一端偏心连接的Q460高强角钢子结构试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,我国电力事业高速发展,对特高压输电塔钢材强度的选用及结构设计方法提出了更高的要求。Q460高强角钢有很好的承载力,其应用于实际工程对提高输电铁塔的经济性、先进性有重要意义。
     架空送电线路塔架的受压角钢中,除一部分主材近似轴心受压构件,其余大部分是偏心受压构件。国内外学者对两端偏心受压单角钢的研究较多,而对一端偏心受压高强角钢试验研究资料很少。目前,我国规范中尚无一端偏心连接的Q460高强角钢计算方法。一端偏心受压角钢构件力的作用线不通过截面形心,且端部约束条件难以确定,受力性能非常复杂,因此单压杆试验中采用何种支座形式难以确定,这成为人们对角钢压杆深入研究的困扰之一,也是国内外研究角钢压杆只考虑两端偏心的原因之一。
     为了避免单角钢受压试验时人为的处理角钢边界条件,考察符合工程实际的边界约束情况,即一端偏心连接Q460高强角钢的破坏模式及极限承载力,本文进行了两个足尺子结构试验,将单根角钢构件设计在类似输电铁塔横担的平面三角形桁架中进行破坏性静力试验,并通过ANSYS建模进行有限元分析,与单压杆试验进行比较并结合其结果对规范提出修改建议,从而使一端偏心高强角钢研究工作更全面、可靠。
     试验研究表明:小长细比一端偏心连接的高强角钢受压时主要发生局部屈曲,变形集中于连接肢的偏心端,大长细比角钢受压时主要发生整体弯扭屈曲。子结构中试验角钢的受力性能和承载力与一端中心另端偏心连接的受压单根试验基本相同,说明单压杆试验偏心端端板直接顶在压力机顶板上、轴心端采用球铰支座能够模拟角钢在实际结构中的端部约束条件。试件《输电铁塔设计导则》(ASCE10-1997)计算值与试验值吻合较好,ASCE10-1997可为高强角钢设计提供依据,鉴于其对大长细比构件的计算偏于保守,本文依据试验结果将ASCE10-1997中一端中心另端偏心连接的角钢有效长细比公式修正为:可为规范修订及设计提供参考。
In recent years,electric power projects of our country has developed quickly. It will call for higher requirements on steel intensity and structural design of electric transmission towers.High-strength (Q460) steel-angle members have the high load-carrying capacity,utilizing them in transmission towers is of great significance to increasing economical efficiency and advanced technology.
     The bulk of the hot-rolled single-angle members in tower structures of overhead transmission line are eccentric compression. The researchs of angle struts eccentricity at both ends are more than that of angle struts eccentricity at one end. The action line of the force does not through centre of section of the angle struts eccentricity at one end,the end supporting conditions are difficult to judge,and mechanical properties are very complex,so,which bearing should be used in single-strut tests is difficult to determine. Domestic single-strut tests tend to use the ball bearing or knife-edge bearing at the present time. Whether these bearings are able to simulate the actual mechanical behavior and constraints is uncertain.
     To analyze mechanical behavior and the ultimate bearing capacity of Q460 high-strength equal-leg angle steel struts with an eccentric load at one end under actual project boundary condition, the angles are placed in the substructures similar to the transmission tower cross arm and failure static test of two substructures are conducted,and finite elements modeling analysis was done at the same time. The results are compared with single-strut tests and some suggestions to improve the specifications will be offered in this paper in order to make researchs more comprehensive and reliable.
     Experimental studies indicate that:Most single-angle with small slenderness were controlled by local buckling while it was under eccentric load at one end, deformation concentrated in the eccentric side of the connected leg, and the large members were controlled by flexural-torsional buckling. Mechanical behavior and bearing capacity of the angles in the substructures is the same as the single-strut's. Therefore, the ball bearing used in single-strut tests can almost imitate the actual end supporting conditions. The calculation basis on ASCE10-1997 agreed well with the experimental results, so it can provide a basis for design of high-strength angle, but it was over-conservative on large slenderness angles, according to the test results, the revised formulas of it were proposed:KA= 45+0.47λ,it is a reference for design.
引文
[1]郭日彩,何长华,李喜来等.输电线路铁塔采用高强钢的应用研究[J].电网技术,2006,30(23):21-25.
    [2]李茂华.Q420和Q460高强钢在输电线路铁塔应用的研究[R].北京:国网北京电力建设研究院,2006.
    [3]刘丽敏.高强钢在特高压输电塔中的应用[D].上海:同济大学土木工程学院.2007.
    [4]中华人民共和国建设部.钢结构设计规范(GB 50017-2003)[S].北京,中国计划出版社,2003.
    [5]ASCE10-1997, Design of latticed steel transmission structures[S].New York, American Society of Civil Engineers.
    [6]中华人民共和国电力行业标准,架空送电线路杆塔结构设计技术规定DL/T5154-2002,[S].中国电力出版社.
    [7]JEAC 6001—2000 日本架空送电规程[S].
    [8]李正良,刘红军,张东英等.Q460高强钢在1000 kV杆塔的应用[J].电网技术,2008,32(24):1-5.
    [9]韩钰,徐德录,杨建平等.Q420高强钢在特高压输电工程中的应用研究[J].电力建设,2009,30(4):33-35.
    [10]梁浩.Q420高强钢在输电线路铁塔上的应用研究[J].上海电力,2009,(4):298-303.
    [11]单面连接的单角钢单圆钢杆件的稳定性[J].冶金建筑设计标准规范工作动态专辑(钢结构部分),1977:56-58.
    [12]沈祖炎,胡学仁.单角钢压杆的稳定计算[J].同济大学学报,1982(3):56-71.
    [13]陈绍蕃.角钢、剖分T型钢压杆的弯扭屈曲[J].钢结构,2000(4):47-49.
    [14]陈绍蕃.单边连接单角钢压杆的计算与构造[J].建筑科学与工程学报,2008(2):72-78.
    [15]郭兵.单角钢压杆的屈曲及稳定计算[J].建筑结构学报,2004(6):108-111.
    [16]曹磊、王小平.单面螺栓连接的等边单角钢压杆稳定问题讨论[J].钢结构,2000(4):50-52.
    [17]李开禧、肖允徽.逆算单元长度法计算单轴失稳钢压杆的临界力[J].重庆建筑工程学院学报,1982(4):26-29.
    [18]涂登瑞.中美通信塔规范自立塔等肢角钢长细比研究[J].特种结构,2008,25(4):107-110.
    [19]肖洪伟,肖兵.送电铁塔斜材承载力的计算[J].四川电力技术,2008,31:(增刊)83-86.
    [20]康强文,童根树.单肢连接的单角钢压杆承载力分析[J].钢结构,2006,2(21):7-11.
    [21]刘盼.高强等边角钢极限承载力及稳定性试验与分析[D].重庆:重庆大学.2008.
    [22]郝际平,曹现雷,张天光等.单边连接高强单角钢压杆试验研究和仿真分析[J].西安建筑科技大学学报,2009,41(6):741-747.
    [23]王翰哲.两端偏心受压的Q460热轧等边单角钢整体稳定承载力试验研究[D].西安:西安建筑科技大学.2009.
    [24]刘红燕,李志业,受压角钢杆件长细比修正系数研究[J].建筑钢结构进展,2004,6(4)29-31.
    [25]曹现雷,郝际平,曹志民等.高强单角钢一端偏心压杆极限承载力试验研究[J].土木建筑与环境工程,2009,31(5):1-8.
    [26]宇佐美勉、Galambs TV.受约束的双轴弯曲单角钢压杆的承载力.土木学会论文报告集[M].1971年7月:31-44.
    [27]Elgaaly et al. Behavior of single-angle-compression members[J].J.Struct. Engrg. 1991,117(12):3720-3741.
    [28]Temple M.C and Sakla S.S.S. Single-angle compression members welded by one leg to a gusset plate.I.Experimental study[J].Can.J.Civ.25,1998:569-584.
    [29]Temple M.C and Sakla S.S.S. Single-angle compression members welded by one leg to a gusset plate.II.A parametric study and design equation[J]. Can.J. Civ.25,1998:585-594.
    [30]Popovic D,Hancock GJ,Rasmussen K H R. Compression Tests on Cold-Formed Angles Loaded Parallel with a Leg [J].J.Struct.Eng.,ASCE,2001,127(6):600-607.
    [31]Charles G Culver,(1966) Exact Solution of the Biaxial Bending Equations[J].J. Struct. Division,ASCE.63-83.
    [32]Sherief S S Sakla. Neural Network Modeling of the Load-Carrying Capacity of
    Eccentiacally Load Single-Angle Struts[J].J.Construct Steel Research,2004, 50:965-987.
    [33]Mengelkoch NS, Yura JA.Single-angle Compression Members Loaded Through One Leg[C]. Proceedings, Annual Stability Conference SSRC,2002:201-218.
    [34]曾程.大跨越输电塔结构极限承载力分析[D].上海:同济大学.2006.
    [35]陈绍蕃,钢结构设计原理(第三版)[M].科学出版社,2005.
    [36]陈骥,钢结构稳定理论与设计(第三版)[M].科学出版社,2006.
    [37]薛振农.Q460高强角钢两端偏心压杆力学性能研究[D].西安:西安建筑科技大学.2009.
    [38]申成军,郭兵,曹现雷.输电铁塔等边单角钢两端偏心压杆非线性分析[J].水利与建筑工程学报,2009,7(4):66-69.
    [39]王国周,钢结构残余应力分布的若干特点[J].冶金建筑,No.8,31-35,1981.
    [40]夏开全,李茂华,李峰,特高压输电线路直线塔结构分析与试验[J].高电压技术,2007,33(11):56-60.
    [41]DLGJ 136-1997,送电线路铁塔制图和构造规定[S].
    [42]龚曙光、谢桂兰,ANSYS操作命令与参数化编程[M].机械工业出版社,2004.
    [43]博弈创作室,ANSYS9.0经典产品基础教程与实例详解[M].中国水利水电出版社,2006.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.