型直流侧有源电力滤波器的谐波抑制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
着配电网中各种电力电子设备广泛应用,其产生的大量谐波注入电网中,电力系统的谐波不仅影响电网的供电质量,甚至危及到整个电网的运行安全。因此,抑制谐波的有效方法已成为电工学科领域研究的热点。
     传统的无源电力滤波器(Passive Filter,PF)只能抑制特定次数的谐波,且容易在谐波治理过程中与电网产生串联谐振。有源电力滤波器(Active Power Filter,APF)作为一种动态抑制谐波和补偿无功装置,被认为是治理电网谐波污染最有效的手段之一,它能够很好地解决无源电力滤波器在谐波治理过程中存在的问题。着整流桥类负载的广泛使用,电网中的谐波污染更加严重。针对整流桥类负载中的一系列电能质量问题,直流侧有源电力滤波器(Direct Current Side Active Power Filter,DCSAPF)的综合谐波治理方案将会带来显著的经济效益。本论文的研究得到了重庆大学输配电装备及系统安全与新技术国家重点实验室自主项目(项目编号:2007DA10512709304)的资助。文章研究内容主要包括了谐波的产生与治理、APF的研究现状与控制策略、滤波器基础理论、DC侧APF新拓扑模型的提出、新拓扑的仿真研究、主电路参数的最优设计与选取以及整机实验调试等部分。
     论文首先全面地介绍了谐波的产生与危害、谐波的定义与量化、谐波抑制的方法、滤波器基础理论、APF研究现状与分类、有源电力滤波器常用的各种控制策略与方案等。
     后,在探讨了低电感耗损、低开关应力的双电感双开关Buck-boost拓扑族结构的基础上,针对DC侧串联型APF存在储能电容过大、负载电压的稳定输出过分依赖储能电容电压、控制和驱动电路过于复杂、输出电压不可调等不足,文章提出了一种输出可调压的DC侧APF主电路拓扑模型,采用同频同宽控制来简化控制与驱动电路。由于以上所提拓扑存在输出电压调节范围较小,且在过零点处电感电流容易出现较大畸变,文章改了一种DC侧APF主电路拓扑,同时分析了改型DC侧APF工作原理、功率流向以及输出电压纹波,建立了大信号动态模型,推导了相应的控制方程,设计了改型DC侧APF的PI调节器,并通过恒频滞环控制以及平均电流控制对改型DC侧APF行全面的仿真研究,从原理上验证了所提拓扑的合理性与可行性,为整机实验奠定了一定的基础。
     接着,参照仿真实验及仿真参数选取结果,对整机实验的参数行了优化选取,设计了整机实验方案以及模块电路,行了电路调试,并给出了部分实验波形。同时对照分析了仿真实验与整机实验结果,从而验证改型DC侧APF拓扑的正确性。
     最后,将单相改型DC侧APF应用到三相改型DC侧APF系统中,并提出了谐波注入式结构的三相改型DC侧APF,通过谐波注入式方法来减少有源开关数量,从而减小了成本。同时根据传统PI调节器存在着动态性和实时性不好的问题,文章引入了一种多矢量误差放大器来克服传统调节器存在的不足。
With various electronic equipments widely used in the electricity distribution network, they bring a large number of harmonics into the power grid. Power system harmonics not only affect the quality of the grid, but also endanger the safe operation of the entire power grid. Therefore, an effective way to suppress harmonic in electric disciplinary area has become a hot research spot.
     The traditional passive power filter (Passive Filter, PF) suppresses only the specific number of harmonics, and is easy to generate series resonance in the process of suppressing the harmonic. APF (Active Power Filter, APF), as a dynamic suppression of harmonics and the compensation device of reactive power, is one of the most effective means to suppress harmonic pollution, it can solve all problems which the passive power filter can not work out properly. Many kinds of nonlinear loads, such as the bridge rectifier, are widely used, DC side active power filter (Direct Current Side Active Power Filter, DCSAPF) will bring significant economic benefits and value in the comprehensive management of power quality. The present study is funded by the newly independent program of Chongqing University State Key Laboratory of Power Transmission Equipment & System Security and New Technology (item number: 2007DA10512709304).This thesis mainly includes generation and management of harmonic, the control strategies and research status of APF, the basic theory of the filter, the new proposed topology of DC side APF, the simulation of the new topology, the optimal designing and selection of the main circuit parameters and the debugging of experimental equipments.
     Firstly, this thesis comprehensively introduces the generation and damage of the harmonic, the definition and quantification of the harmonic, the method of harmonic suppression, the basic theory of the filter, the research status and classification of APF, all the popular control strategies and programs of APF and so on.
     Subsequently, as to the DC side APF series-type, it has some shortages as follows using too large capacitor, the stability of the load output voltage which is over-reliance on the voltage of energy storage capacitor, the complexity of the control and drive circuits, the disadjustment of the output voltage. On the basis of researching into the low loss of inductance and low switch stress buck-boost topology family which has double inductors and double switches,the thesis puts forward the model of main circuit whose output voltage can be adjusted, and use the same frequency accompanying bandwidth correspondingly control to simplify the control and drive circuits. Because of the smaller adjustable range and the greater distortion of inductor current in the department of zero point, article proposes an improved DC side APF circuit topology. At the same time, working principle of improved DC side APF as well as the direction of power flow and the output voltage ripple is analyzed; a large-signal dynamic model is established; the corresponding control equations are derived and the PI regulator of improved DC side APF is designed. Through constant frequency hysteresis control and the average current control, the system of DC side APF is simulated. The simulation results show that the topology is rational and feasible in principle, furthermore, have laid a certain foundation for the experimental device simultaneously.
     Then, according to the simulation experiments and parameters selection, experimental parameters are selected optimally, and experimental program and module circuits are designed fully. The circuit is debugged, and gives some experimental waveforms. Results of experiment and simulation are analyzed in detail. Those show the correctness of improved DC side APF topology.
     Finally, the improved single-phase DC-side APF is applied to the three phase improved DC-side APF system. And proposed three-phase harmonic injection structure of improved DC side APF, the harmonic injection method reduces the number of active switches, as a result the cost reduced greatly. Simultaneously, owing to the traditional PI regulator which is badly in dynamic and real-time, article introduces a multi-vector error amplifier to overcome the shortcomings of traditional regulator.
引文
[1]陈仲.并联有源电力滤波器实用关键技术的研究[D].浙江大学博士学位论文,2005.
    [2] Toshihiko Tanaka,Hirofumi Akagi.A new combined system of series active and shunt passive filters aiming at harmonic compensation for large capacity thyristor converters [J]. IEEE IECON'91.1991,l:723-728.
    [3]吴竞昌,孙树勤,宋文南等.电力系统谐波[M].北京:水利电力出版社,1988.
    [4]王兆安,黄俊.电力电子技术[M].北京:机械工业出版社,2002.
    [5]王兆安,杨君,刘军等.谐波抑制和无功补偿[M].北京:机械工业出版社,2006.
    [6]周雒维.有源电力滤波器谐波电流检测和控制新方法的研究[D].重庆大学博士学位论文,2001.
    [7]李红雨,吴隆辉,卓放.多重化大容量有源电力滤波器的主电路结构研究[J].电网技术.2004,28(23):12-16.
    [8]张直平,李芬辰.城市电网谐波手册[M].北京:中国电力出版社,2001.
    [9]夏道止,沈赞埙.高压直流输电系统的谐波分析及滤波[M].北京:水利水电出版社,1994.
    [10]杜雄.电力谐波有源补偿新方法的研究[D].重庆大学博士学位论文,2005.
    [11]罗其锋.有源电力滤波器在配网中的关键技术实用化研究[D].广东工业大学硕士学位论文,2008.
    [12]陈章潮,程浩忠.城市电网规划与改造(第二版)[M].北京:中国电力出版社,2007.
    [13] Read J C.The calculation of rectifier and converter performance characteristics[J].Journal IEF. 1945,92,Ⅱ:495-590.
    [14] Kimbark E W.Direct current transmission[M].New York:John Wiley and Sons,1971.
    [15]郭自勇.有源电力滤波器检测与控制技术的研究及应用[D].湖南大学博士学位论文,2007.
    [16]张树全,戴珂,谢斌等.多同步旋转坐标系下指定次谐波电流控制[J].中国电机工程学报.2010,30(3):55-61.
    [17]周柯.注入式有源电力滤波器的关键技术研究与工程应用[D].湖南大学博士学位论文,2007.
    [18]翁利民,张莉,刘琨.低压配电网的谐波与治理[J].电气时代.2006,(1):98-99.
    [19]吴明雷.并联型有源电力滤波器的研制[D].山东大学硕士学位论文,2008.
    [20] David D.Shipp.Harmonic analysis and suppression for electrical systems supplying static power converters and other nonlinear loads [J].IEEE Trans.on IA.1979,15(5):453-458.
    [21] B.M.Bird.Harmonic reduction in multiple converters by triple-frequency current injection [J]. Proc.IEE.1969,116(10):1730-1734.
    
    [22] H.Sasaki.A new method to eliminate ac harmonic current by magnetic compensation consideration on basic design [J].IEEE Trans.on P.A.S.1971,90(5):2009-2019.
    [23] L.Gyugyi.Active AC power filters [J].IEEE IAS.1976,529-535.
    [24]姜齐荣,赵东元,陈建业.有源电力滤波器-结构·原理·控制[M].北京:科学出版社,2005.
    [25]李刚.单独注入式有源电力滤波器研究与工程应用[D].中南大学硕士学位论文,2005.
    [26] Bhim S,Kamal A H.A Review of Active Filters for Power Quality Improvement [J].IEEE Trans.1999,46(5):960-971.
    [27]王党帅.有源电力滤波器谐波与无功电流检测方法的研究[J].西安理工大学硕士学位论文,2008.
    [28]何英杰,王兆安,刘军等.中高压电网有源电力滤波器拓扑结构对比分析[J].电气传动.2010,40(2):66-69.
    [29]胡凯.基于单位功率因数和微粒群算法的有源电力滤波器研究[D].中南大学硕士学位论文,2009.
    [30]李琼林,刘会金,孙建军等.大容量有源滤波器的拓扑结构分析[J].高电压技术.2006,32(2):70-77.
    [31]张秀娟,姜齐荣,韩英驿.一种新型的单相统一电能质量调节器[J].电力系统自动化.2004,28(23):76-80
    [32] Nasiri A.Emadi A.Different topologies for single phase unified power quality conditioners [C].The 38th IAS Annual Meeting of Industry Applications Conference.Chicago,USA,2003,(2):976-981.
    [33]丁洪发,段献忠,朱庆春.混合型电能质量调节器及其控制策略[J].中国电机工程学报.2006,26(8):33-38.
    [34]杜晓华.有源电力滤波器谐波检测方法的研究[D].长沙理工大学硕士学位论文,2007.
    [35]王群,姚为正,刘军等.电压型谐波源与串联型有源电力滤波器[J].电力系统自动化.2000,24(7):30-35.
    [36]王群,姚为正,刘军等.谐波源与有源电力滤波器的补偿特性[J].中国电机工程学报.2001,21(2):16-20.
    [37]侯世英,郑含博,林茂等.直流侧串联型有源电力滤波器的单周控制方法[J].重庆大学学报(自然科学版).2008,31(7):740-743.
    [38] Jianhua Wu, Hali Pang, Xinhe Xu. Neural-Network-Based Inverse Control Method for Active Power Filter System [C]. Proceedings of the 2006 IEEE International Symposium on Intelligent Control.Munich,Germany,2006:3094-3097.
    [39] Jinn Chang Wu,Hurng Liahng Jou,Ya Tsungfeng.Novel Circuit Topology for Three Phase Active Power Filter [J].IEEE trans on power delivery.2007,22(1):444-449.
    [40]朱燕,谢品芳,周雒维.分布式有源电力滤波系统[J].电网技术.2006,30(增刊):64-67.
    [41]薛花,姜建国.基于无源性的并联型有源电力滤波器控制策略[J].电力系统自动化.2006,30(22):12-15.
    [42]董雪武,曾国宏.新型有源电力滤波器控制方法及其SABER仿真[J].电网技术.2008,32(增刊1):40-43.
    [43] Jingquan Chen , Maksimovic D, Erickson R.Buck-boost PWM converters having two independently controlled switches [C]. Power Electronics Specialists Conference.2001,2:736- 741
    [44] Jingquan Chen,Maksimovic D,Erickson R.Analysis and design of a low-stress buck-boost converter in universal-input PFC applications [J]. IEEE Trans on Power Electronics.2006,21(2):320-329.
    [45] Yun W.Lu,Wangfeng Zhang, Yanfei Liu.A Large Signal Dynamic Model For Single-Phase AC-to-DC converters with Power Factor Correction [C].35th Annual IEEE Power Electronics Specialists Conference.Aachen,Germany,2004.
    [46]林维明,宋辉淇,Javier.一种新型单级有源功率因数校正电路的设计分析[J].电工技术学报.2005,20(10):60-65.
    [47] Alexander Abramovitz,Michael Evzelman,Sam Ben-Yaakov.Investigation of an Alternative APFC Control with no Sensing of Line Voltage Based on a Triangular Modulation Carrier [C]. Applied Power Electronics Conference and Exposition,23th Annual IEEE. 2008,709-714.
    [48] D.Y. Qiu,S.C. Yip,Henry S. H. Chung,et al.Single Current Sensor Control for Single-Phase Active Power Factor Correction [J].IEEE Trans on Power Electronics.2002,17(5):623-632.
    [49]谢品芳,杜雄,周雒维.单周控制直流侧单相有源电力滤波器[J].电工技术学报.2003,18(4):51-55.
    [50]王小伟,赵伟,涂春鸣,罗安.双谐振注入式混合有源电力滤波器及控制方法[J].电力系统自动化.2010,34(2):59-62.
    [51]郭伟峰,徐殿国,武健等.LCL有源电力滤波器新型方法[J].中国电机工程学报.2010,30(3):42-48.
    [52]侯世英,郑含博,刘庚等.单相串联型直流侧有源电力滤波器[J].重庆大学学报.2008,31(4):408-412.
    [53]侯世英,嵇丽明,索丽娟等.改的直流侧串联型有源电力滤波器[J].电网技术.2009,33(18):1-5.
    [54]叶忠明,董伯藩,钱照明.有源电力滤波器的控制策略[J].浙江大学学报(工学版).1998,32(4):437-443.
    [55]刘斌.并联型有源电力滤波器的研究与实验[D].北京交通大学硕士学位论文,2007.
    [56]刘庚.直流侧有源电力滤波器的研究[D].重庆大学硕士学位论文,2007.
    [57]侯世英.直流侧串联型有源电力滤波器的建模与控制研究[D].重庆大学博士学位论文,2008.
    [58]王建赜,杨梅,纪延超.一种递推式单次谐波快速傅立叶算法[J].继电器.2003,31(5):14-18.
    [59]钟庆,吴捷,杨金明.现代控制理论在有源电力滤波器中的应用[J].电力自动化设备.2004,24(3):88-92.
    [60] Torrey D A,Al-Zamel A M.A single-phase active power filter for multiple nonlinear loads [J]. IEEE APEC.1994,2:901-908.
    [61] Khadkikar V,Agarwal P,Chandra A,et al. A simple new control technique for unified power quality conditioner (UPQC) [C].International Conference on Harmonics and Quality of Power. 2004:289-292.
    [62] Wu J C,Jou H L.Simplified control method for the single-phase active power filter[J].IEE Proc Electr Power Application.1996,143(3):219-224.
    [63] Simone Buso,Luigi Malesani,Paolo Mattavelli.Comparison of current control techniques for active filter applications [J].IEEE Trans on Industrial Electronics.1998,45(5):722-726.
    [64] Vander Broeck H W,Skudelny H C,Stanke G.Analysis and realization of a pulse width modulator based on voltage space vectors [J].IEEE Trans.Ind.1986:244-251.
    [65]赵雷,韩建定,李锋.基于电压空间矢量的有源电力滤波器双滞环电流控制方法[J].电测与仪表.2009,46(525):24-28.
    [66] Kawamura A,Haneyoshi T,Hoft R G.Deadbeat controlled PWM inverter with parameter estimation using only voltage sensor[J].IEEE Trans on Power Electronics.1988,3(2):118-125.
    [67]李玉梅,马伟明.无差拍控制器在串联电力滤波器中的应用[J].电力系统自动化.2001,25(8):28-31.
    [68] Nava-Segura A,Linares-Flores .Transient analysis of a vector controlled active filter[C].2000 Industry Applications Conference.2000,4:2129-2134.
    [69] Fukuda S, Yoda T.A novel current-tracking method for active filters based on a sinusoidal internal model [J].IEEE Trans.Industry Applications.2001,37 (3):888-895.
    [70] Ambrozic V,Fiser R,Nedel jkovic D.Direct Current Control-A New Current Regulation Principle [J].IEEE Trans on Power Electronics.2003,18(1):495-503.
    [71]马化盛,张波,郑健超.AC/DC Buck-Boost PFC变换器滑模变结构及PI调节器综合控制[J] .电工技术学报.2004,19(9):69-72.
    [72]田召广,王玉斌,吕燕等.单周控制APF稳态工作过程分析和PI调节器设计[J].电力自动化设备.2006,26(9):39-42.
    [73]胡凯,申群太.基于微粒群算法优化PI参数的单相有源电力滤波器[J].电力系统保护与控制.2009,37(18):51-56.
    [74] Keng C. Wu.Transistor Circuits for Spacecraft Power System [M].Norwell,MA:Kluwer Academic Publisher,2002.
    [75]王玉斌,厉吉文,田召广.一种新型的基于单周控制的功率因数校正方法及实验研究[J].电工技术学报.2007,22(2):137-143.
    [76]郑含博.基于单周控制的直流侧串联型有源电力滤波器研究[D].重庆大学硕士学位论文,2009.
    [77]刘宏超.三相四开关并联型有源电力滤波器的理论与应用研究[D].湖南大学博士学位论文,2009.
    [78] Malesani L,Mattavlli P,Tomasin P.High-performance hysteresis modulation technique for active filters [J].IEEE Trans on PE.1997,12 (5):876-884.
    [79] C.Chiarelli,L.Malesani.Single-phase three-level constant frequency current hysteresis control for UPS applications[C].Proc.of European Conf.Power Electronics and Applications.U.K.1993:180-185.
    [80] Q.Yao,D.G.Holmes.A simple novel method for variable-hysteresis-band current control of a three phase inverter with constant switching frequency[C].Conf.Recordings IEEE-IAS Annual Meeting.Canada,1993:1122-1129.
    [81]侯世英,嵇丽明,庹元科.单相统一电能质量调节器的能量优化控制策略及仿真[J] .电力系统自动化设备.2009,29 (7):56-59.
    [82] Tanaka T H,Yuuj I N D.A method of compensating harmonic currents generated by consumer electronic equipment using the correlation function [J].IEEE Transactions on Power Delivery. 2004,19(1):266-271.
    [83] Bhende C N,Mishra S.Ts-fuzzy controlled active power filter for load compensation [J].IEEE Trans on Power Electronics.2006,21(3):1459-1465.
    [84] Wu L H,Zhuo F,Zhang P B ,et al.Study on the influence of supply-voltage fluctuation on shunt active power filter [J].IEEE Trans on Power Delivery.2007,22 (3):1743-1749.
    [85] Qiao C M,Smedl Eyk M,Maddal Eno F.A signal phase active power with one cycle control under uni-polar operation [J].IEEE Transactions on Circuits and Systems.2004,51(8):1623- 1630.
    [86]涂永飞.三相有源功率因数校正研究[D].南京理工大学硕士学位论文,2007.
    [87]徐孝如,赵梦恋,吴晓波.有源功率因数校正控制芯片的设计与实现[J].浙江大学学报(工学版).2008,42(4):618-626.
    [88] Orabi M , Ninomiya T.Bifurcation analysis of pre-regulator PFC boost converter [C]. International Telecommunications Energy Conference.Yokohama,Japan,2003:559-564.
    [89] Jian Sun. Richard M. Bass Modeling and practical design issues for average current control [C].1999 Applied Power Electronics Conference.Dallas,Texas,USA,1999:980-986.
    [90]杜雄,周雒维,谢品芳.直流侧APF主电路参数与补偿性能的关系[J].中国电机工程学报.2004,24(11):39-42.
    [91]吴小华,吕焱峰,弓振宇等.新颖单相高功率因数校正器的研究[J].电力电子技术.2005,39(6):52-54.
    [92] Yubin Wang,Jiwen Li,and Jing Yu.Comprehensive Analysis and Design for One-Cycle Controlled DC Side APF[C].2006 IEEE International Conference.Mumbai,India.2006:750-755.
    [93] Yiguang Chen,Xin Gu,Yonghuan Shen.Optimization of Active Power Filter System PI Parameters Based on Improved Ant Colony Algorithm[C].Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation.Luoyang,China.2006:2189-2193.
    [94]马宝娟.基于谐波电流快速检测方法的并联型有源电力滤波器设计[D].哈尔滨理工大学硕士学位论文,2007.
    [95]王良.三相不平衡有源无功和高次谐波补偿器的研究[D].北方交通大学,1991.
    [96]陶骏,刘正之.有源电力滤波器的主电路参数设计[J].电源技术应用.2001,4(3):l-4.
    [97]刘凯锋.基于DSP和空间矢量滞环控制法的有源电力滤波器研究[D].西华大学,2005.
    [98] Zhong Qing,Zhang Yao,K W Eric Cheng.Optimal selection of output inductance in active power filters[J].电力自动化设备.2006,26(10):17-20.
    [99]张国荣,齐国虎等.并联型有源电力滤波器输出电感选择的新方法[J].中国电机工程学报. 2010,30(6):22-26.
    [100]屈莉莉,秦忆,杨兆.三相PWM高频整流器主电路参数选择[J].东北电力技术.2002,1:41-43.
    [101]侯世英,郑含博,周雒维.新型直流侧串联型有源电力滤波器[J].电网技术.2008,32(15):36-40.
    [102]康华光,陈大钦.电子技术基础模拟部分(第四版)[M].北京:高等教育出版社,1998.
    [103] Dimitrie Alexa, Adriana S.Dan-Marius Dobrea.An Analysis of Three-Phase Rectifiers with Near-Sinusoidal Input Currents [J].IEEE Trans.Power Electron.2004,51(4):884-891.
    [104] Hans Ertl,Johann W.Kolar.A Constant Output Current Three-Phase Diode Bridge Rectifier Employing a Novel“Electronic Smoothing Inductor”[J].IEEE Trans.Industrial Electronics. 2005,52(2):454-461.
    [105]俞万能,褚建新.一种三相并联有源滤波器的仿真研究[J].系统仿真学报.2007,19(20): 4624-4626.
    [106]范小波,张代润,孙茜等.三相三线有源电力滤波器滞环电流控制策略[J].电力系统自动化.2007,31(18):57-60.
    [107]熊薇薇.一种无乘法器的小功率PFC芯片电路设计[D].西安电子科技大学硕士学位论文,2008.
    [108]张永铂.一种无乘法器的CMOS PFC控制电路[D].西安电子科技大学硕士学位论文,2007.
    [109]曹建安.双开关三相有源功率因数校正技术的研究[D].西安交通大学博士学位论文,2002.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.