弯管内外表面数控铣削试验与内表面加工装置设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弯管作为核电、石油天然气、化工等领域中的油、气、液等的输送工具,发挥着重要作用。例如核电站中的主管道是连接蒸汽发生器与反应堆压力容器的大型厚壁弯管,其质量的好坏关系整个核电站的安全。弯管表面质量是决定其整体质量的重要因素,弯管表面加工的难点在于,传统设备加工时会有加工干涉,表面质量一致性差等问题。多轴数控加工技术在复杂曲面的加工方面有巨大优势,能有效解决加工干涉,增加刀具切削稳定性,提高加工表面质量。所以开展针对不同类型弯管利用多轴数控加工技术加工弯管内外表面以及研发高效优质经济专用设备的研究,具有重要理论意义和应用价值。
     本文以核电主管道为研究原型,通过分析其几何特性,结合数控铣削加工技术原理和特点,提出了3轴2联动和5轴联动加工主管道样件弯管外表面,4轴联动和5轴联动加工主管道样件弯管内表面的方法以及一种内置平移式专用装置加工主管道内表面的方法。
     在进行了如何避免加工干涉和进行均匀切削等理论分析的基础上,在3轴加工中心和5轴加工中心上进行了主管道样件内外表面的铣削试验。试验结果表明:随着转速的提高,进给量的减小,切削深度的减小以及切削行距的减小,外表面质量越来越好;3轴2联动加工相比5轴联动加工表面质量一致性稍差,表面粗糙度范围为Ra3.07um~Ra3.14umm,但加工效率提高了5%:5轴联动加工相比4轴联动加工表面质量一致性更好,粗糙度范围为Ra3.05um~Ra3.10umm,加工效率低了6%。所以采用3轴加工机床加工外表面,5轴联动机床加工内表面是正确的选择。
     结合主管道细长等径的特征,设计了内置平移式主管道内表面专用加工装置,采用计算机辅助设计和模块化设计的现代设计方法,进行了装置功能模块划分,详细设计了各个具体模块单元,包括动力系统设计、传动系统设计以及机械模块各部件的结构和尺寸设计,计算了铣削力,并据其确定了驱动电机的功率,完成了关键部件圆弧导轨基座刚度和强度的校核。结果表明,辅助支撑有效减小了导轨基座的变形(无支撑变形为1.82mmm,有支撑变形为0.38mm),圆弧导轨基座最危险截面的应力为94.84MPa,远小于许用应力[σ]=375~500MPa,满足设计要求。
     课题研究结果表明,3轴2联动数控加工弯管外表面高效优质,5轴联动数控加工弯管内表面无干涉并且质量可靠,内置平移式专用加工装置加工主管道内表面具有可行性。以上成果为核电主管道以及类似弯管内外表面的加工提供了理论和实践依据。
As transport tools of oil, gas and liquid bent pipes play an important role in nuclear power station, oil and gas industry, chemical industry and other fields. Such as the main pipe of nuclear power station, it is large pipe with thick wall, connecting the steam generator and reactor pressure vessel. Its quality affects the safety of nuclear power station. Its surface quality is important factor to its overall quality. The difficulties to machine its surface are interference, poor quality consistency and inefficiency. Multi-axis CNC technology in the machining of complex surface has huge advantage, which can solve interference, increase cutting stability and improve the machining quality. So it has high theoretical significance and application value to carry out the study on the machining of the bent pipe surface using multi-axis CNC technology and the study on the development of special equipment.
     Using nuclear power station main pipe as prototype, this paper analyses its geometrical characteristics and presents new methods for the machining of bent pipe surface, including the methods of3-axis and5-axis machining the external surface of the main pipe sample piece, the methods of4-axis and5-axis machining the internal surface of the main pipe sample piece and the method of machining the internal surface of main pipe for nuclear power station with special equipment inside the pipe.
     Based on theoretical analysis, milling experiments are carried out on the internal and external surface of main pipe sample piece using3-axis machining center and5-axis machining center.The results show that, with the improvement of speed, the reduction of feed rate, cutting depth and the row space, quality of external surface becomes better. Compared with5-axis machining, the surface quality consistency of3-axis machining is poorer, the surface roughness range from Ra3.07um-Ra3.14um, but efficiency increases by5%; compared with4-axis machining, the surface quality consistency of5-axis machining is better, the surface roughness range from Ra3.05um-Ra3.10um, efficiency decreases6%. So it is right choice to machining the external surface by3-axis machine tools and machining the internal surface by5-axis machine tool.
     The main pipe is long and full bore. According to it special equipment which machining the internal surface of main pipe inside the pipe is designed. With the modern design methods of CAD and modular design, function module partition is finished, each specific module is detailedly designed, including the power system design, the transmission system design and the structure design for all parts of the mechanical module, the milling force is calculated and according to it the motor power is determined, finally the stiffness and strength of base for arc guide are checked. The results show that, auxiliary support effectively reduce the deformation of guide base (the deformation is1.82mm without support and0.38mm with support), the stress in the most dangerous section of arc guide base is94.84MPa, far less than the allowable stress, which meets the design requirements.
     The results show that it is a good way to machining the external surface of bent pipe with3-axis machining technology and to machining the internal surface of bent pipe with5-axis machining technology.At the same time, it is a good method to machining the internal surface of main pipe inside the pipe with special equipment.The research results support the machining of main pipe surfaces for nuclear power station and other bent pipes of its kind in theory and practice.
引文
[1]潘品李,钟约先,马庆贤等.大型核电主管道制造技术的发展[J].锻压装备与制造技术.2011,(01):13-17.
    [2]李元太,张春来,雷中黎.压水堆一回路管道的铸造工艺及其国产化[J].核动力工程.2009,30(6):6-10.
    [3]Staehle R W. Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, Unieux, Firminy, June 12-16,1973[C]. Housron:National Association of Corrosion Engineers,1977.
    [4]孙凤先,马庆贤.AP1000主管道控制锻造工艺探索[J].大型铸锻件.2010,04:30-32.
    [5]卢华兴.API000核电站主管道国产化研制进展[J].上海金属,2010,32(4):29-32.
    [6]宋树康,刘志颖,郑建能等.第三代AP1000核电主管道的研制[J].大型铸锻件.2011,01:1-4.
    [7]Klanica F, Rao G. Reactor Coolant Loop Seamless Forged and Formed Pipe Fabrication Specification [S]. Westinghouse Electric Company LLC,2008.
    [8]Klanica F, Rao G. APIOOO SA376 TP316LN Hot Leg Forging Full Mockup Qualification Test Specification[S]. Westinghouse Electric Company LLC,2008.
    [9]金敬飞,张培宝.核电站弯管工艺介绍[J].硅谷,2011,21:159.
    [10]郭延军.电站用P91钢的主要性能及弯管加工[J].浙江电力,2004,03:50-55.
    [11]姚春蓉.采用正火工艺改善热煨弯管性能[J].金属加工(热加工),2012,5:52-53.
    [12]刘志仁,陶春辉.天然气高压管道弯管壁厚减薄率的确定[J].煤气与热力,2011,31(04):B04-B05.
    [13]石峰.焊接技术实现大口径弯管的成形工艺研究[D].天津:天津理工大学,2009.
    [14]鲍四清,马明来,徐瑞杆等.大口径冷弯管缺陷产生的原因及控制措施[J].石油工程建设,2003,29(05):58-60.
    [15]刘振彬.常见弯管缺陷及措施[J].锻压技术,2005,02:11-13.
    [16]艾治勇.弯管的弯曲成形分析及其力学特性研究[D].上海:上海交通大学,2005.
    [17]张立强,王克用,王宇晗.复杂曲面五轴侧铣加工的运动学优化方法[J].中国机械工程,2011,22(21):2588-2893.
    [18]李万军,赵东标,牛敏等.五轴加工全局干涉检查及其避免[J].计算机集成制造系统.2011,17(5):1011-1016
    [19]Mahadevan Balasubramaniam, Stephen Ho, Sanjay Sarma, et al. Generation of collision-free 5-axis tool paths using a haptic surface[J]. Computer-Aided Design, 2002,34(4):267-269.
    [20]陈松,姜虹,李学艺等.自由曲面五坐标数控加工干涉检查[J].工程图学学报.2003,0531-36
    [21]Ding X M, Fuh J Y H, Lee K S. Interference detection for 3-axis mold machining[J]. Computer Aided Design,2001,33(8):561-569.
    [22]LEE Y S, CHANG T C.2-phase approach to global tool interference avoidance in 5-axis machining[J]. Computer-Aided Design,1995,27(10):715-729.
    [23]梁铖,刘建群.五轴联动数控机床技术现状与发展趋势[J].机械制造.2010,48(545):5-7
    [24]燕红波,杨庆东,刘芳.五轴联动数控加工技术的应用[J].模具制造技术.2007,02:57-60.
    [25]李洪波.五轴联动加工技术的探讨[J].金属冷加工,2009,21:28-29.
    [26]烟台台海玛努尔核电设备有限公司.AP1000一回路主管道弯管内孔精加工设备:中国,101690979[P].2010-04-07
    [27]烟台台海玛努尔核电设备有限公司.核电站一回路主管道弯头内孔机加工专用设备:中国,101767214A[P].2010-01-25
    [28]四川三洲化机核能设备制造有限公司.在卧式镗床上加工核电主管道弯头弯曲内孔的方法及装置:中国,101850431A[P].2010-04-09
    [29]魏晓东.汽缸体内腔加工镗铣系统的研制[J].科技创新导报,2009,19:19.
    [30]袁进德,徐亚凤.深孔镗削装置在重型卧式车床上的应用[J].青海科技,2010,04:94-95.
    [31]张永顺.国外微型管内机器人的发展[J].机器人,2000,22(6):506-513.
    [32]Toshio F, Hidemi H. Study on Inspection Mobile Robot for the Inside of Pipeline[J]. Transactions of the Japan Society of Mechanical Engineers,1984, 477(52):1584-1588.
    [33]乔晋崴,尚建忠,陈循等.小口径管内机器人技术的研究进展[J].中国机械工程,2010,21(10):1254-1258.
    [34]丁毅,汪如红,姜晨颖.管道机器人发展状况及其在包装领域中的应用[J].包装与食品机械,2009,27(05):128-130.
    [35]龚俊,王玮.大直径深孔镗削加工的新方法[J].新技术新工艺,2010,06:17-19.
    [36]付红伟,王爽,张海英等.UG数控加工基础教程[M].北京:清华大学出版社.2009.
    [37]刘江,王骏UGNX6.0多轴数控加工实例详解[M].北京:电子工业出版社.2010.
    [38]数字化手册编委会.机械设计手册[M].北京:化学工业出版社.2008.
    [39]张春良.数控加工技术[M].北京:科学出版社.2011.
    [40]卢万强,饶小创.数控加工工艺与编程[M].北京:北京理工大学出版社.2011.
    [41]李海滨,唐小波,高天宇等.叶片数控加工表面粗糙度控制的研究[J].机床与液压.2011,39(23):26-30.
    [42]付涛UGNX数控编程专家精讲[M].北京:中国铁道出版社.2010.
    [43]秦旭达,贾吴,王琦.插铣技术的研究现状[J].航空制造技术.2011,05:40-42
    [44]任军学,田卫军,姚倡峰等.钛合金整体结构件高效插铣工艺实验研究[J].中国机械工程.2008,19(22):2758-2761
    [45]贾延林.模块化设计[M].北京:机械工业出版社.1993.
    [46]侯亮唐,任仲,徐燕申.产品模块化设计理论、技术与应用研究进展[J].机械工程学报.2004,40(1):56-61.
    [47]王哲.现代飞机机体结构模块化设计技术研究[J].航空科学技术.2011,02:73-74.
    [48]苏铭.基于SolidWorks的数控机床模块化设计技术研究[D].南京:南京航空航天大学,2009.
    [49]刘永坤,史康云.电主轴的应用现状与发展方向探析[J].机电信息.2011,11:182-183.
    [50]徐卫东.电主轴在加工中心上的应用[J].宁夏机械.2002,02:23-24.
    [51]周大帅,林厚波,陈永波.高速电主轴的结构现状及发展趋势[J].金属加工(冷加工).2011,18:11-13
    [52]王勇.步进电机和伺服电机的比较[J].西部煤化工.2010,02:47-49.
    [53]姚振,马朝永,林忠波.伺服电机在汽车制动零部件检测中的应用[J].机械设计与制造.2011,01:102-104.
    [54]肖剑,马自勤.机床伺服电机的选型方法分析[J].机械研究与应用.2011,04.48-49.
    [55]孙恒.机械原理(第7版)[M].北京:高等教育出版社.2006.
    [56]裴宏涛.特大型满装交叉圆锥滚子轴承滚子半锥角的快速选取[J].轴承.2004,01:6-8.
    [57]李芬.交叉圆锥滚子轴承的制造探讨[J].轴承.1999,10:15-16.
    [58]Yucesan G, Altintas Y. Prediction of Ball End Milling Forces[J]. J. of Eng. for Industry,1996,18 (1):95-103.
    [59]KIM G M, CHO P J. Cutting force predication of sculpttired surface ball-end milling using Z-map[J]. International Journal of Ma-chine Tools & Manufacture,2000, (40) 277-291.
    [60]赵永红.铣削力对铣削过程的影响[J].中国高新技术企业.2007,08:111.
    [61]阎兵,徐安平.一种新的螺旋刃球头铣刀铣削力模型[J].中国机械工程,2002,13(2):160-163.
    [62]LAMIKIZ A, LOPEZ L N, LACALLE J A, et al. Cutting force estimation in sculptured surface milling[J]. International Journal of Machine Tool Manufacture,2004,44: 1511-1526.
    [63]马世辉.球头立铣刀的参数化设计及有限元分析[D].兰州:兰州理工大学,2009.
    [64]孙孟琴,翁泽宇.球头铣刀切削力模型的研究进展[J].工具技术,2006,40(09):7-9.
    [65]张燕,李书环,李艳聪等.铸造不锈钢铣削力的试验研究[J].天津工程师范学院学报,2008,18(01):34-35.
    [66]中国石油物资装备总公司等.常用金属材料切削数据手册[M].北京:石油工业出版社.1995.
    [67]熊放明.数控平行铣削中球头铣刀行距的确定[J].机械工程师,2005,01:34-35.
    [68]陈锡渠,彭晓南.金属切削原理与刀具[M].北京:北京大学出版社.2008.
    [69]陆剑中,孙家宁.金属切削原理与刀具[M].北京:机械工业出版社.1998.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.