熔融态金属催化制氢及均相催化制备3,3-二甲氧基丙酸甲酯的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种清洁高效的新能源物质,氢能源引起了研究者越来越多的重视。近年来由于氢燃料电池的出现更是加剧了对氢能源的需求。目前氢气的制备主要是通过化石燃料的重整获得,但是该流程产生污染大气的COx。相比之下,天然气的直接分解制氢可以制备出高纯度的氢气,但是该流程存在催化剂的迅速失活问题。
     在本文中,我们设计出一种新型催化剂来解决催化剂的寿命问题。通过把特定的金属加热到熔融态,以此作为催化剂来分解碳氢化合物制取氢气。在经过独特设计的石英管反应器上,在700℃的条件下实现了23%甲烷转化率和100%的氢气选择性,而且催化剂的寿命大于67h,这在常规负载型催化剂上是很难实现的。我们还发现,进一步升高温度能够提高甲烷的转化率,但是催化剂的寿命会受到影响。增加催化剂用量在反应的前期能够提高转化率,但是催化剂量增加到一定程度后进一步提高催化剂用量没有明显的效果。在本课题的研究中,我们还对熔融态金属镁分解乙烷和丙烷制氢进行了研究,结果表明反应能够获得更高的烷烃转化率,但是产物中出现含碳的副产物,降低了反应的选择性。
     通过间接实验和原位红外光谱研究,发现反应机理为甲烷首先与镁生成碳化镁和氢气,然后碳化镁进一步分解生成金属镁和炭,完成整个反应循环。在反应过程中,还发现金属镁会出现自然蒸发并在反应器上端凝固的现象,这是导致催化剂失效的重要原因。在实际工作中,也可以利用这一性质把催化剂镁从产物炭粉中分离出来减少了催化剂的后处理程序,有利于降低能耗。
     在本研究工作中,还发现这种熔融态催化体系同样适合于大分子碳氢化合物的分解制氢。在聚乙烯塑料的降解实验中,获得可接近100%的氢回收率,在轮胎橡胶的降解过程中,氢的回收率为60%。这些研究工作为从废弃高分子材料中回收碳和氢提供了新的途径。
     实验中也考察了其它低熔点的金属如金属钠和金属锌的催化性能,结果发现在相同的条件下,金属钠对甲烷分解的活性低于金属镁;而金属锌活性太低,没有活化碳氢化合物的能力。
     本论文的另外一部分工作是合成一种重要的农药中间体3,3-二甲氧基丙酸甲酯。我们发现在Wacker催化剂PdCl2/CuCl2的作用下,丙烯酸能够被高效地氧化生成3,3-二甲氧基丙酸甲酯。在35℃和5个大气压下,反应6h(丙烯酸和甲醇的摩尔配比为1:4),丙烯酸的转化率为95.2%,主产物选择性为90.6%。在这个反应中,甲醇既是反应物又是溶剂。研究发现该反应的反应机理为:丙烯酸和甲醇首先进行酯化反应生成丙烯酸甲酯,然后丙烯酸甲酯在PdCl2和CuCl2催化剂作用下氧化生成醛类中间产物,接着醛类中间产物和甲醇发生醇醛缩合反应得到目标产物3,3-二甲氧基丙酸甲酯。由于后面氧化反应和醇醛缩合反应的不断进行,使前面的酯化反应平衡不断向生成丙烯酸甲酯的方向移动,进而导致整个反应能进行彻底。
Currently, the hydrogen is mainly produced though the reformation of fossil fuels. However, great amount of COx is produced in these processes, which lead to serious environment pollution. Comparing with these processes, the direct decomposition of nature gas could produce hydrogen with high purity. However, the catalyst deactivation is still a problem.
     In the current investigation, we designed a type of new catalyst to resolve the catalyst deactivation problem. Certain metals were heated to a molten state to catalyze the decomposition of hydrocarbons to produce hydrogen and carbon. In a quartz reactor, a methane conversion of 23% with hydrogen selectivity of 100% was reached. A catalyst lifetime of more than 67 hours was achived, which is very difficult to obtain from regular solid state catalysts.
     It was found that higher temperature favors methane decomposition. However, the catalyst stability was not good and the lifetime of catalyst was shorted at relatively higher reaction temperature. The increasing of catalyst loading could enhance the decomposition of hydrocarbons, but when the amount of catalyst loading was higher than certain amount, there was no further increase in hydrocarbon conversion. At the same conditions, we investigated the decompositions of ethane and propane over molten magnesium. The results showed that even higher hydrocarbon conversions were achieved. However, carbon containing byproducts were formed, which led to the hydrogen selectivity decrease.
     Through the in-situ IR characterizations and catalytic reaction, it was thought that methane reacted with magnesium to form magnesium carbide intermediates and hydrogen, and then the magnesium carbide intermediates further decomposed to magnesium and carbon to complete the catalytic cycle. In the reaction, Magnesium was found evapourated from the bottom of the reactor and condensed in the up section of the reactor. The magnesium evapouration might be the reason of catalyst deactivation. However, the magnesium evapouration automatically separates catalyst from product, which makes the catalyst recovery easy.
     Besides the light alkanes, we found that the molten matel catalyst could also catalyze the decomposition of high molecular weight hydrocarbons, such as plastics and rubber. In an investigation of polyethene decomposition, almost 100% of hydrogen element recovery was obtained. In the decomposition of rubber,60% hydrogen recoverage was obtained. The current investigation offered altanative approach to recover hydrogen and carbon from waste hydrocarbon materials.
     We also examined the catalytic activities of other low melt point metals, such as sodium and zinc. However we found that sodium did not show obvious improvement comparing with magnesium at similar reaction conditions. Metal zinc was found not to be active for hydrocarbon decomposition reactions.
     As part of dissertation investigation, the pesticide intermediate methyl 3, 3-dimethoxypropionate was succeefually synthesized from the oxidation of acrylic acid in methanol. The reaction carried out efficiently over the Wacker catalyst PdCl2/CuCl2. Conducting reaction at 35℃and 5 atm pressure for 6 h with an acrylic acid to methanol mol ratio of 1:4,95.2% of acrylic acid conversion and 90.6% of 3, 3-dimethoxypropionate selectivity were obtained over PdCl2/CuCl2. In this process, it is proved that the methanol acted as both reactant and solvent. The investigation indicated that the possible reaction mechanism of the reaction could be that acrylic acid reacted with methanol to form methyl acrylate by self-catalyzed esterfication reaction, then the methyl acrylate was oxidized to aldehyde intermediate over PdCl2/CuCl2. The aldehyde intermediate reacts with methanol to form the target product. The oxidation and aldehyde-alcohol condensation reaction moves the self-catalyzed esterfication reaction equilibrium towards the formation reaction of methyl acrylate, which finally drives the reaction to the completion.
引文
[1]刘江华,方新湘,周华.我国氢能源开发与生物制氢研究状况.新疆农业科学,2004,41(专刊):85-87
    [2]Arul R I, Venkatesan V K. Characterization of nickel-molbdenum and nickelmolybednum-iron alloy coating as cathodes for alkaline water electrolysers. Int. J. Hydrogen Energy,1988,13(4):215-223
    [3]Brown D E, Mahmood M N, Man M C M, et al. Preparation and characterization of low-overvoltage transition metal alloy eletrocatalysts for hydrogen evolution in alkaline solutions. Electrochim. Acta.,1984,29(11):1551-1556
    [4]Sampath Y, Davari A, Feliachi A, et al. Modeling and simulation of the dynamic behavior of a polymer electrolyte membrane fuel cell. J. Power Sources,2003,124:104-113
    [5]邹仁望,王小曼.氢技术:研究开发及工业应用.化工进展,1992,(2):20-25
    [6]Fujishima A, Honda K. Electrochemical Photolysis of water at a semiconductor electrode. Nature,1972,238:37-38
    [7]Nowotny J, Bak T, Nowotny M K, et al. Titanium dioxide for solar-hydrogen Ⅰ. Functional properties, Int. J. Hydrogen Energy,2007,32 (14):2609-2629.
    [8]Murphy A B, Barnes P R F, Randeniya L K, et al. Efficiency of solar water splitting using semiconductor electrodes. Int. J. Hydrogen Energy,2006,31 (14): 1999-2017
    [9]Rayalu S S, Dubey N, Labhsetwar N K, et al. UV and visibly active photocatalysts for water splitting reaction. Int. J. Hydrogen Energy,2007,32 (14):2776-2783
    [10]Hameed A, Gondal M A, Yamani Z H. Effect of transition metal doping on photocatalytic activity of WO3 for water splitting under laser illumination:role of 3d-orbitals. Catal. Commun.,2004,5(11):715-719
    [11]Liu S H, Wang H P. Photocatalytic generation of hydrogen on Zr-MCM-4. Int. J. Hydrogen Energy,2002,27 (9):859-862
    [12]Nowotny J, Sorrell C C, Sheppard LR, et al. Solar-hydrogen:environmentally safe fuel for the future. Int. J. Hydrogen Energy,2005,30:521-544
    [13]Nowotny J, Sorrell C C, Sheppard L R. Materials for energy conversion devices. Cambridge:Woodhead,2005,84-116
    [14]Bak T, Nowotny J, Rekas M, et al. Photo-electrochemical hydrogen generation from water using solar energy. materials-related aspects. Int. J. Hydrogen Energy,2002,27 (10):991-1022
    [15]Bak T, Nowotny J, Rekas M, et al. Defect chemistry and semiconducting properties of titanium dioxide. Ⅲ. Mobility of electronic charge carriers. J. Phys. Chem. Solids,2003,64:1069-1087
    [16]Bak T, Nowotny J, Rekas M, Sorrell C C. Defect chemistry and semiconducting properties of titanium dioxide. Ⅰ. Intrinsic equilibrium constant. J. Phys. Chem. Solids,2003,64:1043-1056
    [17]Bak T, Nowotny J, Rekas M, Sorrell C C. Defect chemistry and semiconducting properties of titanium dioxide. Ⅱ. Defect diagrams. J. Phys. Chem. Solids,2003, 64:1057-1067
    [18]Abe R, Sayama K, Arakawa H. Significant effect of iodide addition on water splitting into H2 and O2 over Pt-loaded TiO2 photocatalyst:suppression of backward reaction. Chem. Phys. Lett.,2003,371(3):360-364
    [19]Patel N, Fernandes R, Guella G, et al. Structured and nanoparticle assembled Co-B thin films prepared by pulsed laser deposition:a very efficient catalyst for hydrogen production. J. Phys. Chem. C,2008,112(17):6968-6976
    [20]Patel N, Guella G, Kale A, et al. Thin films of Co-B prepared by pulsed laser deposition as efficient catalysts in hydrogen producing reactions. Appl. Catal. A: Genernal,2007,323:18-24
    [21]Matsuoka M, Kitano M, Takeuchi M, et al. Photocatalysis for new energy production:Recent advances in photocatalytic water splitting reactions for hydrogen production. Catal. Today,2007,122(1-2):51-61
    [22]Bak T, Nowotny J, Rekas M, et al. Photo-electrochemical properties of the TiO2-Pt system in aqueous solutions. Int. J. Hydrogen Energy,2002, 27(1):19-26
    [23]Zhang Y J, Yan W, Wu Y P, et al. Synthesis of TiO2 nanotubes coupled with CdS nanoparticles and production of hydrogen by photocatalytic water decomposition. Materials Letters,2008,62:3846-3848
    [24]Gopidas K R, Bohorquez M, Kamat P V. Photophysical and photochemical aspects of oupled semiconductors:Charge-transfer processes in colloidal CdS-TiO2 and CdS-AgI systems. J. Phys. Chem.,1990,94(16):6435-6440
    [25]Vinodgopal K, Kamat P V. Enhanced rates of photocatalytic degradation of an azo dye using SnO2/TiO2 coupled semiconductor thin films. Environmental Science and Technology,1995,29(3):841-845
    [26]Liu D, Kamat P V. Electrochemical rectification in CdSe+TiO2 coupled semiconductor films. Journal of Electroanalytical Chemistry,347 (1-2): 451-456
    [27]Do Y R, Lee W, Dwight K, Wold A, et al. The effect of WO3 on the photocatalytic activity of TiO2. Journal of Solid State Chemistry,1994,108(1): 198-201
    [28]Spanhel L, Weller H, Henglein A. Photochemistry of semiconductor colloids. 22. Electron injection from illuminated CdS into attached TiO2 and ZnO particles. J. Am. Chem. Soc.,1987,109 (22):6632-6635
    [29]Rabani J. Sandwich colloids of ZnO and ZnS in aqueous solutions. Journal of Physical Chemistry,1989,93 (22):7707-7713
    [30]Yin S F, Zhang Q H, Xu B Q, et al. Investigation on the catalysis of COx-free hydrogen generation from ammonia. J. Catal.,2004,224:384-396
    [31]Metkemeijer R, Achard P. Ammonia as a feedstock for a hydrogen fuel cell; reformer and fuel cell behaviour. J. Power Sources,1994,49:271-282
    [32]Choudhary T V, Sivadinarayana C, Goodman D W. Catalytic ammonia decomposition:COx-free hydrogen production for fuel cell applications. Catal. Lett.,2001,72(3-4):197-201
    [33]Chellappa A S, Fischer C M. and Thomson W J. Ammonia decomposition kinetics over Ni-Pt/Al2O3 for PEM fuel cell applications, Appl. Catal. A:Gen, 2002,227:231-240
    [34]Zheng W, Zhang J, Ge Q, et al. Effects of CeO2 addition on Ni/Al2O3 catalysts for the reaction of ammonia decomposition to hydrogen. Appl. Catal. B: Environmental,2008,80(1-2):98-105
    [35]Yin S F, Zhang Q H, Xu B Q, et al. Investigation on the catalysis of COx-free hydrogen generation from ammonia. J. Catal.,2004,224:384-396
    [36]Linkous C A, Huang C, Fowler J R. UV photochemical oxidation of aqueous sodium sulfide to produce hydrogen and sulfur. J. Photochem. Photobiol. A: Chemistry,2004,168 (3):153-160
    [37]Reshetenko T V, Khairulin S R, Ismagilov Z R, et al. Study of the reaction of high-temperature H2S decomposition on metal oxides (γ-Al2O3, α-Fe2O3, V2O5). Int. J. Hydrogen Energy,2002,27:387-394
    [38]Kim C Y, Escuadro A A, Bedzyk M J. Interaction of H2S with α-Fe2O3 (001) surface. Surface Science,2007,601(21):4966-4970
    [39]Lee E K, Jung K D, Joo O S, et al. Support effects in catalytic wet oxidation of H2S to sulfur on supported iron oxide catalysts. Appl. Catal. A:General,2005, 284 (1-2):1-4
    [40]Reshetenko T V, Khairulin S R, Ismagilov Z R, et al. Study of the reaction of high-temperature H2S decomposition on metal oxides (γ-Al2O3, α-Fe2O3, V2O5), Int. J. Hydrogen Energy,2002,27(4):387-394
    [41]Linkou C A, Huang C, Fowler J R. UV photochemical oxidation of aqueous sodium sulfide to produce hydrogen and sulfur. J. Photochem. & Photobiol. A: Chemical,2004,168(3):153-160
    [42]Subramanian E, Baega J O, Lee S M, et al. Dissociation of H2S under visible light irradiation ((λ1≥420 nm) with FeGaO3 photocatalysts for the production of hydrogen. Int. J. Hydrogen Energy,2008,33:6586-6594
    [43]王贵玲,张发旺,刘志明.国内外地热能够开发利用现状及前景分析.地球学报,2000,21(2):134-139
    [44]Bisio A, Boots S. Encyclopedia of energy technology and the environment vol. 3, New York:Wiley,1995
    [45]Steinbergand M, Cheng H C. Modern and prospective technologies for hydrogen production from fossil fuels. Int. J. Hydrogen Energy,1989,14(11):797-820
    [46]Lina S, Harada M, Suzuki Y, et al. Hydrogen production from coal by separating carbon dioxide during gasification. Fuel,2002,81:2079-2085
    [47]Lin S Y, Suzuki Y, Hatano H, et al. In:16th International Pittsburgh Coal Conference. Pittsburgh:1999,28-31
    [48]Andrews L D. Hydrogen generation from natural gas for the full cell systems of tomorrow. J. Power Sources,1996,61:113-124
    [49]Steinberg M, Cheng H C. Modern and prospective technologies for hydrogen production from fossil fuels. Int. J. Hydrogen Energy,1989,14(11):797-820
    [50]Zhang T, Amiridis M D. Hydrogen production via the direct cracking of methane over silica-supported nickel catalysts. Appl. Catal. A,1998,167: 161-172
    [51]Muradov N Z. How to produce hydrogen from fossil fuels without CO2 emission. Int. J. Hydrogen Energy,1993,18:211-215
    [52]Poirier M G, Sapundzhiev C. Catalytic decomposition of natural gas to hydrogen for fuel cell applications. Int. J. Hydrogen Energy,1997,22(4): 429-433
    [53]Bradford M C B, Vannice M A. CO2 reforming of CH4. Catal. Rev. Sci. Eng., 1999,41:41-42
    [54]Osaki T, Mori T. Role of potassium in carbon-free CO2 reforming of methane on K-promoted Ni/Al2O3 catalysts. J. Catal.,2001,204:89-97
    [55]Lemonidu A A, Goula M A, Vasalos I A. Carbon dioxide reforming of methane over 5 wt% nickel calcium aluminate catalysts-Effect of preparation method. Catal. Today,1998,46:175-183
    [56]Tomishige K, Yamazaki O, Chen Y, et al. Development of ultra-stable Ni catalysts for CO2 reforming of methane. Catal. Today,1998,45:35-39
    [57]Parvary M, Jazayeri S H, Taeb A, et al. Promotion of active nickel catalysts in methane dry reforming reaction by aluminum addition. Catal. Commun.,2001,2: 357-362
    [58]Liu B S, Au C T. Carbon deposition and catalyst stability over La2NiO4/γ-Al2O3 during CO2 reforming of methane to syngas. Appl. Catal. A:Genernal,2003, 244:181-195
    [59]Wang J B, Hsiao S Z, Huang T J. Study of carbon dioxide reforming of methane over Ni/yttria-doped ceria and effect of thermal treatments of support on the activity behaviors. Appl. Catal. A:Genernal,2003,246:197-211
    [60]Bradford M C J, Vannice M A. The role of metal-support interactions in CO2 reforming of CH4. Catal. Today,1999,50(1):87-96
    [61]Bradford M C J, Vannice M A. Catalytic reforming of methane with carbon dioxide over nickel catalysts Ⅱ. Reaction kinetics. Appl. Catal. A:Genernal, 1996,142(1):97-122
    [62]Zhang Z L, Tsipouriari V A, Efstathiou A M, et al. Reforming of methane with carbon dioxide to synthesis gas over supported rhodium catalysts:Ⅰ. Effects of support and metal crystallite size on reaction activity and deactivation characteristics. J. Catal.,1996,158:51-63
    [63]Portugal U L, Santos A C S F, Damyonova S, et al. CO2 reforming of CH4 over Rh-containing catalysts. J. Mol. Catal. A:Chemical,2002,184:311-322
    [64]Bradford M C J, Vannice M A. CO2 reforming of CH4 over supported Pt catalysts. J. Catal.,1998,173:157-171
    [65]Rostrupnielsen J R, Hansan J H B. CO2 reforming of methane over transition metals. J. Catal.,1993,144(1):38-49
    [66]Bradford M C J, Vannice M A. The role of metal-support interactions in CO2 reforming of CH4.Catal. Today,1999,50(1):87-96
    [67]Armor J N. The multiple roles for catalysis in the production of H2. Applied Catalysis A:General,1999,176:159-176
    [68]Parmaliana A, Arena F, Frusteri F, et al. Magnesia-supported nickel catalysts Ⅱ. Surface properties and reactivity in methane steam reforming. J. Catal.,1993, 141(1):34-47
    [69]Slagterm A, Schuurman Y, Leclercq C, et al. Specific features concerning the mechanism of methane reforming by carbon dioxide over Ni/La2O3 catalyst J. Catal.,1997,172:118-126
    [70]Tomishige K, Chen Y G, Fujimoto K. Studies on carbon deposition in CO2 reforming of CH4 over nickel-magnesia solid solution catalysts. J. Catal.,1999, 181(1):91-103
    [71]Kim J H, Suh D J, Park T J, et al. Effect of metal particle size on coking during CO2 reforming of CH4 over Ni-alumina aerogel catalysts. Appl. Catal. A: Genernal,2000,197:191-200
    [72]Xu B Q, Wei J M, Wang H Y, et al. Nano-MgO:Novel preparation and application as support of Ni catalyst for CO2 reforming of methane. Catal. Today,2001,68:217-225
    [73]Tsyganok A I, Tsunoda T, Hamakawa S, et al. Dry reforming of methane over catalysts derived from nickel-containing Mg-Al layered double hydroxides. J. Catal.,2003,213(2):191-203
    [74]Hwang K S, Zhu H Y, Lu G Q. New nickel catalysts supported on highly porous alumina intercalated laponite for methane reforming with CO2. Catal. Today, 2001,68:183-190
    [75]Tomiyama S, Takahashi R, Sato S, et al. Preparation of Ni/SiO2 catalyst with high thermal stability for CO2-reforming of CH4. Appl. Catal. A:Genernal, 2003,241:349-361
    [76]Frusteri F, Arena F, Galogero G, et al. Potassium-enhanced stability of Ni/MgO catalysts in the dry-reforming of methane. Catal. Commun.,2001,2:49-56
    [77]Arena F, Frusteri F, Parmaliana A. Alkali promotion of Ni/MgO catalysts. Appl. Catal. A:Genernal,1999,187:127-140
    [78]Muradov N Z. CO2-free production of hydrogen by catalytic pyrolysis of hydrocarbon fuel. Energy&Fuels,1998,12:41-48
    [79]Steinberg M. Fossil fuel decarbonization technology for mitigating global warming. Int. J. Hydrogen Energy,1999,24:771-777
    [80]Avdeeva L B, Kochubey D I, Shaikhutdinov S K. Cobalt catalysts of methane decomposition:Accumulation of the filamentous carbon. Appl. Catal. A: Genernal,1999,177:43-51
    [81]Ermakova M A, Ermakov D Y, Kuvshinov G G. Catalysts for direct cracking of methane to produce hydrogen and filamentous carbon. Part Ⅰ. Nickel catalysts. Appl. Catal. A:Genernal,2000,201:61-70
    [82]Aiello R, Fiscus J E, Zur Loye H C, et al. D. Hydrogen production via direct cracking of methane over Ni/SiO2:Catalyst deactivation and regeneration. Appl. Catal. A:Genernal,2000,192:227-234
    [83]Monnerat B, Kiwi-Minsker L, Renken A. Hydrogen production by catalytic cracking of methane over nickel gauze under periodic reactor operation. Chem. Eng. Sci.,2001,56:633-639
    [84]Choudhary T V, Sivadinarayana C, Goodman D W. Production of COx-free hydrogen for fuel cells via step-wise hydrocarbon reforming and catalytic dehydrogenation of ammonia. Chem. Eng. J.,2003,93(1):69-80
    [85]郝树仁,李言浩,程玉春等.甲醇蒸汽转化制氢技术.齐鲁石油化工,1997,25(4):225-226
    [86]Iwasa N, Masuda S, Ogawa N, et al. Steam reforming of methanol over Pd/ZnO:Effect of the formation of PdZn alloys upon the reaction. Appl. Catal. A:General,1995,125(1):145-157
    [87]Idem R O, Bakhshi N N. Kinetic modeling of the production fo hydrogen from the methanol-steam reforming process over Mn-promoted coprecipitated Cu-Al catalyst. Chem. Eng. Sci.,1996,51(14):3697-3708
    [88]Lindstrfom B, Pettersson L J. Hydrogen generation by steam reforming of methanol over copper-based catalysts for fuel cell applications. Int. J. Hydrogen. 2001,26(9):923-933
    [89]Liu S F, Xiao J L. Toward green catalytic synthesis-Transition metal-catalyzed reactions in non-conventional media. J. Mol. Catal. A:Chemical,2007,270 (1-2):1-43
    [90]Shiozaki R, Hayakawa T, Liu Y Y, et al. Methanol decomposition to synthesis gas over supported Pd catalysts prepared from synthetic anionic clays. Catal. Lett.,1999,58:131-140
    [91]Cheng W H, Shiau C Y, Liu T H, et al. Stability of copper based catalysts enhanced by carbon dioxide in methanol decomposition. Appl. Catal. B: Environ.,1998,18:63-70
    [92]Matsumura Y, Tanaka K, Tode N, et al. Catalytic methanol decomposition to carbon monoxide and hydrogen over nickel supported on silica. J. Mol. Catal. A: Chemical,2000,152:157-165
    [93]Brown L F. A comparative study of fuels for on-board hydrogen production for fuel-cell-powered automobiles. Int. J. Hydrogen Energy,2001,26:381-397
    [94]Fatsikoatas A N, Kondarides D I, Verykios X E. Steam reforming of biomass-derived ethanol for the production of hydrogen for fuel cell applications. Chem. Commun.,2001,9:851-852
    [95]Gosselink J W. Pathways to a more sustainable production of energy: sustainable hydrogen:a research objective for Shell. Int. J. Hydrogen Energy, 2002,27:1125-1129
    [96]Fatsikostas A N, Kondarides D I, Verykios X E. Production of hydrogen for fuel cells by reformation of biomass-derived ethanol. Catal. Today,2002,75 (1-4):145-155
    [97]Freni S. Rh based catalysts for indirect internal reforming ethanol applications in molten carbonate fuel cells. J. Power Sources,2001,94:14-19
    [98]Sun J, Qiu X P, Feng W, et al. Hydrogen from steam reforming of ethanol in low and middle temperature range for fuel cell application. Int. J. of Hydrogen Energy,2004,29(10):1075-1081
    [99]Maggio G, Freni S, Cavallaro S. Light alcohols/methane fuelled molten carbonate fuel cells:a comparative study. J. Power Sources,1998,74:17-23
    [100]Marino F, Baronetti G, Jobbagy M, et al. Cu-Ni-K/γ-Al2O3 supported catalysts for ethanol steam reforming:Formation of hydrotalcite-type compounds as a result of metal-support interaction. Appl. Catal. A:General,2003,238(1): 41-54
    [101]Tonkovich A Y, Perry S, Wang Y, et al. Microchannel process technology for compact methane steam reforming. Chem. Eng. Sci.,2004,59:4819-4824
    [102]Wanat E C, Venkataraman K, Schmidt L D. Steam reforming and water-gas shift of ethanol on Rh and Rh-Ce catalysts in a catalytic wall reactor. Appl. Catal. A,2004,276:155-162
    [103]Xi J Y, Wang Z F, Wang W P, et al. Investigation of partial oxidation of ethanol to hydrogen over CuZnNi catalysts. J. Mol. Catal. (China),2001,15:255-258
    [104]Wang W P, Wang Z F, Ding Y, et al. Partial oxidation of ethanol to hydrogen over Ni-Fe catalysts. Catal. Lett.,2002,81(1-2):63-68
    [105]Wang W P, Wang Z F, Ding Y, et al. Effect of La on partial oxidation of ethanol to hydrogen over Ni/Fe catalysts. Chem. Res. Chin. Univ.,2003,19:206-210
    [106]Liguras D K, Goundani K, Verykios X E. Production of hydrogen for fuel cells by catalytic partial oxidation of ethanol over structured Ru catalysts. Int. J. Hydrogen Energy,2004,29 (4):419-427
    [107]Salge J R, Deluga G A, Schmidt L D. Catalytic partial oxidation of ethanol over noble metal catalysts. J. Catal.,2005,235 (1):69-78
    [108]Mattos L V, Noronha F B. Partial oxidation of ethanol on supported Pt catalysts. J. Power Sources,2005,145 (1):10-15
    [109]Silva A M, Barandas A P M G, Costa L O O, et al. Partial oxidation of ethanol on Ru/Y2O3 and Pd/Y2O3 catalysts for hydrogen production. Catal. Today,2007, 129 (3-4):297-304
    [110]Liguras D K, Kondarides D I, Verykios X E. Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts. Appl. Catal. B:Enviromental,2003,43:345-354
    [111]Liguras D K, Goundani K, Verykios X E. Production of hydrogen for fuel cells by catalytic partial oxidation of ethanol over structured Ni catalysts. J. Power Sources,2004,130:30-37
    [112]Fierro V, Akdim O, Provendier H, et al. Ethanol oxidative steam reforming over Ni-based catalysts. J. Power Sources,2005,145:659-666
    [113]Poirier M G, Sapundzhiev C. Catalytic decomposition of natural gas to hydrogen for fuel cell applications. Int. J. Hydrogen Energy,1997,22(4): 429-433
    [114]Otsuka K, Shigeta Y, Takenaka S. Production of hydrogen from gasoline range alkanes with reduced CO2 emission. Int. J. Hydrogen Energy,2002,27:11-18.
    [115]Muradov N Z. How to produce hydrogen from fossil fuels without CO2 emission. Int. J. Hydrogen Energy,1993,18(3):211-215
    [116]Gaudernack B, Lynum S. Hydrogen from natural gas without of CO2 to the atmosphere. Int. J. Hydrogen Energy,1998,23(12):1087-1093
    [117]Monnerat B, Kiwi-Minsker L, Renken A. Hydrogen production by catalytic cracking of methane over nickel gauze under periodic reactor operation. Chem. Eng. Sci.,2001,56:633-639
    [118]Otsuka K, Kobayashi S, Takenaka S. Decomposition and regeneration of methane in the absence and the presence of a hydrogen-absorbing alloy CaNi5. Appl. Catal. A:Genernal,2000,190:261-268
    [119]Otsuka K, Seino T, Kobayashi S, et al. Production of hydrogen through decomposition of methane with Ni-supported catalyst. Chem Lett.,1999,11: 1179-1180
    [120]Zhang T J, Amiridis M D. Hydrogen production via the direct cracking of methane over silica-supported nickel catalysts. Appl. Catal. A:Genernal,1998, 167:161-172
    [121]Sinfelt J H, Yates D J C. Catalytic hydrogenolysis of ethane over the noble metals of Group Ⅷ. J. Catal.,1967,8(1):82-90
    [122]Matsukata M, Matsushita T, Ueyama K. A novel hydrogen/syngas production process:Catalytic activity and stability of Ni/SiO2. Chem. Eng. Sci.,1996,51: 2769-2774
    [123]Otsuka K, Kobayashi S, Takenaka S. Decomposition and regeneration of methane in the absence and the presence of a hydrogen-absorbing alloy CaNi5. Appl. Catal. A:Genernal,2000,190:261-268
    [124]Otsuka K, Seino T, Kobayashi S, et al. Production of hydrogen through decomposition of methane with Ni-supported catalysts. Chem. Lett.,1999, 28:1179-1180
    [125]Monnerat B, Kiwi-Minsker L, Renken A. Hydrogen production by catalytic cracking of methane over nickel gauze under periodic reactor operation. Chem. Eng. Sci.,2001,56:633-639
    [126]Holmen A, Rockstad O A, Solbakken A. High-Temperature Pyrolysis of Hydrocarbons.1. Methane to Acetylene. Ind. Eng. Chem. Process Des. Dev, 1976,15(3):439-444
    [127]Steinberg M. Production of Hydrogen and Methanol from Natural Gas with reduced CO2 Emission. Int. J. Hydrogen Energy,1998,23(6):419-425
    [128]Steinberg M, Cheng H C. Modern and prospective technologies for hydrogen production from fossil fuels. Int. J. Hydrogen Energy,1989,14(11):797-820
    [129]Choudhary T V, Sivadinarayana C, Goodman D W, et al. Hydrogen production via catalytic decomposition of methane. J. Catal.,2001,199(1):9-18
    [130]Aiello R, Fiscus J E, Loye H, et al. Hydrogen production via the direct cracking of methane over Ni/SiO2:Catalyst deactivation and regeneration. Appl. Catal. A: Genernal,2000,192(2):227-234
    [131]Muradov N. How to produce hydrogen from fossil-fuel without CO2 emission. Int. J. Hydrogen Energy,1993,18 (3):211-215
    [132]Muradov N Z. CO2-free production of hydrogen by catalytic pyrolysis of hydrocarbon fuel. Energy&Fuels,1998,12 (1):41-48
    [133]Muradov N Z, Veziroglu T N. From hydrocarbon to hydrogen-carbon to hydrogen economy. Int. J. Hydrogen Energy,2005,30(3):225-237
    [134]Muradov N. Catalysis of methane decomposition over elemental carbon, Catal. Commun.,2001,2 (3-4):89-94
    [135]Muradov N. Hydrogen via methane decomposition:an application for decarbonization of fossil fuels. Int. J. Hydrogen Energy,2001,26(11): 1165-1175
    [136]Muradov N, Smith F, Raissi A T. Catalytic activity of carbons for methane decomposition reaction. Catal. Today,2005,102-103:225-233
    [137]Muradov N, Chen Z, Smith F. Fossil hydrogen with reduced CO2 emission: modeling thermocatalytic decomposition of methane in a fluidized bed of carbon particles, Int. J. Hydrogen Energy,2005,30 (10):1149-1158
    [138]Muradov N, Smith F, Huang C, et al. Autothermal catalytic pyrolysis of methane as a new route to hydrogen production with reduced CO2 emissions, Catal. Today,2006,116 (3):281-288
    [139]Muradov N, Smith F, T-Raiss A, Catalytic activity of carbons for methane decomposition reaction. Catal. Today 102-103 (2005) 225-233
    [140]Kim M H, Lee E K, Jun J H, et al. Hydrogen production by catalytic decomposition of methane over activated carbons:deactivation study. Korean J. Chem. Eng.,2003,20(5):835-839
    [141]Kim M H, Lee E K, Jun J H, et al. Hydrogen production by catalytic decomposition of methane over activated carbons:kinetic study. Int. J. Hydrogen Energy,2004,29(2):187-193
    [142]Sinfelt J H, Yates D J C. Catalytic hydrogenolysis of ethane over the noble metals of group Ⅷ. J. Catal.,1967,8(1):82-90
    [143]Otsuka K, Shigeta Y, Takenaka S. Production of hydrogen from gasoline range alkanes with reduced CO2 emission. Int. J. Hydrogen Energy,2002,27:11-18
    [144]Chin S Y, Chin Y H, Amiridis M D. Hydrogen production via the catalytic cracking of ethane over Ni/SiO2 catalysts. Appl. Catal. A:General,2006,300: 8-13
    [145]Gaudernack B, Lynum S. Hydrogen from natural gas without release of CO2 to the atmosphere. Int. J. Hydrogen Energy,1998,23(12):1087-1093
    [146]Otsuka K, Kobayashi S, Takenaka S. Catalytic decomposition of light alkanes, alkenes and acetylene over Ni/SiO2. Appl. Catal. A:Genernal,2001,210(1-2): 371-379
    [147]Knox B E, Palmer H B. Bond Dissociation Energies in Small Hydrocarbon Molecules. Chem. Rev.,1961,61:247-255
    [148]Otsuka K, Kobayashi S, Takenaka S. Decomposition and regeneration of methane in the absence and the presence of a hydrogen-absorbing alloy CaNi5。 Appl. Catal. A:General,2000,190:261-268
    [149]Aiello R, Fiscus J E, Loye H Z et al. Hydrogen production via the direct cracking of methane over Ni/SiO2:catalyst deactivation and regeneration. Appl. Catal. A:Genernal,2000,192(2):227-234
    [150]Fox P A, Griffin S T, Reichert W M, et al. Exploiting isolobal relationships to create new ionic liquids:novel room-temperature ionic liquids based upon (N-alkylimidazole)(amine)BH2+ "boronium" ions. Chem. Commun.,2005,29: 3679-3681
    [151]Mu Z G, Zhou F, Zhang S X, et al. Preparation and characterization of new phosphonyl-substituted imidazolium ionic liquids. Helvetica Chim.Acta.,2004, 87:2549-2555
    [152]Mirzaei Y R, Xue H, Shreeve J M. Low melting N-4-functionalized-1-alkyl or polyfluoroalkyl-1,2,4-triazolium salts. Inorg. Chem.,2004,43(1):361-367
    [153]Mukhopadhyay S, Bell A T. Effects of solvent acidity on the free-radical-initiated synthesis of methanesulfonic acid from CH4 and SO3. Ind. Eng. Chem. Res.,2002,41:5901-5905
    [154]Mukhopadhyay S, Bell A T. Direct liquid-phase sulfonation of methane to methanesulfonic acid by SO3 in the presence of a metal peroxide. Angew. Chem.,2003,115(9):1049-1051
    [155]Mukhopadhyay S, Bell A T. Direct sulfonation of methane to methanesulfonic acid with SO2 using Ca salts as promoters. J. Am. Chem. Soc.,2003,125: 4406-4407.
    [156]Mukhopadhyay S, Bell A T. Direct sulfonation of methane at low pressure to methanesulfonic acid in the presence of potassium peroxydiphosphate as the initiator. Organic Process Research & Development.2003,7:161-163
    [157]Mukhopadhyay S, Bell A T. Direct catalytic sulfonation of methane with SO2 to methanesulfonic acid(MSA) in the presence of molecular O2. Chem. Comm., 2003,13:1590-1591
    [158]Otsuka K, Ogihara H, Takenaka S. Decomposition of methane over Ni catalysts supported on carbon fibers formed from different hydrocarbons. Carbon,2003, 41(2):223-233
    [159]Takenaka S, Kobayashi S, Ogihara H, et al. Ni/SiO2 catalyst effective for methane decomposition into hydrogen and carbon nanofiber. J. Catal.,2003, 217(1):79-87
    [160]Cotton F A, Wilkinson G. Advanced inorganic chemistry.5th edition. New York: John Wiley & Sons, Inc.,1988,154-239
    [161]Vien D L, Colthup N B, Fateley W G, et al. Infrared and raman characteristic frequencies of organic molecules. San Diego:Academic Press,1991,9-17,79, 85, and 95-103.
    [162]Xi Z W, Zhou N, Sun Y, et al. Reaction-controlled phase-transfer catalysis for propylene epoxidation to propylene oxide. Science,2001,292(5519):1139-1142
    [163]Crosby D G, and Berthold R V. New syntheses in the coumarin series. J. Org. Chem.,1962,27(9):3083-3085
    [164]Israel M, Zoll E C, Muhammad N, et al. Synthesis and antitumor evaluation of the presumed cytotoxic metabolites of spermine and N,N'-Bis(3-aminopropyl) nonane-1,9-diamine. J. Med. Chem.,1973,16:1-5
    [165]Buchi G, Carlson J A, Powell J E, et al. Total synthesis of loganin. J. Am.Chem. Soc.,1973,95:540-545
    [166]Fevig T L, Phillips W G, and Lau P H. A novel and expeditious approach to thiophene-3-carboxylates. J. Org. Chem.,2001,66:2493-2497
    [167]Phillips G, Fevig T L, Lau P H, et al. Process research on the synthesis of silthiofam:A novel fungicide for wheat. Org. Process Res. Dev.,2002,6: 357-366
    [168]Attanasi O A, Crescentini L D, Favi G. Straightforward entry into 5-Hydroxy-1-aminopyrrolines and the corresponding pyrroles from 1, 2-diaza-1,3-butadienes. J. Org. Chem.,2002,67(23):8178-8181
    [169]Jia L Q, Jiang H F, Li J H. Palladium(ⅱ)-catalyzed oxidation of acrylate esters to acetals in supercritical carbon dioxide. Chem. Commun.1999,985-986
    [170]Kishi A, Sakaguchi S, Ishii Y. Acetalization of Alkenes Catalyzed by Pd(OAc)2/NPMoV Supported on Activated Carbon under a Dioxygen Atmosphere. Org. Lett.2000,2:523-525
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.