Q460高强角钢受压构件稳定承载力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高强角钢以其优越的高强度性能、建造适应性及经济性而在输电线铁塔中得到了越来越广泛的应用。论文以热轧Q460高强单角钢在输电线路铁塔结构设计的应用为研究目的,结合输电铁塔主材角钢构件的三种连接形式,设计了48根轴心受压角钢构件、48根一端轴心一端偏心受压角钢构件和48根两端偏心受压角钢构件,对三类共计144根受压构件进行了静力加载试验研究。研究了不同截面型号、不同长细比和不同端部支座条件下高强角钢的破坏模式、极限承载力、变形性能和截面应变分布等力学性能特征。为深入理论分析和提出工程设计建议提供了基础的试验素材。
     试验表明,小长细比试件局部屈曲失稳起控制作用,大长细比试件整体失稳起控制作用。长细比越大,试验值越高于理论值,用现行规范设计高强角钢受压构件会越安全。宽厚比越大,对小长细比构件中载面扭转效应影响较大。轴心受压构件试验可采用双刀口支座代替球铰支座;一端轴心一端偏心受压试件轴心端可采用双口支座或球铰支座;两端偏心受压试件试验表明,美国ASCE10-1997导则公式中考虑了角钢构件端部有利约束效应。
     采用有限元分析软件ANSYS对试件进行三维实体建模,仿真分析时考虑材料非线性、几何非线性、接触非线性等因素影响。分析了构件的变形模态、极限承载能力、长细比对转角影响、宽厚比对承载力的影响及残余应力的影响等受力性能。有限元结果与试验结果吻合良好,残余应力对试件承载力影响小于5%。
     在模型试验和仿真试验的基础上提出了新的稳定系数曲线模型,依据稳定系数公式建立相应的设计方法,结合参数分析给出了设计Q460高强角钢受压构件稳定承载力的实用计算公式。将试验结果和本文建议公式计算结果进行了比较,结果表明,建议公式与试验结果吻合较好。
     论文对Q460角钢受压构件的试验和理论分析结果可供工程设计或相关研究参考。
High-strength angle steel has been widely used in transmission towers because of their excellent high yield strength, constructional suitability and economy. To study the application of Q460 high-strength hot-rolled equal-leg single-angle in the design of transmission tower, according to three kinds of connection forms about leg members in transmission tower, design-ed 48 single-angle axial compression members,48 single-angle compression members with a concentric load at one end and normal framing eccentricity at the other end, and 48 single-angle compression members attached by one leg. A total of 144 compression members were tested under static loading to investigate failure process, bearing capacity, deformation performance and strain distribution of high-strength angle steel when having with different section types, different slenderness ratios and different end supports. For further theoretical analysis and engineering design proposals provide the basis test material.
     The experiment result showed most of the small slenderness members were controlled by local buckling, and the large ones were controlled by overall buckling. The greater the slenderness ratio, the higher the test value than the theoretical value, using the existing standard design high-strength angle compression members will be more secure. The larger width-thickness ratios, the greater impact to torsion effect of middle section of the small slenderness members. Axial compression test can use double knife-edge bearing to instead spherical hinge bearing; for the single-angle with an eccentric load at one end and normal framing eccentricity at the other end, the axial laod end can use double knife-edge bearing or spherical hinge beraing; for single-angle steel struts connected by one leg, the experiment result shows'Guide for design of transmission tower'(ASCE10-1997) by American Society of Civil Engineers considered favorable constraint effort at end of members.
     Comprehensive three-dimensional finite element models were presented for test specimens using the ANSYS11.0 nonlinear finite element program. The material nonlinearity, geometric nonlinearity and contact nonlinearity were considered when simulation analysis. The deformation modes, the ultimate bearing capacity, the influence of slenderness on torsion angle, the influence of width-thickness ratio on bearing capacity and the influence of residual stress were investigated. FEM results were agree well with the experimental results, The residual stesses affected the ultimate load-carring capacity by about 5%.
     The new stability factor curve models were proposed based on experimental study and simulation analysis, according to the formula of stability factor to establish appropriate design method. By parameter analysis, the stability capacity practical formula on designing Q460 high-strength angle steel compression members. Comparison between the proposed formulas and experimental data demonstrated that they can accurately predict the stability capacity of compression members, which showed these methods are feasible.
     These experimental and theoretical results about Q460 high-strength angle compression members can guide engineering design or research reference.
引文
[1-1]刘丽敏.高强钢在特高压输电塔中的应用[D].上海:同济大学土木工程学院,2007.
    [1-2]廖宗高,张华,陈海波.特高压输电线路设计风速取值的探讨[J].中国电力,2006,27(4):28-32.
    [1-3]陈海波,李振福.西北电网750kV输变电工程关键技术研究——杆塔方案及荷载研究[R].北京国电电力建设研究所,2002.
    [1-4]万建成,李清华.1000k V级交流输电系统大跨越工程技术的研究[R].北京:国网北京电力建设研究院,2006.
    [1-5]李茂华.Q420和Q460高强钢在输电线路铁塔应用的研究[R].北京:国网北京电力建设研究院,2006.
    [1-6]Load and Resistance Factor Design Specification for Structural Steel Buildings[S].American institute of steel construction, inc. Chicago,1999.
    [1-7]ASCE 10-1997.Design of latticed steel transmission structures[S].American,1997.
    [1-8]赵熙元.建筑钢结构设计手册[M].北京:冶金工业出版社,1995.
    [1-9]中华人民共和国行业标准,钢结构设计规范(GBJ 17-88)[S].北京:中国计划出版社,1988.
    [1-10]中华人民共和国行业标准,钢结构设计规范(GB 50017-2003)[S].北京:中国计划出版社,2003.
    [1-11]中华人民共和国国家标准,低合金高强度结构钢(GB/T 1591-94)[S].中国标准出版社,1994.
    [1-12]中华人民共和国国家标准,高强度结构钢热处理和控轧钢板、钢带(GB/T 16270-1996)[S].中国标准出版社,1996.
    [1-13]JEAC 6001-2000,日本架空送电规程[S].
    [1-14]中华人民共和国黑色冶金行业标准,铁塔用热轧角钢(YB/T 4163-2007)[S].全国钢标准化技术委员会,2007.
    [1-15]郭日彩,何长华,李喜来等.输电线路铁塔采用高强钢的应用研究[J].电网技术,2006,30(23):21-25.
    [1-16]张东英,王虎长,默增禄等.Q390、Q420高强钢的应用试验分析[C].北京:输电结构学会论文集,2005.
    [1-17]中华人民共和国行业标准,钢结构设计规范(TJ 17-74)[S].北京:中国计划出版社,1974.
    [1-18]沈祖炎,胡学仁.单角钢压杆的稳定计算[J].同济大学学报,1982,10(2):56-71.
    [1-19]李开禧,肖允徽.逆算单元长度法计算单轴失稳时钢压杆的临界力[J].重庆建筑工程学院报,1982(4):26-29.
    [1-20]曹平周.角钢组合T型截面轴心受压构件弯扭失稳承载力研究[J].钢结构,1998,13(1):3-6.
    [1-21]陈骥.单轴对称截面轴心受压构件的弯扭屈曲设计问题[J].钢结构,1999,14(46):49-52.
    [1-22]陈绍蕃.角钢、部分T型钢压杆的弯扭屈曲(1)[J].钢结构,1999,5(50):47-49.
    [1-23]曹磊,王小平,蒋沧如.单面螺栓连接的等边单角钢压杆稳定问题讨论[J].钢结构:2000,15(50):50-52.
    [1-24]郭兵.单角钢压杆的屈曲及稳定计算[J].建筑结构学报:2004,25(6):108-111.
    [1-25]刘红燕,李志业.受压角钢杆长细比修正系数研究[J].建筑钢结构进展,2004,4(6):29-31.
    [1-26]康强文.单肢连接的单角钢压杆承载能力分析[D].杭州:浙江大学建筑工程学院,2005.
    [1-27]陈绍蕃.单边连接单角钢压杆的计算与构造[J].建筑科学与工程学报:2008,2(25):72-78.
    [1-28]刘盼.高强等边角钢极限承载力及稳定性试验与分析[D].重庆:重庆大学,2009.
    [1-29]范金凯.Q460高强等边单角钢轴心受压杆件的理论与试验研究[D].西安:西安建筑科技大学,2009.
    [1-30]魏鹏.Q460高强角钢轴心压杆肢件宽厚比限值试验与理论分析[D].西安:西安建筑科技大学,2009.
    [1-31]拓燕艳.Q460高强角钢轴心受压构件整体稳定性的理论与试验研究[D].西安:西安建筑科技大学,2009.
    [1-32]薛振农.Q460高强角钢两端偏心压杆力学性能研究[D].西安:西安建筑科技大学,2009.
    [1-33]王翰哲.两端偏心受压的Q460热轧等边单角钢整体稳定承载力试验研究[D].西安:西安建筑科技大学,2009.
    [1-34]中华人民共和国电力行业标准.架空送电线路杆塔结构设计技术规(L/T5154-2002)[S].北京:中国电力出版社,2002.
    [1-35]LUTZLA. Effective Slenderness Approach for Evaluating Single Angle Compression St ruts [C]. SSRC.2003 SSRC Annual Technical Session Proceedings.Baltimore:SSRC,2003:35251.
    [1-36]Charles G Culver. Exact Solution of the Biaxial Bending Equations [J]. J.Struct.Division, ASCE, 1966:63-83.
    [1-37]Trahair. N.S., Usami,T., and Galambos,T.V. Eccentrically loaded single-angle columns[R].Structural Division, Deparment of Civil and Environment Engineering, Sever Institute of Technology, St.Louis, Mo.,Research Report No.11.
    [1-38]Usami, T., and Galambos, T.V. Eccentrically loaded single-angle columns[C]. Procedings of the inte-rnational association for bridge and structural engineering conference, Zurich, Switzerland,1971,pp: 153-183.
    [1-39]USAMI,T.,GALAMBOS T.V.. On the St rength of Restrained Single Angle Columns Under Biaxial Bending[J]. Papers and Report s of Japanese Society of Civil Engineering,1971,191:31-41.
    [1-40]R.narayanan. Axially Compressed Structures Stability and Strength[M]. Applied Seience Publishers London and New York,1982,181-216.
    [1-41]Elgaaly,M.,Pagher,H.,and Davids,W.. Behavior of Single-angle compression Members [J]. J. Struct.
    Engrg.,1991,117(12):3720-3741.
    [1-42]Elgaaly,M.,,Davids,W., and Dagher,H.. Non-slender single angle struts[J]. Engineering Journal of the American Institute of Steel Construction,1992,29 (2):49-58.
    [1-43]Zureick,A.. Design strength of concentrically loaded single-angle struts[J]. J. Struct. Engrg.,ASCE, 1991(1):17-30.
    [1-44]Hibbit, Karlson and Sorenson, Inc.. ABAQUS, version 5.4[M]. Providence, R.I.:Hibbit, Karlson and Sorenson, Inc.,1994.
    [1-45]Adluri,M.R. and Madugula,M.. Torsional-flexural buckling strength of steel angles[J]. Can. J. Civ. Engrg.,1996,23(11):260-271.
    [1-46]Temple MC and Sakla SS. Single-angle compression members welded by one leg to a gusset plate.I. Experimental study [J]. Can.J.Civ. Engrg.1998,25(3):569-584.
    [1-47]Zureick,A. and Robert Steffen. Behavior and design of concentrically loaded with thin-walled open cross section[J]. J. Struct. Engrg.,2000:3720-3741.
    [1-48]Popovic D,Hancock GJ,Rasmussen K H R. Compression Tests on Cold-Formed Angles Loaded Parallel with a Leg [J]. J.Struct.Eng.ASCE,2001,127(6):600-607.
    [1-49]Earls,C.J. and Galambos, T.V.. Practical compactness and bracing provisions for design of single angle beams[J]. Eng.J.,AISC,1998:19-25.
    [1-50]Earls,C.J.. Design of single angles bent about the major principal axis[J].Eng.J.,AISC,2003:159-166.
    [1-51]Earls,C.J.. Proposed equal leg single angle flexural design, Provisions for consideration in the devel-opment of future AISC specification editions [J]. Eng.J.,AISC,2003:167-173.
    [1-52]Earls,C.J.On the Notion Effective Length for Single Angle Geometric Axis Flexure [J]. Journal of Constructional Steel Research,2002,58:1195-1210
    [1-53]Mengelkoch, N.S. and Yura.J.a.. Single-angleCompression Members Loaded Through OneLeg[C]. SSRC.2002 SSRC Annual Technical Session Proceedings. Gainesville:SSRC,2002:2012218.
    [1-54]轻型构件小组.单面连接的单角钢单圆钢杆件的稳定性[J].冶金建筑,1977,7(增):56-58.
    [1-55]宇佐美勉,Galambs TV.受约束的双轴弯曲单角钢压杆的承载力[C].土木学会论文报告集,1971:31-44.
    [1-56]沈祖炎.单角钢单面连接时的承载力计算[J].钢结构:1991(1):18-24.
    [1-57]康强文,童根树.单肢连接的单角钢压杆承载力分析[J].钢结构:2006,21(5):7-11.
    [1-58]赵庆斌.送电铁塔单角钢受压极限承载力研究[D].成都:西南交通大学,2004.
    [1-59]陈绍蕃.钢结构设计原理[M].第三版.北京:科学出版社,2005.
    [1-60]陈骥.钢结构稳定理论与设计[M].第三版.北京:科学出版社,2006.
    [1-61]Lutz,L.A.Critical Slenderness of Compression Members with Effective Lengths About Nonprincipal
    Axes [C]. Structural Stability Research Council,Annual Technical Session Proceedings,1992.
    [1-62]N.S. Trahair. Moment Capacities of Steel Angle Sections. Journal of Engineering,2002,128(11): 1387-1393.
    [1-63]N.S.Trahair.Bearing、Shear、and Torsion Capacities of Steel Angle Sections. Jonrnal of Engineering, 2002,128(11):1394-1397.
    [1-64]Sherief S S Sakla. Neural Network Modeling of the Load-Carrying Capacity of Eccentiacally Load Single-Angle Struts [J]. J.Construct Steel Research,2004,50:965-987.
    [1-65]Bjorhovde, R.. Deteministic and Probabilistic Approaches to the Strength of Steel Columns [D]. Ph.D.Dissertation, DePartment of Civil Engineering, Lehi University, Bethlehem, PA,1972.
    [1-66]Beedle, L.S.(Editor-in-chief). Stability of Metal structures-A World View[M],2nd.Ed..U.S.A.,1991.
    [1-67]Stinteso,D.ed.. European Convention of Constructional Steel works Manual on the stability of steel structures[M],2nd.Ed.. ECCS,Paris,1976.
    [1-68]Seshu adhava Rao Adluri, Murtyk.s.madugula. Eccentrically Loaded steelSingle Angle [J]. Struts. Engineering Journal,1992,2:59-66.
    [1-69]Loomis,R.S.. Torsional Buckling Study of Hartford Coliseum[J]. J. of the Struet. Div. ASCE,1980, 106.
    [1-70]Sritawat Kitipornchai & Ho Wah Lee. Inelastic experiments on angle and tee struts[J]. J.Construct Steel Research,1986:219-236.
    [1-71]Saleh H.AI-Sayed & R.Kennedy. Inelastic behavior of single angle columns[J]. J.Construct Steel Research,1989:103-118.
    [1-72]M.K.S.Madugula & J.B.Kennedy. Single and compound angle members structural analysis and desi-gn[M]. Elsevier Applied Science Publishers, London,1985.
    [1-73]Thornton, W.A.. The effect of eccentricity on brace-to-gusset angle[J]. Eng.J.,AISC,1996:123-128.
    [1-74]Charles G Culver. Exact solution of the biaxial bending equations [J]. J.StructDivision. ASCE,1966: 63-83.
    [1-75]Temple M.C. and Sakla SS. Single-angle compression members welded by one leg to a gusset plate .Ⅱ. A parametric study and design equation [J]. Can.J.Civ. Eng.25,1998:285-594.
    [1-76]Temple M.C. and Sakla SS. Considerations for the design of single-angle compression members att-ached by one leg[J]. Can.J.Civ. Eng.23,1996:287-294.
    [1-77]Murray c.Temple. Design of single-angle compression members according to the Canadianstandards [J]. Can.J.Civ. Eng.23,1996:632-638.
    [1-78]Yongcong Ding et al. Experimental basis for the effective length factors of steel solid round cross-braced diagonals in CSA Standard S37-01[J]. Can.J.Civ. Eng.29,2002:430-435.
    [2-1]陈骥.钢结构稳定理论与设计[M].第三版.北京:科学出版社,2006.
    [2-2]Nichino,F.. Buckling strength of columns and their component plates[D]. PH.D.Dissertation, Lehigh University,1965.
    [2-3]吕烈武,沈世钊,沈祖炎等.钢结构构件稳定理论[M]..中国建筑工业出版社,1983.
    [2-4]Thurlimann,B.. Ddformations of and stresses in initially twisted and eccentrically loaded columns of thin-walled open cross setion[C].Report NO.3 TO column research council and the rhode island depar-tment of public works, graduate division of applied mathematics, Brown University,1953.
    [2-5]Culver,C.G..Exact solution of the biaxial bending equation[J]. Journal of the structural division,ASCE, 1966,92(2):63-83.
    [2-6]Chen, W.F., Atsuta, T.. Ultimate strength of biaxial loaded steel H-column[J]. Journal of the structural division, ASCE,1973,99(3):469-489.
    [2-7]Soltis, L.A. and Christiano,P.. Finite deformation of biaxial loaded columns[J]. Journal of the struct-ural division, ASCE,1972,98(12):2647-2662.
    [2-8]Birnstiel, C., Harstead, G.A., Leu, K.C..inelastic behavior of h-colunms under biaxial bending[C]. Research Division, New York University, school of engineering and science,1967,11.
    [2-9]Bimstiel, C.,Che, W.F.. Analysis of biaxial loaded H-column[C]. Research Division, New York Univ-ersity, school of engineering and science,1967,1.
    [2-10]Vinnakota, S.,Aysto,P.. Inelastic spatial stability of restrained beam-columns[J]. Journal of the stru-ctural division, ASCE,1974,100(2):2235-2254.
    [2-11]Vinnakota,S.. Inelastic stability of unsupported I-beams[J]. Computers and Structures,1977,7:377-389.
    [2-12]Chen, W.F., Atsuta, T.. Theory of beam-columns[M]. Vol.2:Space behavior and Design, MCGraw--hill book company,1977.
    [2-13]Rajasekaran, S., Murray,D.W.. Finite element solution of inelastic beam equations[J]. Journal of the structural division, ASCE,1973,99(6):1024-1042.
    [2-14]Usami, T., Galambos,T.V. Eccentrically loaded single angle columns[J]. Publications, international association of bridge and structural engineering,1971,31 (2):153-184.
    [2-15]Hu,X.R., Shen,Z.Y.,Lu,L.W.. Inelastic stability analysis of biaxially loaded beam-colunms by the finite element method[C]. Proceedings of the international conference on finite element methods, 1982,8:52-57.
    [2-16]中华人民共和国行业标准,钢结构设计规范(TJ17-74)[S].北京:中国计划出版社,1974.
    [2-17]中华人民共和国行业标准,钢结构设计规范(GB 50017-2003)[S].北京:中国计划出版社,2003.
    [2-18]Chen W.F.and Atsuta T.. Theory of beam-columns[M]. VOL.1.1976.
    [2-19]李开禧,肖允徽.逆算单元长度法计算单轴失稳时钢压杆的临界力[J].重庆建筑工程学院学报,1982(4):26-29.
    [2-20]李开禧,须宛明.关于”逆算单元长度法“的改进[J].重庆建筑工程学院学报,1989,11(3):37-42.
    [2-21]沈祖炎,胡学仁.单角钢压杆的稳定计算[J].同济大学学报,1982,10(2):56-7
    [2-22]沈祖炎.单角钢单面连接时的承载力计算[J].钢结构,1991,1:18-24.
    [2-23]中华人民共和国电力行业标准,架空送电线路杆塔结构设计技术规定(DL/T 5154-2002)[S].北京:中国电力出版社,2002.
    [2-24]中华人民共和国行业标准,钢结构设计规范(GBJ 17-88)[S].北京:中国计划出版社,1988.
    [2-25]ASCE 10-1997.Design of latticed steel transmission structures[S].American,1997.
    [2-26]AISC/LRFD-SAM-2000. Load and Resistance Factor Design Specification for Single-Angle Members[S]. inc. Chicago,American,2002.
    [2-27]Lutz,L.A..Critical slenderness of compression members with effective lengths about nonprincipal axes[J]. Structural Stability Research Council, Annual Technical Session Proceedings, APR.6-7,Pittsburgh,PA.
    [2-28]CAN/CSA-S37-94. Antennas, towers and antenna supporting structures[S]. Canadia,1994.
    [3-1]中华人民共和国国家标准,钢及钢产品力学性能试验取样位置及试样制备(GB/T2975-1998)[S].北京:中国计划出版社,2004.
    [3-2]中华人民共和国国家标准,金属材料室温拉伸试验方法(GBT228-2002)[S].北京:中国建筑工业出版社,2002.
    [3-3]中华人民共和国行业标准,钢结构设计规范(GB 50017-2003)[S].北京:中国计划出版社,2003.
    [3-4]ASCE 10-1997.Design of latticed steel transmission structures[S].American,1997.
    [3-5]陈绍蕃.钢结构设计原理[M].第二版.北京:科学出版社,2001.
    [3-6]中华人民共和国电力行业标准,架空送电线路杆塔结构设计技术规定(DL/T 5154-2002)[S].北京:中国电力出版社,2002.
    [4-1]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,2003.
    [4-2]Bathe K. J.. Finite Element Procedures [M]. Prentice-Hall, Egnlewood Cliffs, N.J.1996.
    [4-3]龚尧南,王寿梅.结构分析中的非线性有限元素法[M].北京:北京航空学院出版社,1986.
    [4-4]凌道盛,徐兴.非线性有限元及程序[M].浙江:浙江大学出版社,2004.
    [4-5]张汝清,詹先义.非线性有限元分析[M].重庆:重庆大学出版社,1990.
    [4-6]王焕定,吴德伦.有限元法及计算程序[M].北京:中国建筑工业出版社,1998.
    [4-7]Hill K. Mathematical Theory of Plasticity[M]. Oxford Uviversity, Oxford, England,1950.
    [4-8]Zieger H. A Modificaton of Prager's Hardening Rule[J]. Quarterly of Applied Mathematics, Vol.17, 1959,55-65.
    [4-9]Ishlinky I. Genera Theory of Plasticity with Linear Strain Hardening[J]. Ukrainian Mathematical Zhu-rnal, Vol.6,1956,314-324.
    [4-10]Prager W. The Theory of Plasticity:A Survery of Recent Achievement [J]. Procceeding of Mechaical Engineering,Vol.6,1955,41-57.
    [4-11]Axelsson K.& Samuelsson A.. Finite Element Analysis of Elastic-Plastic Materials Displaying Mi-xed Hardening [J]. International Journal of Numerical Method In Engineering, Vol.14,1979,211-215.
    [4-12]Hodge P.G. Discussion to 'A New Method of Analyzing Stresses and Strains in Working Hardening Solids'[J]. Journal of Applied Mechanics,ASME, Vol.24,1989,481-484.
    [4-13]Ansys Verification Manual, Elctronic Release, SAS IP, Inc.,2005.
    [4-14]Ansys Structural Guide, Elctronic Release, SAS IP, Inc.,2005.
    [4-15]Ansys Advanced Guide, Elctronic Release, SAS IP, Inc.,2005.
    [4-16]Ansys Basic Analsis Procedures, Elctronic Release, SAS IP, Inc.,2005.
    [4-17]Ansys Modeling and Meshing Reference, Elctronic Release, SAS IP, Inc.,2005.
    [4-18]Structural Analysis Guide. Ansys, Inc.. Ansys 5.7,2001
    [4-19]Basie Analysis Procedures Guide. Ansys, Inc.. Ansys 5.7,2001
    [4-20]Ansys Element Reference. Ansys, Inc.. Ansys 5.7,2001
    [4-21]Ansys Theory Reference. Ansys, Inc.. Ansys 5.7,2001
    [4-22]Sritawat Kitipornchai & Ho Wah Lee. Inelastic Experiments on Angle and Tee Struts[J]. J. Construct Steel Research,1986,219-236.
    [4-23]李开禧,肖允徽,须宛明.钢压杆的柱子曲线[J].重庆建筑工程学院科技资料,1983,83:1-30.
    [4-24]刘丽敏.高强钢在特高压输电塔中的应用[D].上海:同济大学土木工程学院,2007.
    [4-25]康强文.单肢连接的单角钢压杆承载能力分析[D].杭州:浙江大学建筑工程学院,2005.
    [4-26]刘盼.高强等边角钢极限承载力及稳定性试验与分析[D].重庆:重庆大学,2009.
    [4-27]Bjorhovde, R.. Deteministic and Probabilistic Approaches to the Strength of Steel Columns [D]. Ph.D.Dissertation, DePartment of Civil Engineering, Lehi University, Bethlehem, PA,1972.
    [4-28]Raymond Haidar. Compressive strength of steel single angles loaded through two-bilts in one leg [D]. Windsor Uinversity, Windsor, Ontario,Canda,1996.
    [4-29]Sherief Sharl Shkry Sakla, M.A.Sc.&P.Eng. Single-angle compression members welded by one leg to gusset plates[D]. Windsor Uinversity, Windsor, Ontario,Canda,1997.
    [4-30]范金凯.Q460高强等边单角钢轴心受压杆件的理论与试验研究[D].西安:西安建筑科技大学,2009.
    [4-31]魏鹏.Q460高强角钢轴心压杆肢件宽厚比限值试验与理论分析[D].西安:西安建筑科技大学,2009.
    [4-32]拓燕艳.Q460高强角钢轴心受压构件整体稳定性的理论与试验研究[D].西安:西安建筑科技大学,2009.
    [4-33]薛振农.Q460高强角钢两端偏心压杆力学性能研究[D].西安:西安建筑科技大学,2009.
    [4-34]王翰哲.两端偏心受压的Q460热轧等边单角钢整体稳定承载力试验研究[D].西安:西安建筑科技大学,2009.
    [4-35]Trahair. N.S., Usami,T., and Galambos,T.V.. Eccentrically loaded single-angle columns[R].Structural Division, Deparment of Civil and Environment Engineering, Sever Institute of Technology, St.Louis, Mo.,Research Report No.11.
    [4-36]Usami, T., and Galambos, T.V. Eccentrically loaded single-angle columns[C]. Procedings of the inte-rnational association for bridge and structural engineering conference, Zurich, Switzerland,1971,pp: 153-183.
    [4-37]USAMI,T.,GALAMBOS T.V..On the St rength of Restrained Single Angle Columns Under Biaxial Bending[J]. Papers and Report s of J apanese Society of Civil Engineering,1971,191:31-41.
    [4-38]Elgaaly,M.,Pagher,H.,and Davids, W. Behavior of Single-angle compression Members [J]. J. Struct. Engrg.,1991,117(12):3720-3741.
    [4-39]Elgaaly,M,,Davids,W, and Dagher,H.. Non-slender single angle struts[J]. Engineering Journal of the American Institute of Steel Construction,1992,29 (2):49-58.
    [4-40]Hibbit, Karlson and Sorenson, Inc.. ABAQUS, version 5.4[M]. Providence, R.I.:Hibbit, Karlson and Sorenson, Inc.,1994.
    [4-41]美国ANSYS公司北京办事处.ANSYS用户使用手册,2008.
    [4-42]博弈创作室.ANSYS 9.0经典产品基础教程与实例详解[M].北京:中国水利水电出版社,2006.
    [4-43]Rasmussen K J R., Hancock G J. Tests of high strength steel columns[J]. Journal of Construction Steel Research,1995,34(1):27-52.
    [4-44]Beg D, Hladnik L. Slenderness limit of class 3 I cross-section made of high strength steel[J]. Journal of Construction Steel Research,1996,38(8):201-207.
    [4-45]International Association for Bridge and Structural Engineering. Use and Application of High-Performance Steel for Steel Structures[M]. Zurich:IABSE,2005.
    [4-46]Usami T, Fukumoto Y. Local and overall buckling of welded box colums[J]. Journal of the Structural Division,1982,108(ST3):525-542.
    [4-47]Nishino F, Ueda Y, Tall L. Experimental in vestigation of the buckling of plates with residual stress-es. Test methods for compression members[C]//American Society for Testing and Materials. ASTM Special Technical Publication, Phildelphia, PA,1967 (419):12-30.
    [4-48]Rasmussen K J R., Hancock G J. Plate slenderness limits for high strength steel section[J]. Journal of Construction Steel Research,1992,23(1):73-96.
    [4-49]Estuar F R, Tall L. Experimental investigation of welded built-up columns[J]. Welding Research Sup-plement,1963,42(4):164-176.
    [5-1]中华人民共和国行业标准,钢结构设计规范(GB 50017-2003)[S].北京:中国计划出版社,2003.
    [5-2]ASCE 10-1997.Design of latticed steel transmission structures[S].American,1997.
    [5-3]范金凯.Q460高强等边单角钢轴心受压杆件的理论与试验研究[D].西安:西安建筑科技大学,2009.
    [5-4]AISC/LRFD-SAM-2000. Load and Resistance Factor Design Specification for Single-Angle Members[S]. inc. Chicago,American,2002.
    [5-5]Timoshenko, S.P. and Gere,J.M. Theory of Elastic Stability[M],2nd,Ed.McGraw-Hill,1961,p.180中译本:弹性稳定理论(第二版).科学出版社,1965.
    [5-6]李国豪.桥梁结构稳定与振动[M].人民铁道出版社,1965.
    [5-7]Bleich,F. Buckling strength of metal structures[M]. McGraw-Hill,1952.
    [5-8]Dwight,J.B. and Moxham, K.E. Welded steel plate in compression[J].The structural Eng,1969,47(2):49-66.
    [5-9]陈骥.钢结构稳定理论与设计[M].第三版.北京:科学出版社,2006.
    [5-10]陈骥.受压钢构件的板件的宽厚比[J].钢结构,中国钢结构协会,1991,3:53-59.
    [5-11]Rasmussen K J R., Hancock G J. Tests of high strength steel columns[J]. Journal of Construction Steel Research,1995,34(1):27-52.
    [5-12]Beg D, Hladnik L. Slenderness limit of class 3 I cross-section made of high strength steel[J]. Journal of Construction Steel Research,1996,38(8):201-207.
    [5-13]International Association for Bridge and Structural Engineering. Use and Application of High-Performance Steel for Steel Structures[M]. Zurich:IABSE,2005.
    [5-14]Usami T, Fukumoto Y. Local and overall buckling of welded box colums[J]. Journal of the Structural Division,1982,108(ST3):525-542.
    [5-15]Nishino F, Ueda Y, Tall L. Experimental in vestigation of the buckling of plates with residual stress-es. Test methods for compression members[C]//American Society for Testing and Materials. ASTM Special Technical Publication, Phildelphia, PA,1967 (419):12-30.
    [5-16]Rasmussen K J R., Hancock G J. Plate slenderness limits for high strength steel section[J]. Journal of Construction Steel Research,1992,23(1):73-96.
    [5-17]Estuar F R, Tall L. Experimental investigation of welded built-up columns[J]. Welding Research Sup -plement,1963,42(4):164-176.
    [5-18]施刚,王元清,石永久.高强度钢材轴心受压构件的受力性能[J].建筑结构学报,2009,1(30):92-97.
    [5-19]中华人民共和国行业标准,钢结构设计规范(GB 50017-2003)[S].北京:中国计划出版社,2003.
    [5-20]陈绍蕃.单边连接单角钢压杆的计算与构造[J].建筑科学与工程学报:2008,2(25):72-78.
    [5-21]LUTZLA. Effective Slendemess Approach for Evaluating Single Angle Compression St ruts [C]. SSRC.2003 SSRC Annual Technical Session Proceedings.Baltimore:SSRC,2003:35251.
    [5-22]USAMI,T.,GALAMBOS T.V.. On the St rength of Restrained Single Angle Columns Under Biaxial Bending[J]. Papers and Report s of J apanese Society of Civil Engineering,1971,191:31-41.
    [5-23]Mengelkoch, N.S. and Yura.J.a.. Single-angleCompression Members Loaded Through OneLeg[C]. SSRC.2002 SSRC Annual Technical Session Proceedings. Gainesville:SSRC,2002:2012218.
    [5-24]张东英,王虎长,默增禄等.Q390、Q420高强钢的应用试验分析[C].北京:输电结构学会论文集,2005.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.