大蒜中植物络合素合酶基因的克隆及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代工业的发展,重金属污染已经成为一个非常严重的问题。 传统的
    重金属治理方法花费较高并且过程非常繁琐。植物修复技术是一种经济并且有效
    的利用植物进行环境污染治理的新方法。植物络合素是一类植物体内络合重金属
    离子的多肽,它已经发现于多种植物与微生物中。植物络合素合酶是催化GSH
    合成植物络合素的关键酶。因此揭示植物络合素合酶的分子机理对于了解植物
    对重金属抗性的机制又很重要的意义。迄今为止,关于植物络合素合酶基因的研
    究主要集中在两种非重金属的植物中:拟南芥与小麦。许多关于该基因结构与功
    能的问题依然很不清楚。大蒜是一种能够抗很高浓度重金属的植物。在本研究中,
    我们利用大蒜这种重金属抗性植物对以下问题做了较为系统的研究:
    1. 测量了大蒜在重金属胁迫下的生理表现,并得出大蒜是一种具有重金属抗
    性的植物;
    2. 我们从大蒜中克隆出一个新的植物络合素合酶基因。该基因全长1868bp,
    包含一个506个氨基酸的开放读码框并编码一个55. 8KD的蛋白。该基因
    转译的氨基酸序列与其他十二种物种的植物络合素合酶氨基酸序列具有很
    高的同源性;
    3. 酵母功能互补试验证明表达AsPCS的酵母可以比对照耐受更高浓度的镉与
    砷。这表明AsPCS的转译产物在酵母与植物的重金属的耐受过程中起很重
    要的作用;
    4. RT-PCR的结果表明,经过重金属Cd2+的胁迫,AsPCS在根中与茎中的表
    达量都有提高,这说明AsPCS的调控是发生在转录水平上的。另外通过比
    较该基因在相同处理条件下根中与茎中的表达量,我们发现AsPCS在根中
    的表达量远高于茎中;
    5. 原位杂交显示AsPCS主要表达于根的表皮、顶端分生组织、韧皮部,并且
    当重金属压力提高后,表皮的表达量明显提高。
Heavy metals have become one of the most serious environmental pollution problems worldwide. Traditional methods to remove the heavy metals from environments are very expensive and inconvenient. Phytoremediation is a new cheap and effective way that depends plants to clean the environmental pollution. Phytochelatins (PCs) are a type of polypeptide in plant to bind heavy metals. They have been identified in a wide variety of plant species and in some microorganisms. PCs are synthesized from GSH by the catalysis of phytochelatin synthase. So revealing the molecular base of the phytochelatins synthase is very important to understand the mechanism of heavy metal resistance in plants. Until now, the research about phytochelatins synthase genes only focuses on two heavy metal sensitive plant: Arabidopsis thaliana and Triticum aestivum. Many problems about the genes' structures and functions of transcript products are still unclear. Allium Sativum L. (garlic) is a kind of plant which can tolerate much heavy metal stress. In this study, we used this plant and make some research below:1. The physiological performance of garlic under heavy metal stress was determined and we get a conclusion that garlic is one of heavy metal tolerance plants.2. A new phytochelatin synthase cDNA from Allium Sativum L. (AsPCS) was cloned. This cDNA sequence with a full length of 1868 bp contains an open reading frame (ORF) of 506 amino acids and encodes a protein with 55.8 kDa molecular weight. The predicted polypeptide shows high homology with PC synthase from twelve other species;3. The AsPCS-expression yeast cells can tolerate more cadmium and arsenite stress. It suggests that as a key enzyme, the transcript product of AsPCS plays an important role in different heavy metals tolerance.4. The results of RT-PCR showed that the expression of AsPCS was enhanced by Cd2+ in both roots and shoots in garlic. It means that AsPCS was regulated at the
    
    transcriptional level. Moreover, comparing the expression of AsPCS in the roots and shoots, we found that the roots display a much higher expression level than the shoots;5. The results of in situ hybridization demonstrated that AsPCS was found to be expressed in the apical meristem, epidermis, and vascular cylinder of roots. In addition, the expression quality of this gene in epidermis was increased under Cd2+ stress.
引文
1. Buchanan-Wollaston V. (1994) Isolation of cDNA clones for genes that are expressed during leaf senescence in Brassica napus. Identification of a gene encoding a senescence-specific metallothionein-like protein. Plant Physiol. 105: 839-46.
    2. Clemens S, Kim EJ, Neumann D, Schroeder JI (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J 18: 3325-3333
    3. Chen JJ, Zhou JM, Goldsbrough PB (1997) Characterization of phytochelatin synthase from tomato. Physiol. Plant 101: 165-72
    4. Cherian GM, Chan HM. (1993) Biological functions of metallothioneins-a reviews. Basel: Birkhauser, pp. 87-109
    5. Choil D, Kim HM, Yun HK, Park JA, Kim WT, and Bok SH. (1996) Molecular cloning of a metallothionein-like gene from Nicotina glutinosa L. and its induction by wounding and tobacco mosaic virus Infection. Plant Physiol. 112: 353-359
    6. Cobbett CS (1999) Phytochelatin synthase genes from Arabidopsis and the yeast, Schizosaccharomyces pombe. Plant Cell 11: 1153-1164
    7. Cobbett CS (2000) Phytochelatins and their Roles in heavy metal detoxification. Plant Physiol. 123: 825-832
    8. Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: Roles in heavy metal detoxification and homeostasis. Annu. Rev. Plant Biol. 53: 159-82
    9. Cobbett CS, May MJ, Howden R, Rolls B (1998) The glutathione-deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thaliana is deficient in γ-glutamylcysteine synthetase. Plant J 16: 73-78
    10. Dushenkov SPBA, Kumar N, Motto H, Raskin I (1995) Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environ. Sci Technol 29: 1239-1245
    
    11. Ecker DJ, Butt TR, Sternberg EJ, Neeper MP, Debouck C, Gorman JA, Crooke ST (1986) Yeast metallothionein function in metal ion detoxification. JBiol. Chem. 261: 16895-16900
    12. Foley RC, Liang ZM, Singh KB. (1994) Isolation of a Vicia faba metallothioneins-like gene: expression patterns in Arabidopsis. Plant Mol.Biol. 26: 435-44
    13. Garcia-Hernandez M, Murphy M, Lincoln T (1998) Metallothioneins 1 and 2 have distinct but overlapping expression patterns in Arabidopsis. Plant Physiol. 118:387-397
    14. Goldsbrough PB, Cobbett CS (1999) Phytochelatin synthase genes from Arabidopsis and the yeast, Schizosaccharomyces pombe. Plant Cell 11: 1153-1164
    15. Goyer RA (1997) Toxic and essential metal interaction. Annu. Rev. Nutr. 17: 37-50
    16. Grill E, Loffler S, Winnacher E-L, Zenk MH. (1989) Phytochelatins, the heavy-metal binding peptides of plants, are synthesized from Glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (Phytochelatin synthase). Proc.Natl.Acad.Sci.USA 86:6838-6842
    17. Grill E, Winnacker E-L, Zenk MH. (1985) Phytochelatins, the principal heavy-metal complexing peptides of higher plants. Science 230:674-676
    18. Ha S-B, Smith AP, Howden R, Dietrich WM, Bugg S, O'Connell MJ, Homden R, Goldsbrough PB, Andersen CR, Cobbett CS (1995) Cadmium-sensitive, cadl, mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol. 107: 1059-1066
    19. Howden R, Goldsbrough PB, Andersen CR, Cobbett CS (1995) Cadmium-sensitive, cadl, mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol 107: 1059-1066
    20. Hsieh HM, Liu WK, Chang A, Huang PC. (1996) RNA expression patterns of type 2 metallothionein-like gene from rice. Plant Mol.Biol. 32: 525-529
    21. Hsieh HM, Liu WK, Huang PC. (1995) A novel stress-inducible metallothionein-like gene from rice. Plant Mol. Biol. 28: 381-89
    22
    
    22. Klaassen CD, Liu J, Choudhuri S. (1999) Metallothioneins: an intracellularprotein to protect against cadmium toxicity. Annu.Rev. Pharmacol. Toxicol. 39: 267-94
    23. Lane B, Lajioke R, Kejjedy T. (1987) The wheat germ EC protein is a zinc-containing metallothioneia Biochem Cell Biol. 65:1001-1005
    24. Lee S, Moon JS, Ko T-S, Petros D, Goldsbrough PB, Korban SS (2003) Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol. 131: 656-663
    25. Li Z-S, Lu Y-P, Zhen R-G, Szczypka M, Thiele DJ, Rea PA (1997) A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis (glutathionato) cadmium. Proc Natl Acad Sci USA 94: 42-47
    26. Ma M, Lau PS, Jia YT, Tsang WK, Lam SKS, Tam NFY, Wong YS (2003) The isolation and characterization of Type 1 metallothionein (MT) cDNA from a heavy-metal tolerant plant, Festuca rubra cv. Merlin. Plant Sci. 164:51-60
    27. Marcus EV, Schmoger MO, Grill E (2000) Detoxification of arsenic by phytochelatins in plants. 122: 793-802
    28. Meharg AA, Hartley-Whitaker J. (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytologist 154: 29-44
    29. Minet M, Dufour M-E, Lacroute F (1992) Complementation of Sccharomyces cerevisiae auxotrophic mutants by Arabidopsis thaliana cDNAs. Plant J. 2: 417-422
    30. Murphy A, Taiz L (1995) A new vertical mesh transfer technique for metal-tolerance studies in Arabidopsis: ecotypic variation and copper-sensitive mutants. Plant Physiol. 108: 29-38
    31. Murphy A, Zhou J, Goldsbrough PB, Taiz L. Purification and immunological identification of metallothionein 1 and 2 from Arabidopsis thaliana. Plant Physiol. 1997,13:1293-1301
    32. Ortiz DF, Kreppel L, Speiser DM, Scheel G, McDonald G, Ow DW (1992) Heavy-metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter. EMBO J 11: 3491-3499
    33
    
    33. Ortiz DF, Ruscitti T, McCue KF, Ow DW. (1995a) Transport of Metal-binding peptides by HMT1, a fission yeast ABC-Type vacuole membrane protein J.Biol.Chem. 270:4721-4728.
    34. Ortiz DF, Theresa R, Kent F, McCue, Ow DW. Transport of metal-binding peptides by HTM1, a fission yeast ABC-Type vacuolar membrane protein. The Journal of Biological Chemistry, 1995b, 270:4721-4728
    35. Pence NS, Larsen PB, Ebbs SD, Letham DL, Lasat MM, Garvin DF, Eide D, Kochian LC. (2000) The molecular physiology of heavy metal transport in Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc. Natl. Acad. Sci. USA 97:4956-4960
    36. Rauser WE (1995) Phytochelatins and related peptides: structure, biosynthesis, and function. Plant Physiol. 109: 1141-1149
    37. Rauser WE (1999) Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytin and metallothioneins. Cell Biochem. Biophys. 31: 19-48
    38. Robinson NJ, Tommey AM, Kuske C, Jackson PJ. (1993) Plant metallothioneins. Biochem. J. 295:1-10
    39. Salt DE, Prince RC, Pickering IJ, Raskin I. (109) Mechanism of Cadmium mobility and accumulation in Indian Mustard. Plant Physiol. 109: 427-33
    40. Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic. Biol. Med. 18: 321-336
    41. Vatamaniuk OK, Mari S, Lu Y-P, Rea PA (1999) AtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. Proc. Natl. Acad. Sci. U.S.A. 96:7110-7115
    42. Vatamaniuk OK, Mari S, Lu Y-P, Rea PA (2000) Mechanism of heavy metal ion activation of phytochelatin (PC) synthase: blocked thiols are sufficient for PC synthase-catalyzed transpeptidation of glutathione and related thiol peptides. J. Biol. Chem. 275: 31451-31459
    
    43. Vogeli-Lange R, Wagner GJ (1990) Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves: implication of a transport function for cadmium-binding peptides. Plant Physiol 92: 1086-1093
    44. Vonwiren N, Marschner H, Romheld V. (1996) Roots of iron efficient maize also absorb phytosiderophores-chelated zinc. Plant Physiol. 111:1119-25
    45. Whitelaw CA, Le Huquer JA, Thurman DA, Tomsett AB. (1997) The isolation and characterization of typeⅡ metallothionein-like genes from tomato (Lycopersicim esculemtum L.). Plant Mol.Biol. 33:503-511
    46. Wysocki R, Bobrowicz P, Ulaszewski S (1997) The Saccharomyces cerevisiae ACR3 gene encodes a putative membrane protein involved in arsenite transport. J. Biol. Chem. 272: 30061-30066
    47. Zenk MH. (1996) Heavy metal detoxification in higher plants-a review. Gene 179: 21-30
    48. Zhou J, Goldsbrough PB. (1994) Functional homologs of animal and fungal metallothionein genes from Arabidopsis. Plant Cell 6: 875-54
    49. Zhou JM, Goldsbrough PB. (1995) Structure, organization and expression of the metallothionein gene family in Arabidopsis. Mol.Gen.Genet. 248:318-328
    50. Zhu YL, Pilon-Smits EAH, Jouanin L, and Terry N (1999) Overexpression of glutathione synthetase in Indian Mustard enhances cadmium accumulation and tolerance. Plant Physiol. 119: 73-80
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.