Polι属于Y家族的DNA聚合酶之一,是目前发现的保真性最低的聚合酶,其保真性较高保真聚合酶低1000-10000倍。因此,Polι在DNA跨损伤复制过程中,很有可能导致碱基突变而使基因发生点突变。如果这些突变基因为细胞维持基因稳定的基因(高保真聚合酶),就会导致基因产生级联式的突变,或导致抑癌基因、细胞生长因子基因等的突变,最终导致肿瘤的发生。本研究从Polι跨损伤复制DNA时可能导致基因突变角度出发,认为膀胱肿瘤的发生与发展是否有可能与Polι在组织的高表达有关。已有研究表明:人葡萄膜的黑素瘤的发展与高活性的表达Polι相关;肿瘤产生的缺氧诱导因子-1可能通过介导人肿瘤细胞Polι的表达而导致肿瘤的基因突变和遗传的不稳定性;在Polι高表达的乳腺癌细胞株中,对DNA的损伤更容易诱导基因突变。研究表明膀胱肿瘤高复发、高异质性的生物学行为与基因的高突变遗传背景有关,那么,膀胱肿瘤的这种生物学行为是否与膀胱肿瘤组织Polι高表达有关。因此,我们拟通过检测Polι在移行细胞癌组织的表达,探讨Polι在膀胱肿瘤发生的意义及其与膀胱肿瘤高复发、高异质性的关系。
     在研究Polι在乳腺癌细胞株的表达时,发现并克隆了Polι的剪接异构体,由于该异构体比Polι少第5个外显子,故命名为PolιS5,但对PolιS5的功能未做进一步的研究。人体蛋白编码基因是相对有限的,在mRNA转录水平,选择性剪接异构体的存在就为蛋白多样性的产生提供了一个重要机制。一个蛋白的不同剪接异构体,可以显示协调、增强等不同的功能,但也可能是拮抗性的功能。许多研究正在致力于建立剪接异构体的全面数据资料,其中包括与转录功能性相关的选择性剪接异构体、这些异构体在正常和病理生理状态下的特殊作用、以及它们怎样在更广泛的水平进行协调以获得细胞或组织特异性的功能。因此,对蛋白不同剪接异构体的功能进行研究就显得尤为重要。我们检测发现PolιS5在膀胱肿瘤细胞株同样有表达,那么PolιS5与Polι相比较,功能有何差异,对此我们进行了初步研究。
     本课题拟对PolιS5与Polι的功能进行对比研究,同时探讨Polι在膀胱肿瘤细胞株表达的意义,并进一步检测PolιS5与Polι在移行细胞癌组织是否高表达,与移行细胞癌组织的异质性生物学行为是否相关。本研究将对我们了解PolιS5的功能,进一步理解膀胱肿瘤的发生及其高异质性的分子机制,具有重要的理论意义。
     方法:
     1、PolιS5与Polι在膀胱肿瘤细胞株BIU87、T24的表达。培养膀胱肿瘤细胞株BIU87、T24,收集临床膀胱正常粘膜组织作为对照。临床标本膀胱正常粘膜组织15例来自第三军医大学西南医院泌尿外科研究所,正常膀胱粘膜组织取自距膀胱肿瘤2cm以上的正常粘膜,标本切取后均立即放入液氮冻存,防止RNA降解。采用Tripure提取组织和细胞总RNA,RT-PCR检测PolιS5与PolιmRNA在膀胱肿瘤细胞株BIU87、T24和膀胱正常粘膜组织的表达。
     2、pEGFP-C1、pEGFP-C1-Polι、pEGFP-C1-PolιS5的转化和鉴定。pEGFP-C1、pEGFP-C1-Polι、pEGFP-C1-PolιS5由第三军医大学生化与分子生物学教研室杨劲副教授赠送,利用氯化钙法将三个质粒分别转化入DH5α大肠杆菌,经过进行质粒小抽,初步鉴定后,进行测序,将测序结果利用生物信息技术BLAT(www.genome.ucsc.edu)进行鉴定。以证明pEGFP-C1-PolιS5的目的片段PolιS5比pEGFP-C1-Polι的目的片段Polι少Polι的第5外显子,为我们进一步对Polι与PolιS5的功能对比研究奠定基础。
     3、Polι与PolιS5对UVC导致的DNA损伤的功能对比研究。通过用激光共聚焦显微镜检测细胞在受到紫外线UVC照射后Polι及PolιS5在细胞核分布的改变分析其功能差异。培养HEK293细胞,利用阳离子脂质体瞬时转染的方法,将质粒pEGFP-C1、pEGFP-C1-Polι、pEGFP-C1-PolιS5分别转染HEK293细胞,36小时后,用紫外线UVC(15J/m2)照射使细胞DNA损伤,12小时后用激光共聚焦显微镜观察在质粒pEGFP-C1、pEGFP-C1-Polι、pEGFP-C1-PolιS5分别瞬时转染的HEK293细胞,细胞核绿色荧光蛋白在紫外线照射后分布的改变。
     4.PolιS5与Polι在临床移行细胞癌组织标本的表达。临床标本来自第三军医大学西南医院泌尿外科研究所,膀胱正常粘膜组织15例,膀胱肿瘤组织28例,肾盂癌组织11例;移行细胞癌组织I级13例,II级16例,III级10例。组织标本取自2005年5月2006年9月在西南医院行膀胱肿瘤切除术及肾盂癌根治手术的患者,经过病理检查证实,均为移行上皮细胞癌。在肿瘤原发灶上切取200mg左右组织作为癌组织标本;正常膀胱粘膜组织来自距膀胱肿瘤2cm以上的正常粘膜,作为对照。标本切取后均立即放入液氮冻存,防止RNA降解。采用Tripure提取组织和细胞总RNA,RT-PCR检测PolιS5与PolιmRNA在临床移行细胞癌组织标本的表达。
     结果:
     1、成功培养膀胱肿瘤细胞株BIU87、T24;通过RT-PCR检测发现,在BIU87和T24肿瘤细胞株有丰富的PolιmRNA表达,且较膀胱正常粘膜组织表达有非常显著差异(P<0.01);并发现PolιS5在膀胱肿瘤细胞株有表达,但在膀胱正常粘膜组织未检测到PolιS5的表达;在BIU87和T24肿瘤细胞株,Polι的表达较PolιS5表达丰富,并有非常显著差异(P<0.01)。膀胱肿瘤细胞株BIU87及T24中,Polι的表达显著增加,由于Polι高水平的表达可能导致DNA跨损伤复制过程中基因的高突变,因此Polι的高表达可能与膀胱肿瘤的发生相关;在膀胱肿瘤细胞株BIU87及T24中,发现PolιS5的表达,在文献中尚未见报道;PolιS5在膀胱肿瘤细胞株表达的意义尚待研究。
     2、成功将质粒pEGFP-C1、pEGFP-C1-Polι、pEGFP-C1-PolιS5转化DH5α大肠杆菌,并进行质粒小抽,初步鉴定后将质粒进行测序,将测序结果利用生物信息技术BLAT(www.genome.ucsc.edu)证明: pEGFP-C1-PolιS5的目的片段PolιS5比pEGFP-C1-Polι的目的片段Polι少Polι的第5外显子,为我们进一步对Polι与PolιS5的功能对比研究奠定了基础。
     3、在质粒pEGFP-C1、pEGFP-C1-Polι、pEGFP-C1-PolιS5瞬时转染的HEK293细胞的细胞核均有绿色荧光,且很均匀,质粒转染率几乎达100%。在紫外线UVC(15J/m2)照射三种细胞后,质粒pEGFP-C1转染的HEK293细胞核荧光仍然很均匀,pEGFP-C1-Polι、pEGFP-C1-PolιS5转染的HEK293细胞核均出现荧光聚集现象,同时发现质粒pEGFP-C1-Pol iotaS5(20%)转染的HEK293细胞核出现荧光聚集现象的细胞比例明显高于质粒pEGFP-C1-Polι(6%)转染的HEK293细胞核出现荧光聚集现象的细胞比例。说明:PolιS5与Polι在紫外线UVC导致的DNA损伤的跨损伤复制过程中可能起着相似的作用,而且PolιS5可能比Polι更敏感,结合DNA更紧密,但更详细的过程尚须进一步研究;PolιS5可能对UVC损伤较补骨脂素、顺铂导致的DNA损伤有一定的依赖性。
     4、通过RT-PCR检测,PolιmRNA在膀胱正常粘膜组织、膀胱肿瘤组织及肾盂癌组织均有表达, Polι在膀胱肿瘤及肾盂癌组织的表达显著高于膀胱正常粘膜组织的表达(P<0.01);Polι在I级移行细胞癌组织和II级移行细胞癌组织的表达显著高于膀胱正常粘膜组织的表达(P<0.05;P<0.01);在III级移行细胞癌组织的表达显著高于I级移行细胞癌组织(P<0.05)。但我们未检测到PolιS5在膀胱正常粘膜、膀胱肿瘤、肾盂癌组织的表达。结果表明:膀胱肿瘤组织和肾盂癌组织Polι的表达显著增加,可能与膀胱肿瘤的发生有关;移行细胞癌组织Polι的表达显著增加与膀胱肿瘤、肾盂癌的异质性相关;在移行细胞癌组织未发现PolιS5的表达,但不能排除PolιS5在其它组织的丰富表达。
     结论:
     1、在膀胱肿瘤细胞株BIU87及T24中,发现Polι的剪接体PolιS5;
     2、PolιS5与Polι在对紫外线UVC导致的DNA损伤后的复制过程中可能起着相似的作用,PolιS5可能比Polι更敏感,而且结合DNA更紧密,但更详细的机制尚须进一步研究;
     3、Polι在膀胱肿瘤细胞株、膀胱肿瘤组织和肾盂癌组织的高表达,可能与移行细胞癌的发生有关;
     4、Polι在移行细胞癌组织的高表达可能导致移行细胞癌的异质性生物学行为;
     5、在移行细胞癌临床组织标本未发现PolιS5的表达,但不能排除PolιS5在其它组织的丰富表达。
Background and objective:
     The dangerous effects of transitional cell carcinoma such as smoking, chemical industry(aminobenzene), medicine(cyclophosphamide, phenacetin) are all DNA damage agents. Although DNA lesions can be removed by nucleotide excision repair and base excision repair processes, many lesions escape repair and present a block to continued transcriptional elongation by RNA polymerases and to replication by DNA polymerases. Human DNA polymeraseι(Polι), a member of the Y family of DNA polymerases, exhibits a marked template specificity. Due to the mismatch of the nucleotide, it suggests us that Polιprobably easily lead to genetic mutation. One of the hallmarks of cancer cells is genetic instability. In addition to large chromosomal changes involving thousands of bp, another form of genetic instability results in an increased mutation rate at the nucleotide level due to a perturbation in nucleotide synthesis or in cellular processes such as DNA repair and replication。So we think that the occurrence and development of transitional cell carcinoma maybe associate with the DNA translesion replication of Polιwhich is a mismatch repair polymerase different from other translesion synthesis DNA polymerase. Many studys have showed us Polιprobably easily lead to genetic mutation. Hypoxia-inducible factor-1-mediated Polιgene expression may be involved in the generation of translesion mutations during DNA replication. The Polιactivity was observed in seven out of eight malignant tumors, while it was absent in the normal uveal tract cells of the same patients. These findings serve as an additional confirmation of the Polιoncogenic potential.
     Yang J, et al found a Polι’s homologous isomer which is shorted of the fifth exon of Polιcompaired with Polι, and named it PolιS5, then, they cloned the Polιand PolιS5 gene and build their eukaryotic expression vector, but didn’t study the specific function of PolιS5. Recent analyses of sequence and microarray data have suggested that alternative splicing plays a major role in the generation of proteomic and functional diversity in metazoan organisms. Different splice variants of a given protein can display different and even antagonistic biological functions. Efforts are now being directed at establishing the full repertoire of functionally relevant transcript variants generated by alternative splicing, the specific roles of such variants in normal and disease physiology, and how alternative splicing is coordinated on a global level to achieve cell- and tissue-specific functions.We also detected the expression of PolιS5 in BIU87 and T24, so it is very important to study the function of PolιS5 futher and discuss the significance of the expression of Polιand PolιS5 in transitional cell carcinoma.
     Methods:
     1、Expression of Polιand PolιS5 in cell lines of transitional cell carcinoma
     Currently, there are no reports describing the expression of Polιin cell lines of transitional cell carcinoma. To develop a more accurate picture of the abundance of Polιexpressed in these cells, we analyzed a series of transitional cell carcinoma cell lines. The cell lines of transitional cell carcinoma used in this study include T24 and BIU87. The clinical tissue samples, bladder normal membrana mucosa, as the control group, were obtained from the Institute of Urological Research of the Third Military Medical University. Expression of Polιand PolιS5 in cell lines of transitional cell carcinoma were detected by RT-PCR .
     2、The identify of pEGFP-C1-Polιand pEGFP-C1-PolιS5
     pEGFP-C1、pEGFP-C1-Polι、pEGFP-C1-PolιS5 were presented by Dr. Yang Jin. Firstly, pEGFP-C1、pEGFP-C1-Polι、pEGFP-C1-PolιS5 were transformed into Escherichia coli DH5αand were mini-extracted, then they were sequenced and identified by Blat (www.genome.ucsc.edu).
     3、The diference of function between Polιand PolιS5
     In order to improve our understanding of the biological function of Polιand PolιS5, we have analysed its cellular localization. The cDNA encoding enhanced green fluorescent protein(EGFP) was fused in-frame to the N-terminus of Polι(EGFP-C1-Polι) and PolιS5 (EGFP-C1-PolιS5), and then pEGFP-C1 vector, pEGFP-C1-Polιand pEGFP-C1-PolιS5 were transfected into HEK293 cell respectively. Due to the nuclear localization signal consensus motif in its amino acid sequence, EGFP were localized within the nucleus and appeared homogeneously distributed. The distribution of EGFP-Polιand EGFP-PolιS5 in the nuclear localization were detected by by Laser scanning confocal microscope. We irradiated the transfected cells with UVC(15 J/m2) and observed change of distribution of EGFP-C1-Polιand EGFP-C1-PolιS5 in the nuclear localization 12 h later.
     4、Expression of Polιand PolιS5 in tissue of transitional cell carcinoma.
     The clinical tissue samples were obtained from the Institute of Urological Research of the Third Military Medical University, including bladder normal membrana mucosa(15), bladder tumor(28), renal pelvic carcinoma (11),which include transitional cell carcinoma grade I (13), grade II (16) and grade III (10). Expression of Polιand PolιS5 were detected by RT-PCR .
     Results:
     1、Expression of Polιand PolιS5 in cell lines of transitional cell carcinoma
     It was observed that the expression of Polιappears to be low in bladder normal membrana mucosa but significantly elevated in transitional cell carcinoma cell lines(P<0.01). The expression of PolιS5 was also detected in BIU87 and T24, but not in bladder normal membrana mucosa, and the expression of Polιwas much higher than that of PolιS5 in BIU87 and T24(P<0.01). The expression of Polιwas significantly elevated in transitional cell carcinoma cell lines and the over expression of Polιin cell probably lead to high genetic mutation when DNA was damaged. The function of PolιS5 will be still studied.
     2、The identify of pEGFP-C1-Polιand pEGFP-C1-PolιS5
     pEGFP-C1、pEGFP-C1-Polι、pEGFP-C1-PolιS5 were transformed into Escherichia coli DH5αand were mini-extracted, then they were sequenced and identified by Blat (www.genome.ucsc.edu).It was determined that the cDNA of PolιS5 in pEGFP-C1-PolιS5 is shorted of the fifth exon of Polιcompaired with the cDNA of Polιin pEGFP-C1-Polι. The next experience will be based on the result.
     3、The diference of function between Polιand PolιS5
     EGFP were localized within the nucleus and appeared homogeneously distributed. The EGFP-C1-Polιand EGFP-C1-PolιS5 were predominantly localized within the nucleus and appeared homogeneously distributed. In 2% of EGFP-C1-Polιtransfected cells, and in 4% of EGFP-C1-PolιS5 transfected cells, EGFP- C1-Polιand EGFP-C1-PolιS5 were localized in many intranuclear foci. This localization pattern was strikingly similar to observations with pol eta .Consequently, we asked whether the distribution of EGFP-C1-Polιand EGFP-C1-PolιS5 changes after DNA damage. We irradiated the transfected cells with UVC(15 J/m2) and observed the pattern of EGFP-C1-Polιand EGFP-C1-PolιS5 12 h later by Laser scanning confocal microscope. Percentage of EGFP-C1-Polιtransfected cells and EGFP-C1-PolιS5 transfected cells increased to 6% and 20% respectively. It were suggested that PolιS5 probably has the similar function with Polιin translesion sythesis and PolιS5 may be more sensitive to DNA damage that lead by UVC than Polι, but the more specific function will still be studied.
     4、Expression of Polιand PolιS5 in tissue of transitional cell carcinoma.
     It was observed that the expression of Polιappears to be low in bladder normal membrana mucosa but significantly elevated in tissue of transitional cell carcinoma(P<0.01). The level of expression of Polιwas associated with the grade of the transitional cell carcinoma. The expression of PolιS5 was not detected in tissue of transitional cell carcinoma. It was suggested that the over expression of Polιin tissue of bladder tumor and renal pelvic carcinoma may be associated with the occurrence of transitional cell carcinoma and the heterogenicity of transitional cell carcinoma.
     Conclusion:
     1. The expression of PolιS5, Polι’s splice isomer, was detected in BIU87 and T24;
     2. PolιS5 probably has the similar function with Polιin translesion sythesis and may be more sensitive to DNA damage that lead by UVC than Polιin function, but the more specific function will still be studied;
     3. The over expression of Polιin transitional cell carcinoma cell lines and tissue of bladder tumor and renal pelvic carcinoma may be associated with the occurrence of transitional cell carcinoma;
     4. The over expression of Polιin tissue of bladder tumor and renal pelvic carcinoma may be associated with the heterogenicity of transitional cell carcinoma;
     5. PolιS5 was not detected in clinical tissue of transitional cell carcinoma, but it could not exclude the expression of PolιS5 in other specific tissue.
引文
[1] DeVita VT, Hellman JS, Rosenberg SA. CANCER Principles and Practice of Oncology(5th Edition).徐从高,张茂宏,杨兴季,邹雄主译,山东科学技术出版社,第五版,2001,161-243
    [2]潘学峰。基因的自身维护与疾病的发生。北京科学出版社,第一版,2004,144-296
    [3] Prakash S, Johnson RE, Prakash L. EUKARYOTIC TRANSLESION SYNTHESIS DNA POLYMERASES: Specificity of Structure and Function [ J ]. Annu. Rev. Biochem. 2005,74:317-353
    [4] Ohmori H, Friedberg EC, Fuchs RPP,Goodman MF, Hanaoka F, et al. The Y-family of DNA polymerases. Mol Cell. 2001 Jul;8(1):7-8.
    [5] Burgers PM, Koonin EV, Bruford E,Blanco L, Burtis KC, et al. Eukaryotic DNA polymerases: proposal for a revised nomenclature. J. Biol.Chem. 2001. 276(47):43487-9036.
    [6] McDonald JP, Rapic′-Otrin V, Epstein JA, et al. Novel Human and Mouse Homologs of accharomyces cerevisiaeDNA Polymerase h Genomics. 1999.60, 20–30
    [7] Johnson RE, Washington MT, HaracskaL, Prakash S, Prakash L. Eukaryotic polymerases iota and zeta act sequentially to bypass DNA lesions.2000. Nature 406:1015–19
    [8] Tissier A, Mcdonald JP , Frank EG, et al. Poliota , a remarkably error-prone human DNA polymerse [ J ] . Genes Dev , 2000 , 14 ( 13 ) : 1642-1650.
    [9] Zhang Y, Yuan F, Wu X, Wang Z. Error-free and error-prone lesion bypass by human DNA polymerase kappa in vitro.Nucleic Acids Res. 2000.Mol. Cell Biol. 20:7009–108
    [10] Haracska L, Johnson RE, Unk I, PhillipsBB, Hurwitz J, et al. Targeting of human DNA polymerase iota to the replication machinery via interaction with PCNA. 2001. Proc. Natl.Acad. Sci. USA 98:14256–61
    [11] Washington MT, Johnson RE, Prakash L, Prakash S. Human DNA polymerase iota utilizes different nucleotide incorporation mechanisms dependent upon the templatebase.2004. Mol. Cell Biol. 24:936-43
    [12] Krutiakov VM. Eukaryotic error prone DNA polymerases: suggested roles in replication, repair and mutagenesis. Mol Biol (Mosk). 2006 Jan-Feb;40(1):3-11.
    [13] Yang J, Chen Z, Liu Y, et al. Altered DNA PolymeraseιExpression in Breast Cancer Cells Leads to a Reduction in DNA Replication Fidelity and a Higher Rate of Mutagenesis. Cancer Research 2004, 64(15), 5597-5607
    [14] Gening LV, Tarantul VZ. Involvement of DNA polymerase iota in hypermutagenesis and tumorigenesis: An improper model can lead to inaccurate results. Immunol Lett. 2006 May 23; [Epub ahead of print]
    [15] Gening LV, Grishina EE, Petrochenkov AN, Tarantul VZ. Association between high activity of DNA polymerase iota and the development of human uveal melanoma. Genetika. 2006 Jan;42(1):98-103.
    [16] Ito A, Koshikawa N, Mochizuki S, Omura K, Takenaga K. Hypoxia-inducible factor-1 mediates the expression of DNA polymerase iota in human tumor cells. Biochem Biophys Res Commun. 2006 Dec 8;351(1):306-11.
    [17] Srebrow A, Kornblihtt AR.The connection between splicing and cancer.J Cell Sci. 2006 Jul 1;119(Pt 13):2635-41;
    [18] Bracco L, Throo E, Cochet O, Einstein R, Maurier F. Methods and platforms for the quantification of splice variants' expression. Prog Mol Subcell Biol. 2006;44:1-25.
    [19] Blencowe BJ. Alternative splicing: new insights from global analyses. Cell. 2006 Jul 14;126(1):37-47.
    [20] Spector DL, Goldman RD, Leinwand LA.黄培堂等翻译。细胞试验指南,北京:科学出版社, 2001,第二版,1-32;1376-1397
    [21] Sambrook J,Russell D. Molecular Cloning A Laboratory Manual.黄培堂等翻译。分子克隆试验指南,北京:科学出版社,2002.第三版,387-396;516-518;582-644; 1564-1595;
    [22] Raha M, Wang G, Seidman MM, Glazer PM Mutagenesis by third-strand-directed psoralen adducts in repair-deficient human cells: high frequency and altered spectrum in a xeroderma pigmentosum variant. Proc Natl Acad Sci USA, 1996, 93: 2941-6,
    [23] Wang G, Glazer PM Altered repair of targeted psoralen photoadducts in the contextof an oligonucleotide-mediated triple helix. J Biol Chem, 1995,270: 22595-601,
    [24] Carty MP, el-Saleh S, Zernik-Kobak M, Dixon K Analysis of mutations induced by replication of UV-damaged plasmid DNA in HeLa cell extracts. Environ Mol Mutagen, 1995, 26: 139-46,
    [25] Hauser J, Seidman MM, Sidur K, Dixon K Sequence specificity of point mutations induced during passage of a UV-irradiated shuttle vector plasmid in monkey cells. Mol Cell Biol, 1986,6: 277-85,
    [26] McGregor WG, Wei D, Maher VM, McCormick JJ Abnormal, error-prone bypass of photoproducts by xeroderma pigmentosum variant cell extracts results in extreme strand bias for the kinds of mutations induced by UV light. Mol Cell Biol, 1999,19: 147-54.
    [27] Wang YC, Maher VM, Mitchell DL, McCormick JJ Evidence from mutation spectra that the UV hypermutability of xeroderma pigmentosum variant cells reflects abnormal, error-prone replication on a template containing photoproducts. Mol Cell Biol, 1993,13: 4276-83.
    [28] Choi JH, Besaratinia A, Lee DH, Lee CS, Pfeifer GP.The role of DNA polymerase iota in UV mutational spectra. Mutat Res. 2006 Feb 9; [Epub ahead of print]
    [29] Vaisman A, Takasawa K, Iwai S , Woodgate R.DNA polymerase iota-dependent translesion replication of uracil containing cyclobutane pyrimidine dimers。DNA Repair 2006 (5) 210–218
    [30] Hoege C, Pfander G, Moldovan L, Pyrowolakis G, and Jentsch S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO [J].Nature.2002.419:135–141.
    [31] Wolfle WT, Johnson RE, Minko IG, Lloyd RS, Prakash S, Prakash L.Replication past a trans-4-hydroxynonenal minor-groove adduct by the sequential action of human DNA polymerases iota and kappa. Mol Cell Biol. 2006 Jan;26(1):381-6.
    [32] Choi JY, Guengerich FP. Kinetic evidence for inefficient and error-prone bypass across bulky N2-guanine DNA adducts by human DNA polymerase iota. J Biol Chem. 2006 May 5;281(18):12315-24. Epub 2006 Mar 8.
    [33] Prakash S, Johnson RE, Prakash L. Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu Rev Biochem.2005;74:317-53
    [34] Johnson RE, Washington MT, Prakash S and Prakash L. Fidelity of human DNA polymerase h. J. Biol. Chem., 2000,275, 7447-7450.
    [35] Rechkoblit O, Zhang Y, Guo D, Wang Z, Amin S, Krzeminsky J, Louneva N and Geacintov NE. Trans-lesion synthesis past bulky benzo[a]pyrene diol epoxide N2-dG and N6-dA lesions catalyzed by DNA bypass polymerases. J. Biol. Chem. 2002, 277, 30488-30494.
    [36] Prakash S, Johnson RE., and Prakash L。EUKARYOTIC TRANSLESION SYNTHESIS DNA POLYMERASES: Specificity of Structure and Function Annu. Rev. Biochem. 2005. 74:317–53
    [37] Johnson RE, Haracska L, Prakash S. Biochemical evidence for the requirement of Hoogsteen base pairing for replication by human DNA polymerase iota [ J ]. Proc Natl Acad Sci USA.2005, 102(30):10466-71.
    [38] Nair DT, Johnson RE, Prakash L, Prakash S, Aggarwal AK.Human DNA polymerase iota incorporates dCTP opposite template G via a G.C + Hoogsteen base pair. Structure. 2005 Oct;13(10):1569-77.
    [39] Nair DT, Johnson RE, Prakash L, Prakash S, Aggarwal AK. Hoogsteen base pair formation promotes synthesis opposite the 1,N6-ethenodeoxyadenosine lesion by human DNA polymerase iota. Nat Struct Mol Biol. 2006 Jul;13(7):619-25.
    [40] Johnson RE, Haracska L, Prakash L, Prakash S.Role of Hoogsteen Edge Hydrogen Bonding at Template Purines in Nucleotide Incorporation by Human DNA Polymerase {iota}.Mol Cell Biol. 2006 Sep;26(17):6435-41.
    [41] Masutani C, Kusumoto R, Iwai S and Hanaoka F. Mechanisms of accurate translesion synthesis by human DNA polymerase h. EMBO J, 2000,19, 3100-3109.
    [42] Wang J. DNA polymerases: Hoogsteen base-pairing in DNA replication? Nature 2005 ,437(7057): E6-7;
    [43] Loeb LA Cancer cells exhibit a mutator phenotype. Adv Cancer Res, 1998.72: 25-56;
    [44] Loeb LA, Loeb KR, Anderson JP Multiple mutations and cancer. Proc Natl Acad Sci USA, 2003.100: 776-81;
    [45] Frechet M, Canitrot Y, Bieth A, Dogliotti E, Cazaux C, Hoffmann JS DeregulatedDNA polymerase beta strengthens ionizing radiation-induced nucleotidic and chromosomal instabilities. Oncogene, 2002,21: 2320-7.
    [46] Srivastava DK, Husain I, Arteaga CL, Wilson SH DNA polymerase beta expression differences in selected human tumors and cell lines. Carcinogenesis (Lond.), 1999,20: 1049-54,
    [47] O-Wang J, Kawamura K, Tada Y, et al DNA polymerase kappa, implicated in spontaneous and DNA damage-induced mutagenesis, is overexpressed in lung cancer. Cancer Res, 2001. 61: 5366-9.
    [48] Ausubel AM, Kinston RE, Seidam JG, Struhl K, Brent R, Moore DD, Smith JA.马学军,舒跃龙等译校,精编分子生物学。北京:科学出版社,2005,第四版,13-26,144-148,357-358,828-850.
    [49] Sambrook J,Russell D. Molecular Cloning A Laboratory Manual.黄培堂等翻译。分子克隆试验指南,北京:科学出版社,2002.第三版,27-36;96-99;1564-1595;
    [50] Haracska L, Acharya N, Unk I, et al. A Single Domain in Human DNA Polymerase iota Mediates Interaction with PCNA: Implications for Translesion DNA Synthesis [J] Molecular and Cellular Biology, 2005,25(3) 1183–1190
    [51] Bienko M, Green CM, Crosetto N, Rudolf F, Zapart G, Coull B, Kannouche P, Wider G, Peter M, Lehmann AR, Hofmann K, Dikic I. Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science. 2005 Dec 16;310(5755):1821-4.
    [52] Haracska L, Torres-Ramos CA, Johnson RE, Prakash S, and Prakash L. Opposing effects of ubiquitin conjugation and SUMO modification of PCNA on replicational bypass of DNA lesions in Saccharomyces cerevisiae[J]. Mol Cell Biol. 2004. 24:4267–4274.
    [53] Stelter P and Ulrich HD. Control of spontaneous and damageinduced mutagenesis by SUMO and ubiquitin on jugation [J].Nature.2003.425:188–191.
    [54] Vidal AE, Kannouche P, Podust VN et al. Proliferating Cell Nuclear Antigen-dependent Coordination of the Biological Functions of Human DNA Polymerase iota[J]. The Journal of Biological Chemistry 2004, 279(46):48360-48368
    [55] Kannouche P, Henestrosa AR, Coull B, et al. Localization of DNA polymerases etaand iota to the replication machinery is tightly co-ordinated in human cells [J]. The EMBO Journal, 2003, 22 (5)1223-1233.
    [56] Ogi T, Kannouche P, Lehmann AR. Localisation of human Y-family DNA polymerase kappa: relationship to PCNA foci. J Cell Sci. 2005 Jan 1;118(Pt 1):129-36.
    [57] Spector DL, Goldman RD, Leinwand LA.黄培堂等翻译。细胞试验指南,北京:科学出版社,2001,第二版,925-941;
    [58] AlanR.Lehmann.Replication of damaged DNA by translesion synthesis in human cells. FEBS, 2005 (579)873–876.
    [59] Johnson RE, Washington MT, Haracska L, Prakash S, and Prakash L. Eukaryotic polymerases iota and zeta act sequentially to bypass DNA lesions [J]. Nature, 2000. 406:1015–1019.
    [60] Washington MT, Minko IG, Johnson RE, Wolfle WT, Harris TM, et al. Efficient and error-free replication past a minor-groove DNA adduct by the equential action of human DNA polymerases iota and kappa[J]. 2004. Mol Cell Biol. 24:5687–93
    [61] Nair DT, Johnson RE, Prakash L, et al. An Incoming Nucleotide Imposes an anti to syn Conformational Change on the Templating Purine in the Human DNA Polymerase-iota Active Site [J]. Structure, 2006, 4(14)749-755
    [62] Gening LV, Makarova AV, Malashenko AM, Tarantul VZ. A false note of DNA polymerase iota in the choir of genome caretakers in mammals. Biochemistry (Mosc). 2006 Feb;71(2):155-9.
    [1] Prakash S, Johnson RE, Prakash L. EUKARYOTIC TRANSLESION SYNTHESIS DNA POLYMERASES: Specificity of Structure and Function[J]. Annu. Rev. Biochem. 2005,74:317-353
    [2] Ohmori H, Friedberg EC, Fuchs RPP,Goodman MF, Hanaoka F, et al. The Y-family of DNA polymerases. Mol Cell. 2001 Jul;8(1):7-8.
    [3] Burgers PM, Koonin EV, Bruford E,Blanco L, Burtis KC, et al. Eukaryotic DNA polymerases: proposal for a revised nomenclature. J. Biol.Chem. 2001.Nov 23;276(47):43487-9036. 4.Masutani C, Kusumoto R, Iwai S and Hanaoka F. Mechanisms of accurate translesion synthesis by human DNA polymerase h. EMBO J, 2000,19, 3100-3109.
    [4] Johnson RE, Washington MT, Prakash S. and Prakash L. Fidelity of human DNA polymerase h. J. Biol. Chem., 2000,275, 7447-7450.
    [5] Tissier A , Frank EG, McDonald JP, Iwai S , Hanaoka F and Woodgate R. Misinsertion and bypass of thymine-thymine dimmers by human DNA polymerase i. EMBO J.2000, 19, 5259-5266.
    [6] Zhang Y, Yuan F, Wu X., Wang M, Rechkoblit O, Taylor J S , Geacintov N E and Wang Z. Error-free and error-prone lesion bypass by human DNA polymerase k in vitro. Nucleic Acids Res.2000, 28,4138-4146.
    [7] Ohashi E, Ogi T, Kusumoto R, Iwai S, Masutani C, Hanaoka F. and Ohmori H. Error-prone bypass of certain DNA lesions by the human DNA polymerase k. GenesDev.2000, 14,1589-1594.
    [8] Johnson RE, Prakash S and Prakash L. The human DINB1 gene encodes the DNA polymerase Polq. Proc. Natl Acad. Sci. USA, 2000, 97,3838-3843.
    [9] Zhang Y, Wu X, Guo D, Rechkoblit O and Wang Z. Activities of human DNA polymerase k in response to the major benzo[a]pyrene adduct: error-free lesion bypass and extension synthesis from opposite the lesion. DNA Repair,2002 ,1, 559-569.
    [10] Suzuki N, Ohashi E , Kolbanovskiy A, Geacintov NE, Grollman AP, Ohmori H and Shibutani S. Translesion synthesis by human DNA polymerase k on a DNA template containing a single stereoisomer of dG-(+)- or dG-(-)-anti-N(2)-BPDE(7,8- dihydroxy-anti-,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene). Biochemistry, 2002,41, 6100-6106.
    [11] Rechkoblit O, Zhang Y, Guo D, Wang Z, Amin S, Krzeminsky J, Louneva N and Geacintov NE. Trans-lesion synthesis past bulky benzo[a]pyrene diol epoxide N2-dG and N6-dA lesions catalyzed by DNA bypass polymerases. J. Biol. Chem. 2002, 277, 30488-30494.
    [12] Prakash S, Johnson RE, and Prakash L. EUKARYOTIC TRANSLESION SYNTHESIS DNA POLYMERASES: Specificity of Structure and Function Annu. Rev. Biochem. 2005. 74:317–53
    [13] McDonald JP, Rapic′-Otrin V, Epstein JA, et al. Novel Human and Mouse Homologs of accharomyces cerevisiaeDNA Polymerase h Genomics. 1999.60, 20–30
    [14] Nair DT, Johnson RE, Prakash S, PrakashL, Aggarwal AK. Replication by human DNA polymerase-iota occurs by Hoogsteen base-pairing.2004. Nature 430:377–80
    [15] Washington MT, Minko IG, Johnson RE,Wolfle WT, Harris TM, et al. Efficient and error-free replication past a minor-groove DNA adduct by the sequential action of human DNA polymerases iota and kappa.Mol Cell Biol. 2004 Jul;24(13):5687-93.
    [16] Johnson RE, Washington MT, Haracska L, Prakash S, Prakash L. Eukaryotic polymerases iota and zeta act sequentially to bypass DNA lesions.2000. Nature 406:1015–19
    [17] Tissier A, Mcdonald J P, Frank EG, et al. Poliota , a remarkably error-prone human DNA polymerse [ J ] . Genes Dev, 2000 , 14 ( 13 ) : 1642-1650.
    [18] Zhang Y, Yuan F, Wu X, Wang Z. Error-free and error-prone lesion bypass by humanDNA polymerase kappa in vitro.Nucleic Acids Res. 2000.Mol. Cell Biol. 20:7009–108
    [19] Haracska L, Johnson RE, Unk I, PhillipsBB, Hurwitz J, et al. Targeting of human DNA polymerase iota to the replication machinery via interaction with PCNA. 2001. Proc. Natl.Acad. Sci. USA 98:14256–61
    [20] Washington MT, Johnson RE, Prakash L, Prakash S. Human DNA polymerase iota utilizes different nucleotide incorporation mechanisms dependent upon the template base.2004. Mol. Cell Biol. 24:936-43
    [21] Vaisman A, Takasawa K, Iwai S, Woodgate R.DNA polymerase iota-dependent translesion replication of uracil containing cyclobutane pyrimidine dimmers. DNA Repair 2006 (5) 210–218
    [22] Washington MT, Minko IG, Johnson RE, Wolfle WT, Harris TM, et al. Efficient and error-free replication past a minor-groove DNA adduct by the equential action of human DNA polymerases iota and kappa. 2004. Mol.Cell Biol. 24:5687–93
    [23] Kurtz AJ, Lloyd RS. 1, N2-deoxyguanosine adducts of acrolein, crotonaldehyde, and trans-4-hydroxynonenal cross-link to peptides via Schiff base linkage. J. Biol. Chem. 2003. 278:5970–76
    [24] Singh US, Moe JG, Reddy GR, Weisenseel JP, Marnett LJ, Stone MP. 1H NMR of an oligodeoxynucleotide containing a propanodeoxyguanosine adduct positioned in a (CG)3 frameshift hotspot of Salmonella typhimurium hisD3052: Hoogsteen base-pairing at pH 5.8. Chem. Res. Toxicol. 1993.6:825–36.
    [25] Weisenseel JP, Reddy GR, Marnett J Stone MP. Structure of an oligodeoxynucleotide containing a 1, N(2)-propanodeoxyguanosine adduct positioned in a palindrome derived from the Salmonella typhimurium hisD3052 gene: Hoogsteen pairing at pH 5.2.Chem. Res. Toxicol. 2002.15(2)127–39.
    [26] Thakker DR, Yagi H, Levin W, Wood AW, Conney AH. and Jerina DM. Polycyclic aromatic hydrocarbons: metabolicactivation to ultimate carcinogenesis. In Anders M.W. (ed.), Bioactivation of Foreign Compounds. Academic .1985:177-242.
    [27] Jerina DM, Saye ,JM, Agarwal SK., Yagi H, Levin W, Wood AW, Conney AH., Pruess-Schartz D, Baird WM, Pigott MA. and Dipple A. Reactivity and tumorigenicity of bay-region diol epoxides derived from polycyclic aromatichydrocarbons. Biological Reactive Intermediates. 1986, Vol. 3.:11-30.
    [28] Jerina DM., Yagi H, Thakker DR, Sayer JM, van Bladeren P J, Lehr RE, Whalen DL, Levin W, Chang RL, Wood AW and Conney AH. Identification of ultimate carcinogenic metabolites of the polycyclic aromatic hydrocarbons: bay-region (R,S)-diol-(S,R)- epoxides. Foreign Compound Metabolism. 1984: 257-266.
    [29] Cheng SC, Hilton BD, Roman JM and Dipple A. DNA adducts from carcinogenic and noncarcinogenic enantiomers of benzo[a]pyrene dihydrodiol epoxide. Chem. Res. Toxicol., 1989 2, 334-340.
    [30] Sayer JM, Chadha A, Agarwal SK, YehH J C, Yagi H. and Jerina DM. Covalent nucleoside adducts of benzo[a]pyrene 7,8-diol 9,10-epoxides: structural reinvestigation and characterization of a novel adenosine adduct on the ribose moiety. J. Org. Chem. 1991, 56, 20-29.
    [31] Dipple A, Pigott MA, Agarwa SK, Yagi H, Sayer JM and Jerina DM. Optically active benzo[c]phenanthrene diol epoxides bind extensively to adenine in DNA. Nature, 1987, 327:535-536.
    [32] Chary P, Latham GJ, Robberson D L, Kim SJ, Han S, Harris CM. Harris TM and Lloyd RS. In vivo and in vitro replicationconsequences of stereoisomeric benzo[a]pyrene-7,8- dihydrodiol 9,10-epoxide adducts on adenine N6 at the second position of N-ras codon 61.J. Biol. Chem.1995,270, 4990-5000.
    [33] Moriya M, Spiegel S, Fernandes A, Amin S, Liu T, Geacintov N and Grollman AP. Fidelity of translesional synthesis past benzo[a]pyrene diol epoxide-2’–deoxyguanosine DNA adducts: marked effects of host cell, sequence context and chirality. Biochemistry, 1996, 35, 16646-16651.
    [34] Shukla R, Jelinsky S, Liu T, Geacintov NE and Loechler EL. How stereochemistry affects mutagenesis by N2-deoxyguanosine adducts of, 8-dihydroxy-9, 10-epoxy-7,8, 9,10- tetrahydrobenzo [a]pyrene: configuration of the adduct bond is more important than those of the hydroxyl groups. Biochemistry,1997,36, 13263-13269.
    [35] Fernandes A, Liu T, Amin S, Geacintov NE, Grollman AP and Moriya M. Mutagenic potential of stereoisomeric bay region (+)-and (-)-cis-anti-benzo[a]pyrene diol epoxide-N2- 2’-deoxyguanosine adducts in Escherichia coli and simian kidney cells. Biochemistry, 1998, 37, 10164-10172.
    [36] Page JE, Zajc B, Oh-hara T, Lakshman MK, Sayer JM, Jerina DM and Dipple A. Sequence context profoundly influences the mutagenic potency of trans-opened benzo[a]pyrene 7, 8-diol 9, 10-epoxide-purine nucleoside adducts in site-specific mutation studies.Biochemistry,1998, 37, 9127-9137.
    [37] Page JE, Pilcher AS, Yagi H, Sayer JM., Jerina DM and Dipple A. Mutational consequences of replication of M13mp7L2 constructs containing cis-opened benzo[a]pyrene 7, 8-diol 9,10-epoxidedeoxyadenosine adducts. Chem. Res. Toxicol., 1999, 12, 258-263.
    [38] Ponten I, Sayer JM, Pilcher AS, Yagi H, Kumar S, Jerina DM and Dipple A. Factors determining mutagenic potential for individual cis and trans opened benzo[c] phenanthrene diol epoxide-deoxyadenosine adducts. Biochemistry,2000, 39, 4136-4144.
    [39] Ponten I, Kroth H, Sayer JM, Dipple A and Jerina DM. Differences between the mutational consequences of replication of cisand trans-opened benzo[a]pyrene 7,8-diol 9,10-epoxide-deoxyguanosine adducts in M13mp7L2 constructs. Chem. Res. Toxicol., 2001,14, 720-726.
    [40] Wei SJ, Chang RL, Wong CQ, Bhachech N, Cui XX, Hennig E, Yagi H, Sayer JM, Jerina DM, Preston BD and Conney AH. Dose-dependent differences in the profile of mutations induced by an ultimate carcinogen from benzo[a]pyrene. Proc. Natl Acad. Sci. USA, 1991 88,11227-11230.
    [41] Wei SJ, Chang RL, Hennig E, Cui XX, Merkler KA, Wong CQ, Yagi H, Jerina DM and Conney AH. Mutagenic selectivity at the HPRT locus in V-79 cells: comparison of mutations caused by bayregion benzo[a]pyrene 7,8-diol-9,-10-epoxide enantiomers with high and low carcinogenic activity. Carcinogenesis, 1994,15, 1729-1735.
    [42] Wei SJ, Chang RL, Cui XX, Merkler KA, Wong CQ, Yagi H, Jerina DM and Conney AH. Dose-dependent differences in the mutational profiles of (-)-(1R,2S,3S,4R)- 3,4-dihydroxy-1,2-epoxy-1,2,3,4-tetrahydrobenzo[c]phenanthrene and its less carcinogenic enantiomer. Cancer Res.,1996,56, 3695-3703.
    [43] Bigger CA, John St, Yagi J, Jerina H and Dipple,A. Mutagenic speci?cities of four stereoisomeric benzo[c]phenanthrene dihydrodiol epoxides. Proc. Natl Acad. Sci. USA, 1992,89, 368-372.
    [44] Yang JL, Mahe VM and McCormick JJ. Kinds of mutations formed when a shuttlevector containing adducts of (+/-)-7 beta, 8 alphadihydroxy- 9 alpha, 10 lpha-epoxy-7,8,9, 10-tetrahydrobenzo[a]pyrene replicates in human cells. Proc. Natl Acad. Sci. USA, 1987, 84, 3787-3791.
    [45] Frank EG, Sayer1 JM, Kroth1 H, etal. Translesion replication of benzo[a]pyrene and benzo[c]phenanthrene diol epoxide adducts of deoxyadenosine and deoxyguanosine by human DNA polymerase i Nucleic Acids Research, 2002, Vol. 30, No. 23:5284-5292
    [46] Prasad R, Bebenek K, Hou E,et al。Localization of the Deoxyribose Phosphate Lyase Active Site in Human DNA Polymerase _ by Controlled Proteolysis。THE JOURNAL OF BIOLOGICAL CHEMISTRY. 2003(8):278(32)29649–29654.
    [47] Bambara R A, Murante RS and Henricksen L A. Enzymes and reactions at the eukaryotic DNA replication fork. J. Biol. Chem. 1997272:4647–4650.
    [48] Gomes, X. V., and P. M. J. Burgers.. Two modes of FEN1 binding to PCNA regulated by DNA. EMBO J. 2000, 19:3811–3821.
    [49] Yuzhakov A, Kelman Z, Hurwitz J, and O’Donnell. M.. Multiple competition reactions for RPA order the assembly of the DNA polymerase _ holoenzyme. EMBO J. 1999, 18:6189–6199.
    [50] Prelich G, Kostura M, Marshak D R, Matthews M B and Stillman B.The cell-cycle regulated proliferating cell nuclear antigen is required for SV40 DNA replication in vitro. Nature 1987, 326:471–475.
    [51] Tan CK, Castillo C, So A G, and Downey K M. An auxiliary protein for DNA polymerase _ from fetal calf thymus. J. Biol. Chem. 1986.261: 12310–12316.
    [52] Chen U, Chen S, Saha P and Dutta A. p21/Cip1/Waf1 disrupts the recruitment of human Fen1 by proliferating-cell nuclear antigen into the DNA replication complex. Proc. Natl. Acad. Sci. USA1996, 93:11597–11602.
    [53] Li, X, Li J, Harrington J, Lieber M R and Burgers PM. Lagging strand DNA synthesis at the eukaryotic replication fork involves binding and stimulation of FEN-1 by PCNA. J. Biol. Chem. 1995.270:22109–22112.
    [54] Shibahara KI, and Stillman B. Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell 1999.96: 575–585.
    [55] Nakanishi M, Robetorye R S, Pereira-Smith OM and. Smith JR. The C-terminalregion of p21SD11/WAF1/CIP1 is involved in proliferating cell nuclear antigen binding but does not appear to be required for growth inhibition. J. Biol. Chem. 1995.270:17060–17063.
    [56] Reynolds N, Warbrick E, Fantes P A, and MacNeill SA. Essential interaction between the fission yeast DNA polymerase _ subunit Cdc27 and Pcn1 (PCNA) mediated through a C-terminal p21Cip1-like PCNA binding motif. EMBO J. 2000.19:1108–1118.
    [57] Warbrick E, Lane D P, Glover D M, and Cox LS. A small peptide inhibitor of DNA replication defines the site of interaction between the cyclin-dependent kinase inhibitor p21WAF1 and proliferating cell nuclear antigen. Curr. Biol. 1995.5:275–282.
    [58] Xu H, Zhang P, Liu L and Lee MYWT. A novel PCNA-binding motif identified by the panning of a random peptide display library. Biochemistry 2001.40:4512–4520.
    [59] Bermudez WP, MacNeill SA, Tappin I and Hurwitz J. The influence of the Cdc27 subunit on the properties of the Schizosaccharomyces pombe DNA polymerase iota. J. Biol. Chem. 2002, 277:36853–36862.
    [60] Johansson E, Garg P, and Burgers P M J. The Pol32 subunit of DNA polymerase iota contains separable domains for processive replicatin and proliferating cell nuclear antigen (PCNA) binding. J. Biol. Chem. 2004.279:1907–1915.
    [61] Zhang P,Mo JY, Perez A, Leon A, Liu L, Mazloum N, Xu H, and Lee MYWT. Direct interaction of proliferating cell nuclear antigen with the p125 catalytic subunit of mammalian DNA polymerase _. J. Biol. Chem. 1999.274:26647–26653.
    [62] Gomes XV and Burgers PMJ. Two modes of FEN1 binding to PCNA regulated by DNA. EMBO J. 2000.19:3811–3821.
    [63] Unk I, Haracska L, Gomes X V, Burgers JMP, Prakash L and Prakash S.. Stimulation of 3’-5’exonuclease and 3’-phosphodiesterase activities of yeast Apn2 by proliferating cell nuclear antigen. Mol. Cell. Biol. 2002. 22:6480–6486.
    [64] Haracska L, Johnson RE, Unk I, Phillips B, Hurwitz J, Prakash L, and Prakash S. Physical and functional interactions of human DNA polymerase with PCNA. Mol. Cell. Biol. 2001.21:7199–7206.
    [65] Haracska L, Kondratick CM, Unk I, Prakash S and Prakash L. Interaction with PCNA is essential for yeast DNA polymerase _ function. Mol. Cell 2001.8:407–415.
    [66] Prakash S, and Prakash L. Translesion DNA synthesis in eukaryotes: a one- or two-polymerase affair. Genes Dev. 2002. 16:1872–1883.
    [67] Haracska L, Johnson R E, Unk I, Phillips BB, Hurwitz J, Prakash L, and Prakash. S. Targeting of human DNA polymerase _ to the replication machinery via interaction with PCNA. Proc. Natl. Acad. Sci. USA 2001.98:14256–14261.
    [68] Johnson RE, Washington MT, Haracska L, Prakash S, andPrakash. L. Eukaryotic polymerases iota and zeta act sequentially to bypass DNA lesions. Nature.2000. 406:1015–1019.
    [69] Tissier A, McDonald J P, Frank EG, and Woodgate R.. Pol iota, a remarkably error-prone human DNA polymerase. Genes Dev. 2000.14:1642–1650.
    [70] Washington MT, Johnson RE, Prakash L, Prakash S. Human DNA polymerase iota utilizes different nucleotide incorporation mechanisms dependent upon the template base.2004. Mol. Cell Biol. 24:936-43
    [71] Zhang Y, Yuan F, Wu X. and Wang Z. Preferential incorporation of G opposite template T by the low-fidelity human DNA polymerase iota. Mol.Cell. Biol. 2000.20:7099–7108.
    [72] Washington MT, Minko IG, Johnson RE, Wolfle WT, Harris TM, et al. Efficient and error-free replication past a minor-groove DNA adduct by the equential action of human DNA polymerases iota and kappa. 2004. Mol.Cell Biol. 24:5687–93
    [73] Hoege C, Pfander B, Moldovan GL, Pyrowolakis G and Jentsch S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO.Nature.2002.
    [74] 419:135–141.
    [75] Haracska L, Torres-Ramos CA, Johnson RE, Prakash S and Prakash L. Opposing effects of ubiquitin conjugation and SUMO modification of PCNA on replicational bypass of DNA lesions in Saccharomyces cerevisiae. Mol. Cell. Biol. 2004. 24:4267–4274.
    [76] Stelter P and Ulrich HD. Control of spontaneous and damageinduced mutagenesis by SUMO and ubiquitin conjugation. Nature. 2003. 425:188–191.
    [1] Prakash S, Johnson RE, Prakash L. EUKARYOTIC TRANSLESION SYNTHESIS DNA POLYMERASES: Specificity of Structure and Function[ J ]. Annu. Rev. Biochem. 2005,74:317-353
    [2] Johnson RE, Washington MT, HaracskaL, Prakash S, Prakash L. Eukaryotic polymerases iota and zeta act sequentially to bypass DNA lesions.2000. Nature 406:1015–19
    [3] Tissier A ,Mcdonald J P , Frank EG, et al. Poliota , a remarkably error-prone human DNA polymerse [ J ] . Genes Dev , 2000 , 14 ( 13 ) : 1642-1650.
    [4] Zhang Y, Yuan F, Wu X, Wang Z. Error-free and error-prone lesion bypass by human DNA polymerase kappa in vitro.Nucleic Acids Res. Mol. Cell Biol. 2000. 20:7009–108
    [5] Haracska L, Johnson RE, Unk I, PhillipsBB, Hurwitz J, et al. Targeting of human DNA polymerase iota to the replication machinery via interaction with PCNA. Proc. Natl.Acad. Sci. USA 2001. 98:14256–61
    [6] Washington MT, Johnson RE, Prakash L, Prakash S. Human DNA polymerase iota utilizes different nucleotide incorporation mechanisms dependent upon the template base. Mol. Cell Biol. 2004. 24:936-43
    [7] Washington MT, Minko IG, Johnson RE,Wolfle WT, Harris TM, et al. Efficient and error-free replication past a minor-groove DNA adduct by the equential action of human DNA polymerases iota and kappa. 2004. Mol.Cell Biol. 24:5687–93
    [8] Kurtz AJ, Lloyd RS. 1,N2-deoxyguanosine adducts of acrolein, crotonaldehyde, and trans-4-hydroxynonenal cross-link to peptides via Schiff base linkage. J. Biol. Chem. 2003.278:5970–76
    [9] Singh US, Moe JG, Reddy GR, Weisenseel JP, Marnett LJ, Stone MP. 1H NMR of an oligodeoxynucleotide containing a propanodeoxyguanosine adduct positioned in a (CG)3 frameshift hotspot of Salmonella typhimurium hisD3052: Hoogsteen base-pairing at pH 5.8. Chem. Res. Toxicol. 1993.6:825–36.
    [10] Weisenseel JP, Reddy GR, Marnett J Stone MP. Structure of an oligodeoxynucleotide containing a 1, N(2)-propanodeoxyguanosine adduct positioned in a palindromederived from the Salmonella typhimurium hisD3052 gene: Hoogsteen pairing at pH 5.2.Chem. Res. Toxicol. 2002.15(2)127–39.
    [11] Choi JY, Guengerich FP. Kinetic evidence for inefficient and error-prone bypass across bulky N2-guanine DNA adducts by human DNA polymerase iota. J Biol Chem. 2006; 281(18):12315-24.
    [12] Nair DT, Johnson RE, Prakash L, Prakash S, Aggarwal AKHoogsteen base pair formation promotes synthesis opposite the 1,N6-ethenodeoxyadenosine lesion by human DNA polymerase iota Nat Struct Mol Biol. 2006 Jul;13(7):619-25.
    [13] Thakker DR, Yagi H, Levin W, Wood AW, Conney AH and Jerina DM. Polycyclic aromatic hydrocarbons: metabolicactivation to ultimate carcinogenesis. In Anders, M.W. (ed.), Bioactivation of Foreign Compounds. Academic .1985:177-242.
    [14] Jerina DM, Sayer JM, Agarwal SK, Yagi H, Levin W, Wood AW,Conney AH,Pruess-Schartz D, Baird WM, Pigott MA. and DippleA Reactivity and tumorigenicity of bay-region diol epoxides derived from polycyclic aromatic hydrocarbons. Biological Reactive Intermediates. 1986, Vol. 3:11-30.
    [15] Jerina DM, Yagi H, Thakker DR, Sayer JM, van Bladeren PJ, Lehr RE, Whalen DL, Levin W, Chang RL, Wood AW and Conney AH. Identification of ultimate carcinogenic metabolites of the polycyclic aromatic hydrocarbons: bay-region (R,S)-diol-(S,R)- epoxides. Foreign Compound Metabolism. 1984:257-266.
    [16] Cheng SC, Hilton BD, Roman JM and Dipple A. DNA adducts from carcinogenic and noncarcinogenic enantiomers of benzo[a]pyrene dihydrodiol epoxide. Chem. Res. Toxicol., 1989 2, 334-340.
    [17] Sayer JM, Chadha A, Agarwal SK, Yeh HJC, Yagi H and Jerina DM. Covalent nucleoside adducts of benzo[a]pyrene 7,8-diol 9,10-epoxides: structural reinvestigation and characterization of a novel adenosine adduct on the ribose moiety. J. Org. Chem. 1991, 56, 20-29.
    [18] Dipple A, Pigott MA, Agarwal SK, Yagi H, Sayer JM and Jerina DM. Optically active benzo[c]phenanthrene diol epoxides bind extensively to adenine in DNA. Nature, 1987, 327:535-536.
    [19] Chary P, Latham GJ, Robberson DL, Kim SJ, Han S, Harris CM, Harris TM and Lloyd RS. In vivo and in vitro replicationconsequences of stereoisomericbenzo[a]pyrene-7,8-dihydrodiol 9,10-epoxide adducts on adenine N6 at the second position of N-ras codon 61.J. Biol. Chem.1995,270, 4990-5000.
    [20] Moriya M, Spiegel S , Fernandes A, Amin S, Liu T, Geacintov N and Grollman AP. Fidelity of translesional synthesis past benzo[a]pyrene diol epoxide-2’–deoxyguanosine DNA adducts: marked effects of host cell, sequence context and chirality. Biochemistry, 1996, 35, 16646-16651.
    [21] Shukla R, Jelinsky S, Liu T, Geacintov NE and Loechler EL. How stereochemistry affects mutagenesis by N2-deoxyguanosine adducts of,8-dihydroxy-9, 10-epoxy-7,8,9, 10-tetrahydrobenzo [a]pyrene: configuration of the adduct bond is more important than those of the hydroxyl groups. Biochemistry, 1997,36, 13263-13269.
    [22] Fernandes A, Liu T, Amin S, Geacintov NE, Grollman AP and Moriya M.Mutagenic potential of stereoisomeric bay region (+)-and (-)-cis-anti-benzo[a]pyrene diol epoxide-N2-2’-deoxyguanosine adducts in Escherichia coli and simian kidney cells. Biochemistry, 1998, 37, 10164-10172.
    [23] Page JE, Zajc B, Oh-hara T, Lakshman MK, Sayer JM, Jerina DM and Dipple A. Sequence context profoundly influences the mutagenic potency of trans-opened benzo[a]pyrene 7, 8-diol 9, 10-epoxide-purine nucleoside adducts in site-specific mutation studies. Biochemistry, 1998, 37, 9127-9137.
    [24] Page JE, Pilcher AS, Yagi H, Sayer JM, Jerina DM and Dipple A. Mutational consequences of replication of M13mp7L2 constructs containing cis-opened benzo[a]pyrene 7, 8-diol 9, 10-epoxidedeoxyadenosine adducts. Chem. Res. Toxicol., 1999, 12, 258-263.
    [25] Ponten I, Sayer JM, Pilcher AS, Yagi H, Kumar S, Jerina DM and Dipple A. Factors determining mutagenic potential for individual cis and trans opened benzo[c]phenanthrene diol epoxide-deoxyadenosine adducts. Biochemistry, 2000, 39, 4136-4144.
    [26] Ponten I, Kroth H., Sayer JM, Dipple A and Jerina DM. Differences between the mutational consequences of replication of cisand trans-opened benzo[a]pyrene 7,8-diol 9,10-epoxide-deoxyguanosine adducts in M13mp7L2 constructs. Chem. Res. Toxicol., 2001, 14, 720-726.
    [27] Wei SJ, Chang RL, Wong CQ, Bhachech N, Cui XX, Hennig E, Yagi H, Sayer JM,Jerina DM, Preston BD and Conney AH. Dose-dependent differences in the pro?le of mutations induced by an ultimate carcinogen from benzo[a]pyrene. Proc. Natl Acad. Sci. USA, 1991 88, 11227-11230.
    [28] Wei SJ, Chang RL, Hennig E, Cui XX, Merkler KA, Wong CQ, Yagi H, Jerina DM and Conney AH. Mutagenic selectivity at the HPRT locus in V-79 cells: comparison of mutations caused by bayregion benzo[a]pyrene 7,8-diol-9,-10-epoxide enantiomers with high and low carcinogenic activity. Carcinogenesis, 1994, 15, 1729-1735.
    [29] Wei SJ, Chang RL, Cui XX, Merkler KA, Wong CQ, Yagi H, Jerina DM and Conney AH. Dose-dependent differences in the mutational profiles of (-)-(1R,2S,3S,4R)- 3,4-dihydroxy-1,2-epoxy-1,2,3,4-tetrahydrobenzo[c]phenanthrene and its less carcinogenic enantiomer. Cancer Res., 1996, 56, 3695-3703.
    [30] Frank EG, Sayer1 JM, Kroth1 H, etal. Translesion replication of benzo[a]pyrene and benzo[c]phenanthrene diol epoxide adducts of deoxyadenosine and deoxyguanosine by human DNA polymerase i Nucleic Acids Research, 2002, Vol. 30, No. 23:5284-5292
    [31] Nair DT, Johnson RE, Prakash L, Prakash S, Aggarwal AKHuman DNA polymerase iota incorporates dCTP opposite template G via a G.C + Hoogsteen base pair. Structure. 2005 Oct; 13(10):1569-77.
    [32] Nair DT, Johnson RE, Prakash L, Prakash S, Aggarwal AKAn incoming nucleotide imposes an anti to syn conformational change on the templating purine in the human DNA polymerase-iota active site. Structure. 2006 Apr;14(4):749-55
    [33] Nair DT, Johnson RE, Prakash S, Prakash L, Aggarwal AK. Replication by human DNA polymerase-iota occurs by Hoogsteen base-pairing. Nature. 2004 Jul 15; 430(6997): 377-80.
    [34] Johnson RE, Haracska L, Prakash L, Prakash S. Role of hoogsteen edge hydrogen bonding at template purines in nucleotide incorporation by human DNA polymerase iota. Mol Cell Biol. 2006 Sep;26(17):6435-41
    [35] Johnson RE, Prakash L, Prakash S. Biochemical evidence for the requirement of Hoogsteen base pairing for replication by human DNA polymerase iota. Proc Natl Acad Sci USA. 2005 Jul 26;102(30):10466-71
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.