结构性土的本构描述与数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用在粉质粘土中掺入水泥和冰粒的方法,人工制备成结构性粘土,对其进行了较为深入的试验研究。包括等向压缩试验、等球应力剪切试验,不同应变速率下的三轴CD和CU试验,以及等围压循环剪切和等球应力循环剪切等试验。着重探讨了结构性和粘滞性、固结压力和排水条件以及应力路径等对结构性土变形特性和力学特性的影响,并结合重塑土作了平行对比试验研究。在此基础上,建议了2个用于描述结构性粘土在单调荷载作用下各向异性的粘弹塑性损伤模型:参照时间面粘弹塑性损伤模型及参照时间线粘弹塑性损伤模型;以及2个用于描述结构性土在复杂荷载作用下各向异性的弹塑性损伤模型:边界面砌块体弹塑性损伤模型和次塑性扰动状态弹塑性损伤模型。所建立的模型可以通过简单应力路径下的试验测定模型参数。其中,按照传统的方法把粘滞变形和瞬时塑性变形(包括损伤变形)分开来建立参照时间面粘弹塑性损伤模型;而在建立参照时间线粘弹塑性损伤模型时则认为粘滞性存在于变形的任一时刻,不再人为地把粘滞变形和瞬时塑性变形(包括损伤变形)分开,而是作为一个整体来建模。把滑移屈服面看作为等向硬化和旋转硬化的边界面,从而合理地把砌块体模型从单调荷载推广到复杂荷载情况,建立了边界面砌块体模型;通过定义与应力偏转角相关的归一化应力比η,反映结构性土在复杂荷载作用下塑性模量场各向异性的变形特性,包括卸荷剪缩特性,基于扰动状态概念和次塑性理论,建立了次塑性扰动状态模型。通过与试验结果相比较,验证了上述模型的合理性。重点检验了次塑性扰动状态模型对几种典型复杂应力路径例如应力路径偏转、旋转剪切、主应力轴旋转等的数值模拟能力。
     为了使建议的模型能够用于实际问题,本文导出了可用于有限元数值计算的参照时间线粘弹塑性损伤模型的粘弹塑性损伤矩阵,以及次塑性扰动状态模型的弹塑性损伤矩阵,并分别给出了耦合求解比奥静力和动力固结方程的数值解法。对于静力问题,针对芬兰一个国际竞赛试验堤进行了数值分析并与实测数据作了较好的比较,分析了结构性、粘滞性和固结特性的耦合作用。对于动力问题,采用异步交叉
    
    迭代显式有限元解法,对典型的地基算例进行了固液耦合的有限元动力弹塑性反应
    分析,结果定性符合土力学的一般规律。
     最后,利用流体动力学理论和动力有限元方法对一爆震问题的离心机模型试验
    进行了数值分析并与实测数据作了较好的比较,得出了一些有益的结论。
In this paper, cement and ice are mixed with silty clay in freezing room to make artificial structured soil samples for a series of tests, including isotropic compression, constant-sphere-stress triaxial compression, drained and undrained triaxial compression at several strain rates, and cyclic triaxial compression under constant confining pressure and constant sphere stress. The influence of structure, viscosity, consolidation pressure, drainage condition and stress path, on the mechanic and deformation characteristic of structured soil is studied. The same study is conducted parallely on remoulded soil for comparision. Based on experimental investigation, two anisotropic elastic visco-plastic damaging (EVPD) models-reference time surface model and reference time line model, are proposed for simulation of time-dependent deformation of structured soil under monotonic loading. Two anisotropic elasto-plastic and damaging(EPD) models梑ounding surface masonry model and hypoplasticity disturbed state concept(DSC)
    model, are presented for simulation of deformation of structured soil under complex loading. These four models' parameters can be determined conveniently by tests with simple stress path. The reference time surface EVPD model is developed traditionally, seperating viscous deformation from instant plastic deformation (including damaging deformation); while in the reference time line EVPD model, it is considered that viscous deformation occurs at any stage of loading, so the viscous deformation and instant plastic deformation (including damaging deformation) are not seperated but modelled as a whole. In the bounding surface masonry model, the sliding yield surface is considered as isotropic hardening and rotating hardening bounding surface, and the masonry model is expanded from monotonic loading to complex loading. In the hypoplasticity DSC model, the scalar normalized stress ratio r| is defined relevant to stress turning angle, and based on disturbed state concept and hypoplasticity theory, the anisotropic p
    lastic modulus is derived to describe the deformation
    
    
    characteristic of structured soil under complex loading, including unloading extraction. The validity of the four models has been verified through the comparison between predicted results and the experimental data under monotonic and complex loading. In addition, the capability of the hypoplasticity DSC model is emphaticly studied to simulate complex loading such as stress path turning, rotating shear, rotation of the axis of principal stress, etc.
    In order to make the proposed models applicable to practice, the matrix of the reference time line EVPD model and hypoplasticity DSC model are derived for FEM numerical analysis. The decoupling solution methods for static and dynamic Biot consolidation equation are proposed. For the static problem, EVPD FEM analysis is performed for a test embankment in an international competition in Finland. The computed results are compared with measured data, and the coupling effect of structure, viscosity and consolidation is discussed. For dynamic problem, the unsimultaneous staggered iteration FEM method with explicit central difference scheme is used for the elasto-plastic analysis of the dynamic response of a soil foundation. The computed results show good agreement with soil mechanic knowledge.
    At last, fluid dynamic mechanics theory and wave propagation dynamic FEM method are used to analysize a blast centrifuge model test, and the computed results agree well with the measured data. Some useful conclusions are drawn from the analysis.
引文
Adachi T & Oka F (1982). Constitutive equation for normally consolidated clay based on elasto-viscoplasticity, Soils and Foundations, 22(4):57-70
    Anandarajah A & Dafalias Y. F (1986). Bounding surface plasticity Ⅲ: Application to anisotropic cohesive soils, J. Engng. Mech. 112(12): 1292-1318
    Anadarajah A & Lu N (1991). Numerical study of the electrical double-layer repulsion between non-parralled clay particles of finite length, Int. J. Numer. Anal, Meth. Geomech, 15:683-703
    Aubry D & Hujeux J C (1982). A double memory model with multiple mechanism for cyclic soil behavior, Int. Symp. Numer. Model Geomech, Zurich: 3-13
    Brewer R (1964). Fabric and Mineral of Soils.
    Cundall P.A & Strack O D L (1979). A discrete numerical model for granular assemblies, Geotechnique 29(1):47-65
    陈生水(1994).复杂应力路径下无粘性土的弹塑性数值模拟,南京水利科学研究院土工所.
    陈生水,沈珠江,郦能惠(1995).复杂应力路径下无粘性土的弹塑性数值模拟,岩土工程学报,17(2):20-28
    陈铁林(2001).结构性粘土本构模型与参数测定研究,南京水利科学研究院士工所。
    陈铁林,陈生水,周成,沈珠江(2001).粘土的流变特性分析,岩土工程学报,23(3):279-283
    陈铁林,周成,陈生水,沈珠江(2002).结构性粘土流变特性试验研究,岩土工程学报,待刊。
    Dafalias Y F (1986). Bounding surface plasticity Ⅰ: Mathematical foundation and the concept of hypoplasticity, J. Engng. Mech. ASCE, 112(9)
    Dafalias Y F (1986). Bounding surface plasticity Ⅱ: Application to isotropic cohesive soils, J. Engng. Mech. ASCE 112(12): 1263-1291
    Davies M C R (1994). Dynamic soil structure interaction resulting from blast loading, Centrifuge 94, Balkema, Rotterdam.
    
    
    Davies M C R & Williams A J (1992). Centrifuge modelling of the protection of buried structures, Report of the first phase, University of Wales College of Cardiff.
    Davies M C R & Williams A J (1992). Centrifuge modelling of the protection of buried structures, Report of second phase, University of Wales College of Cardiff.
    Desai C S & Ma Y (1992). Modelling of joint and interfaces using the disturbed state concept, Int. J. Numer. Anal. Meth. Geomech. 16(9):623-653
    Desai C S, Shao C & Park I J (1997). Disturbed state modelling of cyclic behaviour of soils and interface in dynamic soil structure interaction, 9th Int. Conf. Computer Meth. Advances Geomech, Wuhan, I:31-42
    方秦,陈志龙(1993).显式Newmark法求解波动问题精度的探讨,岩土工程学报,15(1):10-15。
    Gajo A & Wood D M (2001). A new approach to anisotropic, bounding surface plasticity: general formulation and simulations of natural and reconstituted clay behaviour, Int. J., Numer. Anal. Meth. Geomech, 25:207-241
    何开胜(2001).结构性粘土的微观变形机理和弹粘塑性损伤模型研究,南京水利科学研究院土工所。
    胡瑞林,李向全等(1995).粘土微结构定量模型及其工程地质特征研究,地质出版社。
    胡再强(2000).黄土结构性模型及黄土渠道的浸水变形试验与数值分析,西安理工大学。
    Iai S, Matsunaya Y & Kameoka T (1992). Strain space plasticity model for cyclic mobility, Soils and Foundations, 32(2): 1-15
    Ishihara K, etc (1984). Analysis of wave-induced liquefaction in seabed deposits of sand, Soils and Foundations, 24(3)
    矫德全,陈愈炯(1994).土的各向异性和卸荷体缩,岩土工程学报,16(4):9-15
    蒋明镜(1996).结构性粘土的本构模型和土体逐渐破损分析,南京水利科学研究院土工所。
    Kavvadas M & Amorosi A (2000). A constitutive model for structured soil, Geotechnique, 50(3): 263-273
    
    
    Levoueil S & Vaughan P R (1990). The general and congruent effects of structure in natural soil and weak rock, Geotechnique, 40(3): 467-488
    Liu M D, Garter J P & Desai C S (2000). Analysis of the compression of structured soils using the disturbed state concept, Int. J. Numer. Anal. Meth. Geomech, 24:723-735
    LS-DYNA USER'S MANUAL VOLUME I (2001). Livermore Software Technology Corporation, Version 960.
    李广信,郭瑞平(2000).土的卸荷体缩与可恢复剪胀,岩土工程学报,22(2):158-161
    李广信,武世锋(2002).土的卸荷体缩的试验研究及其机理探讨,岩土工程学报,24(1):47-50
    Matsui T & Abe N (1985). Elasto-viscoplastic constitutive equation of normally consolidated clays based on flow surface theory, 5th Int. Conf. Numer. Meth. Geomech, Nagoya: 407-413
    Matsuoka H (1974). Stress-strain relationships of sands based on the mobilized plane, Soils and Foundations, 14(2): 45-61
    Mitchell J K (1976). Fundamentals of soil behaviour.
    Olphen V (1963). An introduction to clay colloid chemistry.
    Perzyna P (1966). Fundamental problems in viscoplasticity, Advances in Applied Mechanics, 9:243-377
    钱七虎等(1995).冲击荷载作用下有限元方法求解波动过程的精度研究,爆炸与冲击,15(1):1-9。
    齐吉琳(1990).土的结构性及其定量化参数的研究,西安理工大学。
    Rouainia M & Wood D M (2000). A kinematic hardening constitutive model for natural clays with loss of structure, Geotechnique, 50(2): 153-164
    Rowe P W (1962). The stress dilatancy relation for static equilibrium of an assembly of particles in contact, Proc. Royal Society, London, Series A: 500-527
    Sekiguchi H (1977). Rheological characteristics of clay, 9th ICSMFE, I:289-292
    Scott R F & Craig J K (1980). Computer modelling of clay structure and mechanics, ASCE 106(1): 17-34
    Shao C & Desai C S (2000). Implementation of DSC model and application for analysis of
    
    field pile tests under cyclic loading, Int. J. Numer. Anal. Meth. Geomech, 24:601-624
    SUMDES MANUAL (1990). A nonlinear procedure for response analysis of horizontallylayered site subjected to multi-directional earthquake loading, Dept. of Civil Engineering, University of California, Davis.
    施建勇,赵维炳等(1998).考虑损伤的软土地基变形分析,岩土工程学报,29(2):1-5
    沈珠江(2000).理论土力学,中国水利水电出版社。
    沈珠江,章为民(1988).损伤力学在土力学中的应用,第三届全国岩土力学数值分析及解析方法讨论会论文等Ⅲ,珠海。
    沈珠江(1993).结构性粘土的非线性损伤力学模型,水利水运科学研究,3:247-256
    沈珠江(1993).结构性粘土的弹塑性损伤模型,岩土工程学报。
    沈珠江(1996).广义吸力和非饱和土的统一变形理论,岩土工程学报,18(2):1-10
    沈珠江(2000).结构性粘土的堆砌体模型,岩土力学,21(1):1-4
    Shen Z J & Hu Z Q(2000). Damage function and a masonry model for loess. Proc. Conf. UNSAT-ASIA, Singapore, 143-146
    沈珠江(1999).A granular medium model for liquefaction analysis of sands,岩土工程学报,21(6):742-748
    沈珠江(1998).复杂荷载下砂土液化变形的结构性模型,土动力学理论与实践,第五届全国土动力学学术会议论文集,大连:1-10
    谭罗荣(1981).粘土微观结构定向性的X射线衍射研究,科学通报,4:236-239
    Terzaghi K(1943).理论土力学,纽约(1960年中译本,地质出版社)。
    维亚洛夫CC(1987).土力学的流变原理,科学出版社。
    Wang Z L, Dafalias Y F & Shen C K (1990). Bounding surface hypoplasticity model for sands, J. Engng. Mech. ASCE, 116(5): 983-1001
    汪闻韶(1985).土的液化机理,水利学报,No.5。
    汪闻韶(1962).饱和砂土振动孔隙水压力试验研究,水利学报,No.2。
    谢定义,齐吉琳(1999).土结构性及其定量化参数研究的新途径,岩土工程学报,21(6):651-656
    Yin J H & Graham J(1989). Viscous elastic plastic modelling of one-dimensional time-
    
    dependent behaviour of clays, Canadian Geotechnical Journal, 26:199-209
    Yin J H & Graham J (1999). Elastic visco-plastic modelling of the time-dependent stress-strain behaviour of soils, Canadian Geotechnical Journal, 36(4):736-745
    Yin J H, Zhu G F & Graham J (1997). Competition to calculate settlements at Haarajoki test embankment, The HongKong Polytechnic University.
    Yin Z Z & Zhu J G (1991). Stress and deformation of reinforced soil retaining wall, proc. Int. Symp. Geosynthetic-Reinforced Soil Retaining Walls, Denver, Colorado: 205-216
    Yong R N & Sheeran D E (1973). Fabric unit interaction and soil behaviour, Proc. Int. Symp, Soil structure.
    恽寿榕,涂侯杰,梁德寿,张汉萍(1995).爆炸力学计算方法,北京理工大学出版社。
    张诚厚(1983).两种结构性粘土的土工性质,水利水运科学研究,4:65-71
    张建民(2000).砂土的可逆性和不可逆性剪胀规律,岩土工程学报,22(1):12-17
    赵维炳,施建勇(1996).软土固结与流变,河海大学出版社。
    赵跃堂(1996).爆炸荷载作用下三相饱和土中波传播及其与结构的相互作用问题研究,中国人民解放军工程兵工程学院。
    Zienkiewicz O C & Cormeau I C (1974). Visco-plasticity and creep in elastic solids—a unified numerical solution approach, Int. J. Numer. Meth. Engng, 8:821-845
    Zienkiewicz O C, etc (1982). Liquefaction and permanent deformation under dynamic conditions——numerical solution and constitutive relations, soil mechanics——Transient and cyclic loads, John Wiley and Sons: 71-103
    Zhou C, Shen Z J, etc (2001). Elasto-plastic analysis for structured soils under complex loading, Clay Science for Engineering, Adachi & Fukue (eds), Balkema, Rotterdam, Japan: 459-466
    Zhou C, etc (2001). Elastic visco-plastic and damaging analysis of structured soil, Soft Soil Engineering, Lee et al (eds), Swets & Zeitlinger, HongKong:655-660
    Zhou C, Chen T L, etc (2001). Masonry damage theory and 3-D EDVP model for natural structured clay, Geotechnical Engineering in soft ground, Shanghai:500-505
    Zhu J G (1999). Experimental study and elastic visco-plastic modelling of the time-
    
    dependent stress-strain behaviour of HongKong marine deposits, The Hongkong Polytechnic University.
    朱百里,沈珠江等(1990).计算土力学,上海科学技术出版社。
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.