影响广西防城港地区男性人群谷丙转氨酶水平的遗传变异及其在永生化肝细胞株中的验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章
     第一部分
     影响广西防城港地区男性人群谷丙转氨酶水平的流行病学因素及其相互作用分析
     目的:在普通人群中,谷丙转氨酶(alanine aminotransferase,ALT)升高通常提示显著的或者潜在的肝脏疾病,甚至会累计对全身健康造成威胁。因此,基于广西防城港地区男性人群健康调查(The Fangchenggang AreaMale Healthy and Examination Survey, FAMHES)的结果,我们评估了影响该地区成年男性人群血清中ALT水平的流行病学因素以及他们之间的相互作用。
     方法:在4304例受试者中,我们总共纳入了2119例在2009年9月至2009年12月完成了完整的体格检查,实验室检查,肝脏超声检查以及调查问卷的符合纳入标准的受试者数据。
     结果:在纳入人群中,非酒精性脂肪肝(non-alcoholic fatty liverdisease, NAFLD)和代谢综合征(metabolic syndrome, MetS)的患病率显著相关于ALT水平的升高(P <0.05)。NAFLD和MetS的患病率密切相关(r=0.991,P=0.009)不正常的MetS各组分比例随着ALT水平的升高成比例的明显增加(P <0.01)。在随后进行的多元线性回归分析中,腹部肥胖指标体重指数(body mass index, BMI)和高脂血症和ALT水平显著相关(P <0.01)。在乙肝表面抗原(hepatitis B virus surface antigen, HBsAg)和MetS的交互作用研究中,我们并未发现其对于ALT水平有明显交互作用。HBsAg和MetS之间对ALT影响的协同作用系数(synergy index,SI)为0.74,95%可信区间(confidence interval, CI):0.71-0.80。
     结论:在防城港地区男性人群中,NAFLD和MetS的患病率显著相关于ALT水平。腹部肥胖和高脂血症是导致ALT水平升高的独立危险因素。这一发现提示在这一地区男性人群中,有必要在检测ALT水平的过程中校正这些可能导致ALT水平升高的危险因素。
     第一章
     第二部分
     针对前瞻性研究的循证医学研究发现谷丙转氨酶水平升高显著相关于代谢综合征的发生
     目的:代谢综合征(metabolic syndrome, MetS)的发病率在世界范围内显著升高且与谷丙转氨酶(alanine aminotransferase,ALT)活动水平紧密联系。但是,ALT活动水平对MetS发生率的影响在已发表文献中的报道并不一致。因此,我们针对前瞻性队列研究通过荟萃分析的方法估算了ALT活动水平升高和MetS发生率之间的关系。
     方法:收集所有已发表在Pubmed, Embase,和ISI数据库中的研究ALT活动水平和MetS发生率之间关系的前瞻性队列研究(文献发表在2014年1月10日之前)。包括研究的国别,性别组成,纳入人群的年龄,随访时间,MetS定义,校正因素,相对危险度(relative risk,RR)等具体指标直接或间接从最终纳入文献中提取或计算。我们将分别估计二分类变量的合并RR值及其95%可信区间(confidence interval, CI)(RR定义为高ALT水平组人群MetS发生率/低ALT水平组人群MetS发生率)和连续变量的合并RR值及95%CI(RR定义为ALT水平每升高5单位每升[unit perliter,U/l]人群中MetS发生率变化的比值)。如果组间异质性不明显(P值>0.05以及I2<50%),在计算合并RR值的过程中则采用固定效应模型;如果组间有显著的差异性(P值≤0.05或I2≥50%),则采用随机效应模型。
     结果:总共七篇前瞻性队列研究,包含了31545例受试者和2873例在随访期间发生MetS的病例被纳入本次研究。在比较高值ALT水平和低值ALT水平人群MetS发生率的差异中,合并估计的RR值为1.81(95%CI:1.49-2.14)。而在剂量-反应计算估计ALT水平每升高5U/l导致人群MetS发生率的变化中,合并估计的RR值为1.13(95%CI:1.11-1.16)。亚组分析发现性别差异可能是整个研究中异质性的主要来源。在以性别为标准的亚组分析中,亚组之间剂量-反应(每5U/l)估算的合并RR值比较P=0.007。女性有比男性更高的剂量反应RR(1.38,95%CI:1.20-1.55)。进一步的,敏感度分析证实了结果的可靠性。本次荟萃分析并未发现显著的发表偏倚。
     结论:目前基于前瞻性研究的循证医学证据支持ALT水平升高增加MetS发生风险的观点。且这种关联在女性人群中表现得更加紧密,一致性更好。这一关系有待更多的研究证实。同时ALT水平升高对MetS发生的潜在机制研究也有待进一步探索。
     第二章
     全基因组关联研究发现新的影响广西防城港地区男性人群中血清谷丙转氨酶水平的单核苷酸多态性位点及其生物信息学意义分析
     目的:谷丙转氨酶(alanine aminotransferase, ALT)是评估肝脏疾病和全身健康的重要的生物标志物。ALT水平受到环境因素和遗传因素的共同影响。因此我们实施了一项全基因组关联研究(genome-wideassociation studies,GWAS),结合前期防城港地区男性健康调查(Fangchenggang Area Male Healthy and Examination Survey,FAMHES)结果,找出影响防城港地区男性健康人群的ALT水平的常见遗传学变异及其与环境因素的交互作用。
     方法:采集研究人群的外周静脉血检测血清提取脱氧核糖核酸(deoxyribonucleic acid, DNA)样本。在前期FAMHES纳入的人群中,总共1999例健康男性的外周血样进行全基因组单核苷酸多态性(SingleNucleotide Polymorphisms,SNPs)检测,平台为Illumina Omni One。在全基因组SNPs分型的基础之上,采用校正了年龄,体重指数(body massindex, BMI),甘油三酯(triglycerides,TG)变量的多元线性回归模型,寻找可能影响该地区男性人群ALT水平的常见遗传变异标志。进一步地,全基因组关联分析在以乙肝表面抗原(hepatitis B surface antigen,HBsAg)为分类标准的亚组中进行比较。全基因组关联分析统计学检验显著性水平的检验标准为P<1*10‐5,在乙肝表面抗原(hepatitis B surface antigen,HBsAg)阳性人群中的统计学检验显著性水平的检验标准为P<0.05。基因分型的质量控制标准:满足哈‐温平衡(Hardy‐Weinberg Equilibrium,HWE检验P>0.001);最小等位基因频率>0.01;基因分型成功率(call rate)>0.95。采用非参数检验(Mann‐Whitney Test)的方法比较以HBsAg和MetS分类的亚组中不同SNP基因型之间的ALT值。最后,采用交互作用的流行病学模型,结合潜在遗传变异和常见的影响ALT水平的表型因素(包括代谢综合征[metabolic syndrome, MetS]和乙肝病毒[hepatitis B virus, HBV]感染),评估遗传变异和表型因素之间的交互作用。
     结果:本次GWAS总共发现位于5个基因区域的7个SNPs经全基因组关联分析统计学检验后,显著性水平P<1*10-5,包括:位于SLC35F3基因1q42.2上的rs10157061(P=7.46*10-7),rs10752781(P=1.29*10-6),rs1878544(P=2.16*10-6);位于CUX2基因12q24.12上的rs4766453(P=1.11*10-6);位于SHANK1基因19q13.3上的rs4801847(P=3.26*10-6);位于WWOX基因上16q23.3上的rs2010020(P=7.73*10-6);位于CYP1A2基因15q24.1的rs3743484(P=8.20*10-6)。其中位于2个基因区域的4个SNPs(位于SLC35F3基因1q42.2上的rs10157061,rs10752781,rs1878544;位于CUX2基因12q24.12上的rs4766453)经全基因组关联分析统计学检验后显著性水平P<3*10-6。在HBsAg阳性人群中,位于SLC35F3基因1q42.2上的rs10157061,rs10752781,rs1878544;位于WWOX基因上16q23.3上的rs2010020;位于CYP1A2基因15q24.1的rs3743484同时达到在HBsAg阳性人群中的统计学效力(P<0.05)。在结合SNP基因型和MetS,HBsAg表型分组的的亚组分析中,各亚组间人群ALT值仍然SNP基因型的变化而有所差异(P<0.05)。我们发现潜在意义较大(P<3*10-6)的候选SNPs(包括位于SLC35F3基因1q42.2上的rs10157061, rs10752781, rs1878544;位于CUX2基因12q24.12上的rs4766453)和阳性HBsAg之间对ALT水平的影响的协同效应系数[synergy index, SI]及其95%可行区间(confidenceinterval,CI)均大于1。
     结论:因此,一项针对防城港地区成年男性人群的GWAS发现了新的影响人群血清中ALT水平的常见遗传变异标记。其中SLC35F3和CUX2可能是影响该地区成年男性血清ALT水平的易感基因。但是这种效应可能因为人群的肝炎病毒感染背景不同而有所不同。SNPs对人群ALT水平的影响可能会在HBV感染的背景下扩大。候选SNPs及其所在基因区域为个体化医学诊断和治疗提供了潜在的遗传学标记。同时为下一步的验证ALT水平的遗传学机制提供了有意义的靶点。潜在SNPs及其所在基因区域对ALT水平的影响机制有待进一步研究证实。
     第三章
     第一部分
     全基因组关联研究发现的新的影响防城港地区男性人群血清谷丙转氨酶水平的单核苷酸多态性位点在永生化肝细胞株中的验证
     目的:基于前期针对防城港地区男性健康调查(Fangchenggang AreaMale Healthy and Examination Survey,FAMHES)人群全基因组关联研究(genome-wide association study,GWAS)的结果,我们发现了新的影响防城港地区健康男性血清谷丙转氨酶(alanine aminotransferase, ALT)水平的单核苷酸多态性位点(single nucleotide polymorphisms,SNPs)。但是GWAS发现的SNPs与表型特征之间可能存在假关联。因此,我们选取永生化肝细胞株为研究对象其中候选SNPs与其上清液ALT水平之间的关联关系。同时对SNPs坐落的基因,GPT基因(肝脏ALT编码基因)及其编码蛋白表达水平进行检测,在细胞株层面探讨候选SNPs坐落基因及其编码蛋白的表达水平与GPT基因及编码蛋白表达水平及各细胞株表型(即各细胞株上清液ALT水平)之间存在的关系。
     方法:选取BEL-7402,BEL-7404,HL-7702,SMMC-7721,Hep-G2,MHCC-97H,MHCC-97L共7株永生化肝细胞株作为研究对象,通过细胞培养繁殖,消化贴壁细胞后提取细胞用做以下实验:1.提取细胞脱氧核糖核酸(deoxyribonucleic acid,DNA),针对目的SNPs设计普通聚合酶链式反应(polymerase chain reaction,PCR)引物,通过PCR反应获得扩增产物。产物以sanger双向测序法获得目的SNPs(左右约50个碱基对[base-pairs,BP])片段序列,从而获得目的SNPs的基因型结果;2.提取细胞株上清液,采用酶联免疫吸附测定(enzyme-linked immuno sorbentassay,elisa)的方法获取各细胞株上清液ALT值;3.针对候选SNPs坐落基因,设计特异性实时荧光定量PCR(real-time PCR)引物,检测不同基因型的肝细胞株间目的基因和ALT基因的表达情况;4.提取细胞的总蛋白,设计针对目的基因编码蛋白的特异性抗体,采用蛋白印迹(western-blot)的方法观察特异蛋白的表达情况;4.将消化细胞接种到无菌玻璃片上,采用特异性抗体免疫组化(Immunohistochemistry,IHC)的方法观察各特异蛋白在不同细胞株中的表达部位以及表达量变化。
     细胞实验均采取三次重复,计量指标采用平均值±标准差(mean±standard deviation [SD])表示。各细胞株间上清液ALT值,目的基因表达量及目的蛋白表达量之间比较采用非参数检验Mann-Whitney U检验的方法进行。表达量相关性比较采用pearson相关系数计算。P<0.05被认为有显著统计学差异。
     结果:总共7个永生化肝细胞株中,在其中3个基因区域的5个SNPs上表现出多态性,所有候选SNPs在细胞株中均表现为纯合子。7个细胞株按照其携带的不同SNPs的高值等位基因数目分布的不同分为3组:其中A组细胞株MHCC-97H和MHCC-97L在位于SLC35F3基因1q42.2区域上的rs10157061,rs10752781, rs1878544;位于CUX2基因12q24.12区域上的rs4766453;位于SHANK1基因19q13.3上的rs4801847共5个SNPs上均携带高值等位基因,B组细胞株SMMC-7721在位于SHANK1基因上的rs4801847SNP上携带高值等位基因,C组细胞株(包括BEL-7402,BEL-7404,HepG2,HL-7702)在总共位于5个基因区域的7个SNPs上均携带低值等位基因。经比较,A组MHCC-97H和MHCC-97L细胞株在上清液ALT值显著高于其他各组细胞株ALT值,B组SMMC-7721细胞株与C组细胞株间上清液ALT值差异无统计学显著性。实时荧光定量PCR的结果提示A组GPT基因表达水平高于B组,C组,但SLC35F3的表达水平和GPT基因表达水平呈现显著负相关(r2=-0.672,P=0.001),CUX2的表达水平在不同基因型分组中,组间表达差异无统计学显著性(P>0.05)。实时荧光定量PCR结果得到了蛋白印迹和免疫组化结果的印证。在蛋白印迹实验中,A组SLC35F3编码蛋白表达水平显著低于B组,C组,差异有统计学显著性(P<0.05)。A组GPT编码蛋白表达水平显著高于B组,C组,差异有统计学显著性(P<0.05)。CUX2编码蛋白组间表达无统计学差异(P>0.05)。各组间SLC35F3和GPT蛋白表达水平存在明显负相关(r=-0.527, P=0.002)。免疫组化实验印证了蛋白印迹结果。
     结论:基于FAMHES的GWAS研究中发现的影响男性人群血清ALT水平的SNPs,我们结合体外细胞学验证得出:1.位于SLC35F3基因1q42.2上的显著影响人群血清ALT水平的候选SNPs(包括rs10157061,rs10152781,rs1878544)同时显著影响SLC35F3基因和蛋白表达水平。高值等位基因对应SLC35F3基因和编码蛋白的低表达。2. SLC35F3基因可能是影响肝细胞ALT分泌水平的易感基因。SLC35F3的基因和编码蛋白的表达水平的上调与GPT基因的低表达及细胞ALT的低水平相关。位于1q42.2上的强连锁不平衡区域的rs10157061,rs10152781,rs1878544可能通过影响SLC35F3的基因和蛋白表达水平间接地影响和调控了肝细胞ALT水平。相关机制有待进一步研究证实。
     第三章
     第二部分
     低浓度乙醇暴露下永生化肝细胞株MHCC-97H和BEL7402中SLC35F3基因表达研究
     背景和目的:基于前期细胞株验证的初步结果,我们发现SLC35F3基因可能对体外永生化肝细胞株中谷丙转氨酶(glutamic-pyruvictransamine GPT)基因表达水平,上清液谷丙转氨酶(alanineaminotransferase,ALT)水平存在影响。SLC35F3基因及其编码蛋白的低表达关联于GPT基因的高表达和ALT值的升高。但永生化肝细胞株在外界环境压力下,SLC35F3和GPT的表达情况仍不得而知。因此,我们设计了低浓度乙醇干预实验,观察体外永生化肝细胞株SLC35F3,GPT基因及其编码蛋白表达情况,及其相互关系。
     方法:选取永生化肝细胞株BEL-7402和MHCC-97H作为研究对象。分别以50mmol/l,100mmol/l,和200mmol/l的乙醇浓度干预永生化肝细胞株,并观察永生化肝细胞株在3小时,6小时,12小时,24小时不同时间节点的ALT分泌值,SLC35F3,GPT基因及其编码蛋白表达值
     选取BEL-7402,MHCC-97H两株永生化肝细胞株作为研究对象,通过细胞培养繁殖,消化吹散后均匀接种于24孔板中,贴壁后观察细胞,分别以50mmol/l,100mmol/l,和200mmol/l的乙醇浓度干预永生化肝细胞株,并观察永生化肝细胞株在3小时,6小时,12小时,24小时不同时间节点对永生化肝细胞株进行以下处理:1.提取细胞株上清液,采用酶联免疫吸附测定(enzyme-linked immuno sorbent assay,elisa)的方法获取各细胞株上清液ALT值;2.针对SLC35F3和GPT基因,设计特异性实时荧光定量PCR(real-time PCR)引物,检测不同细胞株不同时间-浓度乙醇干预水平下SLC35F3和GPT基因表达水平;3.提取细胞株在不同时间-浓度乙醇干预水平下细胞的总蛋白,设计针对SLC35F3和GPT基因编码蛋白的特异性抗体,采用蛋白印迹(western-blot,WB)的方法观察特异蛋白的表达情况;4.将不同时间-浓度乙醇干预水平下的细胞消化后,接种到无菌玻璃片上,采用特异性抗体免疫组化(Immunohistochemistry,IHC)的方法观察各SLC35F3和GPT特异蛋白在不同细胞株中的表达部位以及表达量变化。
     细胞实验均采取三次重复,计量指标采用平均值±标准差(mean±standard deviation [SD])表示。组间比较统计学方法使用遵循以下原则:如数据符合正态分布,则比较选用方差分析(one-way ANOVA);如数据不符合正态分布,则比较选用非参数检验(Mann-Whitney U test)。除非特殊说明,P<0.05被认为是有显著统计学差异。
     结果:我们检测了不同时间-浓度乙醇干预浓度下BEL-7402和MHCC-97H两株细胞的上清液分泌值,SLC35F3,GPT两基因表达,编码蛋白表达情况。具体结果如下:1. BEL-7402ALT达峰时间稳定在6小时,而MHCC-97H ALT达峰时间由100mmol/l乙醇干预下的12小时,缩短至200mmol/l乙醇干预下的3小时。不同浓度酒精干预下,BEL-7402的ALT峰值水平差别无统计学显著性(P>0.05),MHCC-97H的ALT峰值水平随着乙醇干预浓度的加大而升高,差别有统计学显著性(P<0.05);2.不同时间-浓度乙醇干预下BEL-7402和MHCC-97H的SLC35F3及GPT基因表达水平存在差异。BEL-7402的SLC35F3基因和GPT基因分别在12小时和6小时达到峰值,相对稳定,且随乙醇暴露浓度的增加峰值水平变化不大,差别无统计学显著性(P>0.05)。而MHCC-97H的SLC35F3基因和GPT基因表达水平的达峰时间和峰值表达水平随着不同干预浓度的变化较大,其达峰时间从50mmol/l乙醇暴露下的24小时,提前到200mmol/l乙醇暴露下的3小时。峰值水平随着乙醇暴露浓度的升高而升高,差异有统计学显著性(P<0.05)。3.蛋白印迹半定量结果显示:BEL-7402SLC35F3和GPT基因编码蛋白表达达峰时间稳定在12小时和6小时,而MHCC-97H SLC35F3和GPT基因编码蛋白表达达峰时间随着乙醇暴露浓度的增加而提前,由200mmol/l乙醇暴露下SLC35F3和GPT编码蛋白表达水平高于相应的50mmol/l和100mmol/l乙醇干预浓度下的表达水平(P<0.05)。免疫组化结果与蛋白印迹观察结果一致。
     结论:在应激环境下,基础高表达SLC35F3基因的BEL-7402表现出在体外环境下表现出比低表达SLC35F3基因的MHCC-97H细胞株更强的自身稳定性和对乙醇的低度易感性,及其更小的损伤。SLC35F3基因的基础表达水平可能与乙醇干预下肝细胞自身调节及ALT代谢机制有关。在基础状态下SLC35F3基因的高表达有利于在应对乙醇刺激时,降低乙醇损伤的易感性,减轻乙醇所致的肝脏损伤。
CHAPTER I
     PART I
     Combinative analysis of factors influence serum alanineaminotransferase activity in adult male population from southernChina
     Objective: Abnormal alanine aminotransferase (ALT) activity isindicative of liver disease even a burden of overall health. Therefore, based onthe investigation of Fangchenggang Area Male Healthy and ExaminationSurvey (FAMHES), We assessed the factors associated with ALT activity andtheir internal relationships in a male population from southern China.
     Methods: Data of physical examinations, laboratory tests, hepaticultrasounds and standardized questionnaire were collected from2119malesparticipating in a population-based survey from September2009to December2009.
     Results: Nonalcoholic fatty liver disease (NAFLD) and metabolicsyndrome (MetS) were associated with the elevation of ALT levels (P<0.05).Prevalence of NAFLD was correlated to MetS (r=0.991, P=0.009). The levels of abnormal metabolic syndrome components increased in proportion with theALT elevation (P<0.01). Obesity and hyperlipidemia were associated with theALT levels in following multivariate regression analysis (P<0.01). There was nosynergic effect of hepatitis B virus surface antigen (HBsAg) and MetS on theALT levels (synergy index [SI]=0.74,95%confidence interval [CI]:0.71–0.80).
     Conclusions: NAFLD and MetS were associated with ALT levels in amale population from Fangchenggang area, southern China. Obesity andhyperlipidemia were independent MetS components contributing to elevatedALT (e-ALT). This finding might suggest necessity on justification of theseconfounding factors when detecting ALT levels among this population.
     CHAPTER I
     PART II
     Elevated Alanine Aminotransferase Is Strongly Associated withIncident Metabolic Syndrome: A MetaAnalysis of ProspectiveStudies
     Objective: The incidence of metabolic syndrome (MetS) is rapidlyincreasing worldwide and associated with alanine aminotransferase (ALT)activity. However, the impact of ALT activity on MetS incidence is inconsistentin published literature. We therefore estimated the association between elevatedALT activity and incident MetS through a meta-analysis of prospective cohortstudies.
     Methods: All published prospective cohort studies on the associationbetween elevated ALT activity and incident MetS were retrieved from Pubmed,Embase, and the Institute for Scientific Information (ISI)(literatures publishedbefore January10th,2014). Nationality, gender, age of the enrolled population,follow-up duration, definition of MetS, adjusted covariates, relative risk (RR)are retrieved or calculated directly or indirectly from enrolled reference. We willevaluated the pooled results of dichotomous RR and their95%confidenceinterval(CI)(presented as the incidence of MetS in population with highestALTvalue/the incidence of MetS in population with lowest ALTvalue).Meanwhile, the continuous RR and95%CI was also evaluated (presented as theRR of MetS per5U/l of ALT increment)。If there was no significantheterogeneity (P-value>0.05and I2<50%), the fixed-effect model will be chosento estimate the overall RR and95%CI. Otherwise, the random-effect model willbe used.
     Results: In all, seven prospective cohort studies, with31545participantsand2873cases of incident MetS were recruited. The calculated RR was1.81(95%CI:1.49–2.14) when the incidence of MetS was compared between thehighest versus the lowest classification of ALT activities. The pooled RR was1.13(95%CI:1.11–1.16) in dose-response analysis with5U/l of ALTincrement. Subgroup analysis suggested that gender disparity might be the mainorigin of heterogeneity in overall analysis (P=0.007between RRs ofgender-specific subgroups evaluated with5U/l increments of ALT). Women hada higher dose-response risk of MetS incidence (1.38,95%CI:1.20–1.55per5U/l of ALT elevation) than men. Furthermore, sensitivity analysis confirmed thestability of results. No publication bias was found in our meta-analysis
     Conclusion: Current evidence from prospective studies supports theassociation between ALT elevation and increasing MetS incidence. Thisassociation is closer and more consistent in female population. Further studiesare needed to confirm this association and to investigate the potentialmechanism of ALT activity on MetS occurrence.
     CHAPTER II
     A genome-wide association study identified two novel loci onalanine aminotransferase level in a male population fromFangchenggang area and their bioinformatic analysis
     Obsjective: Alanine aminotransferase (ALT) plays an important role inliver disease detection and health evaluation. ALT level is influenced by geneticand environmental factors. Therefore, a genome-wide association study (GWAS)was performed in2018healthy Chinese men, combining with the previousepidemiology data from the Fangchenggang Area Male Healthy andExamination Survey (FAMHES), we are trying to find out the common geneticvariation that influence the ALT level in male population from Fangchenggangarea and their interaction with environmental covariates.
     Methods: Venous blood of enrolled subjects were sampled to extract theDNA. A genome-wide association study (GWAS) was performed in1999healthy male subjects enrolled in FAMHES to check the genotype ofgenome-wide Single Nucleotide Polymorphisms (SNPs), platform illuminaomini one。GWAS was adjusted the body mass index (BMI), triglycerides ascovariates in multi-variate regression model. Further, GWAS was performed inthe subgroup with positive hepatitis B surface antigen (HBsAg). The statisticalsignificance in GWAS of the whole participants was P<1*10-5. The statisticalsignificance in GWAS of the positive HBsAg participants was P<0.05. We thenapplied the following QC criteria to filter SNPs: P <0.001for theHardy-Weinberg equilibrium (HWE) test, minor allele frequency(MAF)<0.01and genotype call rate <95%. The ALT level was compared between positive HBsAg or MetS subgroups classified by variousSNPs with non-parametric analysis (Mann-Whitney Test). Finally, we adoprtedthe synergic effect model to assess the interaction between genetic variation andenvironmental covariates.
     Results: As results,7SNPs in5genetic loci showed statisticalsignificance after GWAS on the level of P<1*10-5, including the rs10157061(P=7.46*10-7),rs10752781(P=1.29*10-6), rs1878544(P=2.16*10-6) at1q42.2ofSLC35F3gene; rs4766453(P=1.11*10-6) at12q24.12of CUX2gene;rs4801847(P=3.26*10-6)at19q13.3of SHANK1gene;rs2010020(P=7.73*10-6)at16q23.3of WWOX gene;rs3743484(P=8.20*10-6) at15q24.1of CYP1A2gene. Among them,4SNPs in2gene loci (rs10157061(P=7.46*10-7),rs10752781(P=1.29*10-6), rs1878544(P=2.16*10-6) at1q42.2ofSLC35F3gene;rs4766453(P=1.11*10-6) at12q24.12of CUX2gene)showedmore significance with ALT level (P<3*10-6).In population with positiveHbsAg, the rs10157061,rs10752781, rs1878544at1q42.2of SLC35F3gene,rs4801847at19q13.3of SHANK1gene;rs2010020at16q23.3of WWOXgene;rs3743484at15q24.1of CYP1A2gene still reached the statisticalsignificance (P<0.05). Combining with the potential SNPs and MetS or HbsAgstatus, we found the ALT level is significantly different followed with thechange of SNP genotype in different subgroups(P<0.05). We found significantsynergic effects on ALT variation between candidate SNPs(rs10157061,rs10752781, rs1878544at1q42.2of SLC35F3gene,andrs4766453at12q24.12of CUX2gene) and positive HbsAg, the synergic indexsand their95%confidence interval (CI)>1.
     Conclusions: In conclusion a GWAS found new genetic variation that influence the variation of ALT level in adult males from Fangchenggang area.Among them, SLC35F3and CUX2might be the susceptible gene that influencethe ALTlevel in adult male of this area. However, these effects might be distichtfor the background of HBVinfection. The influence might be amplified on thebackground of HBVinfection. The candidate SNPs and their located loci providepotential genetic biomarker for the diagnosis and treatment of individualizedmedicine. Meanwhile, it provide a significant a meaningful target for thevalication of genetic foundation of ALTlevel on the next step. And themechanism of these influence needs investigation in future.
     CHAPTER III
     PART I
     The replication in the hepatic cell lines on the new findingsthrough genome-wide association study that significantlyinfluenced the alanine amniotransferase level in adult malepopulation from Fangchenggang area
     Obsjective: Based on the results of genome-wide association study(GWAS) in the previous Fangchenggang Area Male Healthy and ExaminationSurvey (FAMHES), we found new genetic variation that influence the serumalanine aminotransferase (ALT) level in adult male population fromFangchenggang area. However, false connection exsists in the SingleNucleotide Polymorphisms (SNPs) and phenotypic traits found by GWAS.Therefore, we selected the hepatic cell lines as observation to evaluate theassociation between candidate SNPs and ALT level. Meanwhile, we checked thegene that the SNPs located, the protein expression that the candidate geneencoded. We are trying to investigate the association between candidate SNPs,the expression of their located gene, encoded protein by the candidated gene andthe phenotype of various hepatic cell lines.
     Methods:7hepatic cell lines including BEL-7402, BEL-7404,HL-7702,SMMC-7721, Hep-G2, MHCC-97H, MHCC-97L were selected for observation.The hepatic cell lines were cultured for the following experiments:1.deoxyribonucleic acid (DNA) extraction, design the SNP-specific primer usingthe Polymerase Chain Reaction (PCR) method ti amplify the products.And thePCR products were tested by Sanger’s methods to get the genotype of potentialSNPs;2. Supernate of hepatic cell lines was extracted, the ALT level of various hepatic cell lines was tested by Enzyme Linked Immunosorbent Assay (elisa);3.design the gene-specific primer for real-time PCR(RT-PCR) to test theexpression of candidate gene in various hepatic cell lines;4. the total proteinextraction, design the protein-specific antibody to test the specific proteinexpression by using the western-blot;5. the digested cell was planted in thegerm-free disinfected glass slides, test the specific protein expression withprotein-specific antibody using the Immunological Histological Chemistrymethod.
     All the cell experiments was performed three times, measurement datawas expressed by mean±standard deviation (SD). The ALT level in varioushepatic cell lines, expression of potential gene was compared with thenon-parametric test (Mann-Whitney U test). The correlation between expressioncovariates was compared by using pearson index. P<0.05was considered assignificance unless special illustration.
     Results: In the7hepatic cell lines, polymorphisms were presented in5SNPs located in3loci, all the candidate SNPs in the hepatic cell lines ispresented as homozygote.7hepatic cell lines were divded into3groupsaccording to the genotype distinction among different genotypes: A groupincluded the cell line MHCC-97H and MHCC-97L take allele associated withhigher ALT value in rs10157061,rs10752781,rs1878544in SLC35F3,rs4766453in CUX2, rs4801847in SHANK-1; B group included theSMMC-7721take the allele associated with higher ALT level at rs4801847inSHANK-1; C group included the BEL-7402, BEL-7404, Hep-G2, and HL-7702take allele associated with lower ALT level in all the7SNPs located in5geneloci. After comparison, the ALT value in supernate of A group was higher than the ALT value in groups B and C, and no significance was found between groupB and C. RT-PCR indicated that the GPT expression was higher than group Band C, but the SLC35F3expression is negative correlated to the GPT expression(r=-0.672, P=0.001). The CUX2expression had no significant difference indifferent groups (P>0.05). The results from western-blot and IHC confirmedthese results. In western-blot experiments, the SLC35F3encoded proteinexpression in group A was much lower than the group B and C statistically(P<0.05). The GPT protein expression was higher than group B and Cstatistically (P<0.05). No significant difference between CUX2proteinexpression among various hepatic cell lines (P>0.05). The protein expression ofSLC35F3was negative correlated to GPT expression (r=-0.527, P=0.002). TheIHC results confirmed the western-blot results.
     Conclusions: Based on the SNPs that influence the serum ALT level inadult male population from previous GWAS, the hepatic cell line experiment invitro confirmed:1. The candidate SNPs in1q42.2of SLC35F3(includingrs10157061, rs10752781, rs1878544) significantly influenced the expression ofSLC35F3. Alleles associated with higher ALT level was associated with lowerSLC35F3expression.2. the SLC35F3gene might be a susceptible gene thatinfluence the ALT secrection. The upgrade of SLC35F3expression might becorrelated to the low GPT expression. The quantitative trait loci (QTL) withstrong Linkage disequilibrium (LD) composing by rs10157061, rs10752781,rs1878544influence and regulate the ALT secrection of ALT through regulatingthe expression of SLC35F3. The inner mechanism investigation is waiting to be confiemed.
     CHAPTER III
     PART II
     Expression of SLC35F3gene in hepatic cell lines MHCC-97H andBEL-7402in low exposure of ethanol
     Background and Obsjective: Based on the validation in previous study,we found SLC35F3gene influced the alanine aminotransferase (ALT)secrection, GPT gene expression in hepatic cell lines in vitro. The lowexpression of SLC35F3gene and its encoded protein was correlated to thehigher GPT expression and higher ALT secrection. However, the SLC35F3geneexpression in different kinds of hepatic cell lines on the press outside isunknown. Therefore, we designed interaction experiment on low exposure ofethanol, observed the SLC35F3and GPT gene expression of hepatic cell lines,and assess their interaction.
     Methods: The hepatic cell line BEL-7402and MHCC-97H was selectedfor observation. The expression of SLC35F3, GPT gene and encoded proteinwas tested in different ethanol concentration (50mmol/l,100mmol/l, and200mmol/l) at3hours,6hours,12hours,24hours. The procedure of experimentwas described as follows:1. extracting the supernate of hepatic cell lines andtested the ALT value with Enzyme Linked Immunosorbent Assay (elisa);2.aiming at the SLC35F3and GPT gene, design the specific primer to test theexpression level of SLC35F3and GPT level on different time-concentration ofethanol exposure in various hepatic cell lines with real-time PCR;3. extractingthe total protein of hepatic cell lines in different time-concentration of ethanolexposure,designing the SLC35F3and GPT specific antibody, to check theprotein expression by western-blot method;4. digest the cell in different time-concentration of ethanol exposure, to plant on the germ-free glass slides,the protein expression was checked by protein specific anti-body withImmunological Histological Chemistry (IHC) method.
     The cell experiments were duplicated for three times. Measurement datawas presented as mean±standard deviation (SD). The statistic comparison wasfollowed the criteria as below: one-way ANOVA was used in comparisonbetween data with normal distribution; non-parametric test (Mann-Whitney Utest) was used in comparison data with un normal distribution. P<0.05wasconsidered as statistical significance unless specific illustration.
     Results: We have checked the ALT secrection, SLC35F3, GPT gene andencoded protein expression level in different time-concentration ethanolexposure of BEL-7402and MHCC-97H. The specific results is as follows:1.the time-to-peak ALT level in BEL-7402was6hours, while the time-to-peakALT level was shorten from12hours on the exposure of100mmol/l ethanolconcentration to3hours on the exposure of200mmol/l ethanol concentration.In different intervention of various ethanol concentration, no significantdifference for the peak ALT value was observed between different ethanolconcentration exposure (P>0.05), while in MHCC-97H, the peak ALT value wasincreased significantly with the increased ethanol interactive concentrationstatistically (P<0.05);2. significant difference of time-concentration ethanolinteraction between BEL-7402and MHCC-97H on SLC35F3and GPTexpression. The time-to-peak of SLC35F3and GPT in BEL-7402is12hoursand6hours. No significant variation was observed between peak expressionlevel on different ethanol interaction concentration (P>0.05). While inMHCC-97H, the time-to-peak and peak level of SLC35F3and GPT expression varied with different ethanol concentration (P<0.05). The time-to-peak isshorten from24hours on the exposure of50mmol/l to3hours on the exposureof200mmol/l. Significant increasing GPT and SLC35F3expression level wereobserved followed with increasing exposure of ethanol concentration (P<0.05).3. the western-blot showed: the SLC35F3and GPT protein expression werestabilized at12hours and6hours respectively, while the time-to-peak ofSLC35F3and GPT in MHCC-97H was shorten followed with the increasingconcentration of ethanol exposure, the SLC35F3and GPT protein expression inMHCC-97H is higher on200mmol/l of ethanol exposure(P<0.05). Thewestern-blot results were confirmed by IHC results.
     Conclusions: In the stress environment, the BEL-7402with highexpression of SLC35F3is more susceptible to the ethanol exposure than theMHCC-97H with low expression of SLC35F3. The SLC35F3expression mightbe associated with the self-regulation of hepatic cell and the ALT secrectionmechanism on the ethanol exposure. The low expression of SLC35F3isfacilitated to decrease the susceptibility and injury on the exposure of ethanol.
引文
[1]. Schwartz MK.[261c] Clinical aspects of aspartate and alanine amino-transferases. Methods in enzymology1971,17:866-875.
    [2]. Kim W, Flamm SL, Di Bisceglie AM et al. Serum activity of alanineaminotransferase (ALT) as an indicator of health and disease.Hepatology2008,47(4):1363-1370.
    [3]. Giannini EG, Testa R, Savarino V. Liver enzyme alteration: a guide forclinicians. Canadian medical association journal2005,172(3):367-379.
    [4]. Clark JM, Brancati FL, Diehl AM. The prevalence and etiology ofelevated aminotransferase levels in the United States. The Americanjournal of gastroenterology2003,98(5):960-967.
    [5]. Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. The Lancet2005,365(9468):1415-1428.
    [6]. James PT. Obesity: the worldwide epidemic. Clinics in dermatology2004,22(4):276-280.
    [7]. Yun JE, Kim SY, Kang H-C et al. Alanine aminotransferase is associatedwith metabolic syndrome independently of insulin resistance. Circulationjournal: official journal of the Japanese Circulation Society2010,75(4):964-969.
    [8]. Liu Z, Hu Y, Yang X et al. Combinative analysis of factors influenceserum alanine aminotransferase activity in adult male population fromsouthern China. Clinical biochemistry2012,45(18):1683-1688.
    [9]. Schindhelm RK, Diamant M, Dekker JM et al. Alanine aminotransferaseas a marker of non‐alcoholic fatty liver disease in relation to type2diabetes mellitus and cardiovascular disease. Diabetes/metabolismresearch and reviews2006,22(6):437-443.
    [10]. Pratt DS, Kaplan MM. Evaluation of abnormal liver-enzyme results inasymptomatic patients. New England Journal of Medicine2000,342(17):1266-1271.
    [11]. Makkonen J, Pietil inen KH, Rissanen A et al. Genetic factors contributeto variation in serum alanine aminotransferase activity independent ofobesity and alcohol: a study inmonozygotic and dizygotic twins. Journalof hepatology2009,50(5):1035-1042.
    [12]. Bathum L, Petersen HC, Rosholm J-U et al. Evidence for a substantialgenetic influence on biochemical liver function tests: results from apopulation-based Danish twin study. Clinical chemistry2001,47(1):81-87.
    [13]. Middelberg RP, Medland SE, Martin NG et al. A longitudinalgenetic study of uric acid and liver enzymes in adolescent twins. TwinResearch and Human Genetics2007,10(05):757-764.
    [14]. Rahmioglu N, Andrew T, Cherkas L et al. Epidemiology and geneticepidemiology of the liver function test proteins. PLoS One2009,4(2):e4435.
    [15]. van Beek JH, de Moor MH, de Geus EJ et al. The genetic architecture ofliver enzyme levels: GGT, ALT and AST. Behavior genetics2013,43(4):329-339.
    [16]. Lander ES, Linton LM, Birren B et al. Initial sequencing and analysis ofthe human genome. Nature2001,409(6822):860-921.
    [17]. McCarthy MI, Abecasis GR, Cardon LR et al. Genome-wide associationstudies for complex traits: consensus, uncertainty and challenges. NatureReviews Genetics2008,9(5):356-369.
    [18]. Hirschhorn JN, Daly MJ. Genome-wide association studies for commondiseases and complex traits. Nature Reviews Genetics2005,6(2):95-108.
    [19]. Yuan X, Waterworth D, Perry JR et al. Population-based genome-wideassociation studies reveal six loci influencing plasma levels of liverenzymes. The American Journal of Human Genetics2008,83(4):520-528.
    [20]. Kamatani Y, Matsuda K, Okada Y et al. Genome-wide association studyof hematological and biochemical traits in a Japanese population. Naturegenetics2010,42(3):210-215.
    [21]. Chambers JC, Zhang W, Sehmi J et al. Genome-wide association studyidentifies loci influencing concentrations of liver enzymes in plasma.Nature genetics2011,43(11):1131-1138.
    [22]. Kim YJ, Go MJ, Hu C et al. Large-scale genome-wide associationstudies in East Asians identify new genetic loci influencing metabolictraits. Nature genetics2011,43(10):990-995.
    [23]. Park T-J, Hwang J-Y, Go MJ et al. Genome-Wide Association Study ofLiver Enzymes in Korean Children. Genomics&informatics2013,11(3):149-154.
    [24]. Kim H-Y, Byun M-J, Kim H. A replication study of genome-wide CNVassociation for hepatic biomarkers identifies nine genes associated withliver function. Biochem&Mol Biol Reports2011,44(9):578-583.
    [25]. Kim H-Y, Park J-H, Kim H et al. Semantic networks forgenome-wide CNV associated with AST and ALT in Korean cohorts.Molecular&Cellular Toxicology2013,9(2):103-111.
    [26]. Fang ZL, Harrison TJ, Yang JY et al. Prevalence of hepatitis B virusinfection in a highly endemic area of southern China after catch‐upimmunization. Journal of medical virology2012,84(6):878-884.
    [1]. Kim W, Flamm SL, Di Bisceglie AM et al. Serum activity of alanineaminotransferase (ALT) as an indicator of health and disease.Hepatology2008,47(4):1363-1370.
    [2]. Pendino GM, Mariano A, Surace P et al. Prevalence and etiology ofaltered liver tests: a population‐based survey in a mediterranean town.Hepatology2005,41(5):1151-1159.
    [3]. Jeong S, Nam H, Rhee J et al. Metabolic syndrome and ALT:a communitystudy in adult Koreans. International journal of obesity2004,28(8):1033-1038.
    [4]. Sorbi D, Boynton J, Lindor KD. The ratio of aspartate aminotransferase toalanine aminotransferase: potential value in differentiating nonalcoholicsteatohepatitis from alcoholic liver disease. The American journal ofgastroenterology1999,94(4):1018-1022.
    [5]. Conry-Cantilena C, VanRaden M, Gibble J et al. Routes of infection,viremia, and liver disease in blood donors found to have hepatitis C virusinfection. New England Journal of Medicine1996,334(26):1691-1696.
    [6]. Green RM, Flamm S. AGA technical review on the evaluation of liverchemistry tests. Gastroenterology2002,123(4):1367-1384.
    [7]. Bardella MT, Vecchi M, Conte D et al. Chronic unexplained hypertransaminasemia may be caused by occult celiac disease. Hepatology1999,29(3):654-657.
    [8]. Dong MH, Bettencourt R, Barrett-Connor E et al. Alanine amino-transferase decreases with age: the Rancho Bernardo Study. PloS one2010,5(12):e14254.
    [9]. Bethel M, Deedwania P, Levitt N et al. Metabolic syndrome and alanineaminotransferase: a global perspective from the NAVIGATOR screeningpopulation. Diabetic Medicine2009,26(12):1204-1211.
    [10]. Burgert TS, Taksali SE, Dziura J et al. Alanine aminotransferase levelsand fatty liver in childhood obesity: associations with insulin resistance,adiponectin, and visceral fat. Journal of Clinical Endocrinology&Metabolism2006,91(11):4287-4294.
    [11]. Ioannou GN, Boyko EJ, Lee SP. The prevalence and predictors ofelevated serum aminotransferase activity in the United States in1999–2002. The American journal of gastroenterology2006,101(1):76-82.
    [12]. Chen CH, Huang MH, Yang JC et al. Prevalence and etiology of elevatedserum alanine aminotransferase level in an adult population in Taiwan.Journal of gastroenterology and hepatology2007,22(9):1482-1489.
    [13]. Hanley AJ, Wagenknecht LE, Festa A et al. Alanine Aminotransferaseand Directly Measured Insulin Sensitivity in a Multiethnic Cohort TheInsulin Resistance Atherosclerosis Study. Diabetes care2007,30(7):1819-1827.
    [14]. Yun JE, Kim SY, Kang H-C et al. Alanine aminotransferase is associatedwith metabolic syndrome independently of insulin resistance.Circulation journal: official journal of the Japanese Circulation Society2010,75(4):964-969.
    [15]. Fan J-G, Farrell GC. Epidemiology of non-alcoholic fatty liver disease inChina. Journal of hepatology2009,50(1):204-210.
    [16]. Lu F, Li T, Liu S. Epidemiology and prevention of hepatitis Bvirus infection in China. Journal of viral hepatitis2010,17(s1):4-9.
    [17]. Gordon A, McLean CA, Pedersen JS et al. Hepatic steatosis in chronichepatitis B and C: predictors, distribution and effect on fibrosis. Journalof hepatology2005,43(1):38-44.
    [18]. Lu X: Pathogenesis of Hepatitis B Virus (HBV)–Mediated Liver Injury.North American Journal of Medicine and Science Jan2011,4(1):1.
    [19]. Tan A, Gao Y, Yang X et al. Low serum osteocalcin level is a potentialmarker for metabolic syndrome: results from a Chinese male populationsurvey. Metabolism2011,60(8):1186-1192.
    [20]. Meziri M, Pereira W, Abdelwahab A et al. In vitro chronic hepaticdisease characterization with a multiparametric ultrasonic approach.Ultrasonics2005,43(5):305-313.
    [21]. Saadeh S, Younossi ZM, Remer EM et al. The utility of radiologicalimaging in nonalcoholic fatty liver disease. Gastroenterology2002,123(3):745-750.
    [22]. Choudhury J, Sanyal AJ. Clinical aspects of fatty liver disease. In:Seminars in liver disease:2004: Copyright2004by Thieme MedicalPublishers,Inc.,333Seventh Avenue, New York, NY10001, USA.;2004:349-362.
    [23]. Pulzi FB, Cisternas R, Melo MR et al. New clinical score to diagnosenonalcoholic steatohepatitis in obese patients.Diabetology&metabolicsyndrome2011,3(1):1-6.
    [24]. Vermeulen A, Verdonck L, Kaufman JM. A critical evaluation of simplemethods for the estimation of free testosterone in serum. Journal ofClinical Endocrinology&Metabolism1999,84(10):3666-3672.
    [25]. Mofrad P, Contos MJ, Haque M et al. Clinical and histologic spectrum ofnonalcoholic fatty liver disease associated with normal ALT values.Hepatology2003,37(6):1286-1292.
    [26]. Matteoni CA, Younossi ZM, Gramlich T wt al. Nonalcoholic fatty liverdisease: a spectrum of clinical and pathological severity.Gastroenterology1999,116(6):1413-1419.
    [27]. Chitturi S, Farrell GC, Hashimoto E et al. Non‐alcoholic fatty liverdisease in the Asia–Pacific region: Definitions and overview ofproposed guidelines. Journal of gastroenterology and hepatology2007,22(6):778-787.
    [28]. Fan JG, Saibara T, Chitturi S et al. What are the risk factors and settingsfor non‐alcoholic fatty liver disease in Asia–Pacific? Journal ofgastroenterology and hepatology2007,22(6):794-800.
    [29]. Matthews D, Hosker J, Rudenski A et al. Homeostasis model assessment:insulin resistance and β-cell function from fasting plasma glucose andinsulin concentrations in man. Diabetologia1985,28(7):412-419.
    [30]. Rothman KJ. Epidemiology: an introduction: Oxford University Press;2012.
    [31]. Hosmer DW, Lemeshow S. Confidence interval estimation of interaction.Epidemiology1992,3(5):452-456.
    [32]. Clark JM, Brancati FL, Diehl AM. The prevalence and etiology ofelevated aminotransferase levels in the United States. The Americanjournal of gastroenterology2003,98(5):960-967.
    [33]. Suh S-Y, Choi S-E, Ahn H-Y et al. The association between normalalanine aminotransferase levels and the metabolic syndrome:2005Korean National Health and Nutrition Examination Survey. Metabolism2009,58(12):1731-1736.
    [34]. Gunji T, Matsuhashi N, Sato H et al. Risk factors for serum alanineaminotransferase elevation: A cross-sectional study of healthy adultmales in Tokyo, Japan. Digestive and Liver Disease2010,42(12):882-887.
    [35]. Kabir A, Pourshams A, Khoshnia M et al. Normal Limit forSerum Alanine Aminotransferase Level and Distribution of MetabolicFactors in Old Population of Kalaleh, Iran. Hepatitis monthly2013,13(10).
    [36]. Fraser A, Longnecker MP, Lawlor DA. Prevalence of elevated alanineaminotransferase among US adolescents and associated factors:NHANES1999–2004. Gastroenterology2007,133(6):1814-1820.
    [37]. Saito T, Nishise Y, Makino N et al. Impact of metabolic syndrome onelevated serum alanine aminotransferase levels in the Japanesepopulation. Metabolism2009,58(8):1067-1075.
    [38]. Westerbacka J, Corner A, Tiikkainen M et al. Women and men havesimilar amounts of liver and intra-abdominal fat, despite moresubcutaneous fat in women: implications for sex differences in markersof cardiovascular risk. Diabetologia2004,47(8):1360-1369.
    [39]. Garg A, Misra A. Hepatic steatosis, insulin resistance, and adipose tissuedisorders. Journal of Clinical Endocrinology&Metabolism2002,87(7):3019-3022.
    [40]. Marchesini G, Bugianesi E, Forlani G et al. Nonalcoholic fatty liver,steatohepatitis, and the metabolic syndrome. Hepatology2003,37(4):917-923.
    [41]. Bugianesi E, Gastaldelli A, Vanni E et al. Insulin resistance innon-diabetic patients with non-alcoholic fatty liver disease: sites andmechanisms. Diabetologia2005,48(4):634-642.
    [42]. Day CP, James OF. Steatohepatitis: a tale of two “hits”?Gastroenterology1998,114(4):842-845.
    [43]. Marchesini G, Brizi M, Bianchi G et al. Nonalcoholic fatty liver diseasea feature of the metabolic syndrome. Diabetes2001,50(8):1844-1850.
    [44]. Das SK, Vasudevan D. Alcohol-induced oxidative stress. Life sciences2007,81(3):177-187.
    [45]. Duygu F, Karsen H, Aksoy N et al. Relationship of oxidative stress inhepatitis B infection activity with HBV DNA and fibrosis. Annals oflaboratory medicine2012,32(2):113-118.
    [46]. Bolukbas C, Bolukbas FF, Horoz M et al. Increased oxidative stressassociated with the severity of the liver disease in various forms ofhepatitis B virus infection. BMC infectious diseases2005,5(1):95.
    [47]. Peng T, Li L-Q, Peng M-H et al. Evaluation of oxidative stress in agroup of adolescents exposed to a high level of aflatoxin B1—amulti-center and multi-biomarker study. Carcinogenesis2007,28(11):2347-2354.
    [48]. Fang ZL, Harrison TJ, Yang JY et al. Prevalence of hepatitis B virusinfection in a highly endemic area of southern China after catch‐upimmunization. Journal of medical virology2012,84(6):878-884.
    [49]. Altlparmak E, Koklu S, Yalinkilic M et al. Viral and host causes of fattyliver in chronic hepatitis B. World journal of gastroenterology2005,11(20):3056.
    [50]. Lu J, Zhou Y, Lin X et al. General epidemiological parameters of viralhepatitis A, B, C, and E in six regions of China: a cross-sectional studyin2007. PloS one2009,4(12):e8467.
    [1]. Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. TheLancet2005,365(9468):1415-1428.
    [2]. Mottillo S, Filion KB, Genest J et al. The Metabolic Syndrome andCardiovascular RiskA Systematic Review and Meta-Analysis. Journalof the American College of Cardiology2010,56(14):1113-1132.
    [3]. Aschner P. Metabolic syndrome as a risk factor for diabetes. Expertreview of cardiovascular therapy2010,8(3):407-412.
    [4]. Gami AS, Witt BJ, Howard DE et al. Metabolic Syndrome and Risk ofIncident Cardiovascular Events and DeathA Systematic Review andMeta-Analysis of Longitudinal Studies. Journal of the AmericanCollege of Cardiology2007,49(4):403-414.
    [5]. Hui WS, Liu Z, Ho SC. Metabolic syndrome and all-cause mortality: ameta-analysis of prospective cohort studies. European journal ofepidemiology2010,25(6):375-384.
    [6]. James PT. Obesity: the worldwide epidemic. Clinics in dermatology2004,22(4):276-280.
    [7]. Owen N, Healy GN, Matthews CE et al. Too much sitting: thepopulation-health science of sedentary behavior. Exercise and sportsciences reviews2010,38(3):105.
    [8]. Marchesini G, Brizi M, Bianchi G et al. Nonalcoholic fatty liverdisease a feature of the metabolic syndrome. Diabetes2001,50(8):1844-1850.
    [9]. Jansen PL. Non-alcoholic steatohepatitis. European journal ofgastroenterology&hepatology2004,16(11):1079-1085.
    [10]. Marchesini G, Bugianesi E, Forlani G et al. Nonalcoholic fattyliver, steatohepatitis, and the metabolic syndrome. Hepatology2003,37(4):917-923.
    [11]. Nakanishi N, Suzuki K, Tatara K. Serum γ-glutamyltransferase andrisk of metabolic syndrome and type2diabetes in middle-agedJapanese men. Diabetes care2004,27(6):1427-1432.
    [12]. Hanley AJ, Williams K, Festa A et al. Liver Markers and developmentof the Metabolic Syndrome The Insulin Resistance AtherosclerosisStudy. Diabetes2005,54(11):3140-3147.
    [13]. André P, Balkau B, Charles MA et al. γ-GlutamyltransferaseActivity and Development of the Metabolic Syndrome (InternationalDiabetes Federation Definition) in Middle-Aged Men and WomenData From the Epidemiological Study on the Insulin ResistanceSyndrome (DESIR) cohort. Diabetes care2007,30(9):2355-2361.
    [14]. Schindhelm R, Dekker J, Nijpels G et al. Alanine aminotransferaseand the6‐year risk of the metabolic syndrome in Caucasian men andwomen: the Hoorn Study. Diabetic Medicine2007,24(4):430-435.
    [15]. Goessling W, Massaro JM, Vasan RS et al. Aminotransferase levelsand20-year risk of metabolic syndrome, diabetes, and cardiovasculardisease. Gastroenterology2008,135(6):1935-1944. e1931.
    [16]. Jo S-K, Lee W-Y, Rhee E-J et al. Serum γ-glutamyl transferaseactivity predicts future development of metabolic syndrome definedby2different criteria. Clinica Chimica Acta2009,403(1):234-240.
    [17]. Xu Y, XU M, HUANG Y et al. Cross‐sectional and longitudinala s s o c i a t i o n o f s e r u m a l a n i n e a m i n o t r a n s a m i n a s e a n dγ‐glutamyltransferase with metabolic syndrome in middle‐aged andelderly Chinese people. Journal of diabetes2011,3(1):38-47.
    [18]. Moher D, Liberati A, Tetzlaff J et al. Preferred reporting itemsfor systematic reviews and meta-analyses: the PRISMA statement.Annals of internal medicine2009,151(4):264-269.
    [19]. Stroup DF, Berlin JA, Morton SC et al. Meta-analysis ofobservational studies in epidemiology: a proposal for reporting. Jama2000,283(15):2008-2012.
    [20]. Cohen J. Weighted kappa: Nominal scale agreement provision forscaled disagreement or partial credit. Psychological bulletin1968,70(4):213.
    [21]. Wells G, Shea B, O’connell D et al. The Newcastle-Ottawa Scale(NOS) for assessing the quality of nonrandomised studies inmeta-analyses.2011.URL:http://wwwohrica/programs/clinical/epidemiology/oxford asp2011.
    [22]. Harris R, Bradburn M, Deeks J et al. Metan: fixed-and random-effectsmeta-analysis. Stata journal2008,8(1):3.
    [23]. Greenland S, Longnecker MP. Methods for trend estimation fromsummarized dose-response data, with applications to meta-analysis.American journal of epidemiology1992,135(11):1301-1309.
    [24]. Orsini N, Bellocco R, Greenland S. Generalized least squares fortrend estimation of summarized dose-response data. Stata journal2006,6(1):40.
    [25]. Berlin JA, Longnecker MP, Greenland S. Meta-analysis ofepidemiologic dose-response data. Epidemiology1993,4(3):218-228.
    [26]. Higgins JP, Thompson SG, Deeks JJ et al. Measuringinconsistency in meta-analyses. BMJ: British Medical Journal2003,327(7414):557.
    [27]. Steichen T. METANINF: Stata module to evaluate influence of asingle study in meta-analysis estimation. Statistical SoftwareComponents2001.
    [28]. Sterne JA, Egger M. Funnel plots for detecting bias in meta-analysis:guidelines on choice of axis. Journal of clinical epidemiology2001,54(10):1046-1055.
    [29]. Expert Panel on Detection E. Executive summary of the third reportof the National Cholesterol Education Program (NCEP) expert panelon Detection, Evaluation, and Treatment of high blood cholesterol inadults (Adult Treatment Panel III). JAMA: the journal of theAmerican Medical Association2001,285(19):2486.
    [30]. Alberti KGM, Zimmet P, Shaw J. The metabolic syndrome—a newworldwide definition. The Lancet2005,366(9491):1059-1062.
    [31]. Grundy SM, Cleeman JI, Daniels SR et al. Diagnosis andmanagement of the metabolic syndrome an American HeartAssociation/National Heart, Lung, and Blood Institute scientificstatement. Circulation2005,112(17):2735-2752.
    [32]. Ioannou GN, Weiss NS, Boyko EJ et al. Elevated serum alanineaminotransferase activity and calculated risk of coronary heartdisease in the United States. Hepatology2006,43(5):1145-1151.
    [33]. Pratt DS, Kaplan MM. Evaluation of abnormal liver-enzyme resultsin asymptomatic patients. New England Journal of Medicine2000,342(17):1266-1271.
    [34]. Clark JM, Brancati FL, Diehl AM. The prevalence and etiology ofelevated aminotransferase levels in the United States. The Americanjournal of gastroenterology2003,98(5):960-967.
    [35]. Bellentani S, Saccoccio G, Costa G et al. Drinking habits as cofactorsof risk for alcohol induced liver damage. Gut1997,41(6):845-850.
    [36]. Ruhl CE, Everhart JE. Determinants of the association of overweightwith elevated serum alanine aminotransferase activity in the UnitedStates. Gastroenterology2003,124(1):71-79.
    [37]. Wild S, Roglic G, Green A et al. Global prevalence of diabetesestimates for the year2000and projections for2030. Diabetes care2004,27(5):1047-1053.
    [38]. Liangpunsakul S, Chalasani N. Unexplained elevations in alanineaminotransferase in individuals with the metabolic syndrome: resultsfrom the third National Health and Nutrition Survey (NHANES III).The American journal of the medical sciences2005,329(3):111-116.
    [39]. Chu CM, Liaw YF, Sheen I et al. Sex difference in chronic hepatitis Bvirus infection: an appraisal based on the status of hepatitis B eantigen and antibody. Hepatology1983,3(6):947-950.
    [40]. Roudot‐Thoraval F, Bastie A, Pawlotsky J et al. Epidemiologicalfactors affecting the severity of hepatitis C virus‐related liver disease:A French survey of6,664patients. Hepatology1997,26(2):485-490.
    [41]. Chen CJ, Wang LY, Yu MW. Epidemiology of hepatitis B virusinfection in the Asia–Pacific region. Journal of gastroenterology andhepatology2000,15(s2):E3-E6.
    [42]. Freeman AJ, Dore GJ, Law MG et al. Estimating progression tocirrhosis in chronic hepatitis C virus infection. Hepatology2001,34(4):809-816.
    [43]. Chen SL, Morgan TR. The natural history of hepatitis C virus (HCV)infection. International journal of medical sciences2006,3(2):47.
    [44]. Kim CH, YOUNOSSI ZM. Nonalcoholic fatty liver disease: amanifestation of the metabolic syndrome. Cleveland Clinic Journal ofMedicine2008,75(10):721-728.
    [45]. Liu Z, Hu Y, Yang X et al. Combinative analysis of factors influenceserum alanine aminotransferase activity in adult male populationfrom southern China. Clinical biochemistry2012,45(18):1683-1688.
    [46]. Kim W, Flamm SL, Di Bisceglie AM et al. Serum activity of alanineaminotransferase (ALT) as an indicator of health and disease.Hepatology2008,47(4):1363-1370.
    [47]. Pendino GM, Mariano A, Surace P et al. Prevalence and etiologyof altered liver tests: a population‐based survey in a mediterraneantown. Hepatology2005,41(5):1151-1159.
    [48]. Chen CH, Huang MH, Yang JC et al. Prevalence and etiology ofelevated serum alanine aminotransferase level in an adult populationin Taiwan. Journal of gastroenterology and hepatology2007,22(9):1482-1489.
    [49]. Boppidi H, Daram SR. Nonalcoholic fatty liver disease: hepaticmanifestation of obesity and the metabolic syndrome. Postgraduatemedicine2008,120(2):E01-07.
    [50]. Liu CF, Zhou WN, Fang NY. Gamma‐glutamyltransferase levels andrisk of metabolic syndrome: a meta‐analysis of prospective cohortstudies. International journal of clinical practice2012,66(7):692-698.
    [51]. Browning JD, Szczepaniak LS, Dobbins R et al. Prevalence of hepaticsteatosis in an urban population in the United States: impact ofethnicity. Hepatology2004,40(6):1387-1395.
    [52]. Eguchi Y, Eguchi T, Mizuta T et al. Visceral fat accumulation andinsulin resistance are important factors in nonalcoholic fatty liverdisease. Journal of gastroenterology2006,41(5):462-469.
    [53]. Sattar N, McConnachie A, Ford I et al. Serial MetabolicMeasurements and Conversion to Type2Diabetes in the West ofScotland Coronary Prevention Study Specific Elevations in AlanineAminotransferase and Triglycerides Suggest Hepatic FatAccumulation as a Potential Contributing Factor. Diabetes2007,56(4):984-991.
    [54]. Lorenzo C, Hanley A, Rewers M et al. The association ofalanine aminotransferase within the normal and mildly elevated rangewith lipoproteins and apolipoproteins: the Insulin ResistanceAtherosclerosis Study. Diabetologia2013,56(4):746-757.
    [55]. Den Boer M, Voshol P, Kuipers F et al. Hepatic steatosis: a mediatorof the metabolic syndrome. Lessons from animal models.Arteriosclerosis, thrombosis, and vascular biology2004,24(4):644-649.
    [56]. Seppala-Lindroos A, Vehkavaara S, Hakkinen A-M et al. Fataccumulation in the liver is associated with defects in insulinsuppression of glucose production and serum free fatty acidsindependent of obesity in normal men. Journal of ClinicalEndocrinology&Metabolism2002,87(7):3023-3028.
    [57]. Vozarova B, Stefan N, Lindsay RS et al. High alanine aminotransferase is associated with decreased hepatic insulin sensitivity andpredicts the development of type2diabetes. Diabetes2002,51(6):1889-1895.
    [58]. Regitz-Zagrosek V, Lehmkuhl E, Weickert MO. Gender differences inthe metabolic syndrome and their role for cardiovascular disease.Clinical Research in Cardiology2006,95(3):136-147.
    [59]. Travers SH, Jeffers BW, Eckel RH. Insulin resistance during pubertyand future fat accumulation. Journal of Clinical Endocrinology&Metabolism2002,87(8):3814-3818.
    [60]. Murphy MJ, Metcalf BS, Voss LD et al. Girls at five are intrinsicallymore insulin resistant than boys: The Programming HypothesesRevisited—The EarlyBird Study (EarlyBird6). Pediatrics2004,113(1):82-86.
    [61]. Moran A, Jacobs DR, Steinberger J et al. Insulin resistance duringpuberty: results from clamp studies in357children. Diabetes1999,48(10):2039-2044.
    [62]. Ehm MG, Karnoub MC, Sakul H et al. Genomewide search for type2diabetes susceptibility genes in four American populations. TheAmerican Journal of Human Genetics2000,66(6):1871-1881.
    [63]. Olynyk JK, Knuiman MW, Divitini ML et al. Serum alanineaminotransferase, metabolic syndrome, and cardiovascular disease inan Australian population. The American journal of gastroenterology2009,104(7):1715-1722.
    [64]. Cook S, Weitzman M, Auinger P et al. Prevalence of a metabolicsyndrome phenotype in adolescents: findings from the third NationalHealth and Nutrition Examination Survey,1988-1994. Archives ofpediatrics&adolescent medicine2003,157(8):821-827.
    [65]. Weiss R, Dziura J, Burgert TS et sl. Obesity and the metabolicsyndrome in children and adolescents. New England Journal ofMedicine2004,350(23):2362-2374.
    [66]. Cheng S, Rhee EP, Larson MG et al. Metabolite profilingidentifies pathways associated with metabolic risk in humans.Circulation2012,125(18):2222-2231.
    [1]. Kim W, Flamm SL, Di Bisceglie AM et al. Serum activity of alanineaminotransferase (ALT) as an indicator of health and disease.Hepatology2008,47(4):1363-1370.
    [2]. Ruhl CE, Everhart JE. Determinants of the association of overweightwith elevated serum alanine aminotransferase activity in the UnitedStates. Gastroenterology2003,124(1):71-79.
    [3]. Sorbi D, Boynton J, Lindor KD. The ratio of aspartateaminotransferase to alanine aminotransferase: potential value indifferentiating nonalcoholic steatohepatitis from alcoholic liver disease.The American journal of gastroenterology1999,94(4):1018-1022.
    [4]. Watkins PB, Kaplowitz N, Slattery JT et al. Aminotransferaseelevations in healthy adults receiving4grams of acetaminophen daily:a randomized controlled trial. Jama2006,296(1):87-93.
    [5]. Conry-Cantilena C, VanRaden M, Gibble J et al. Routesof infection, viremia, and liver disease in blood donors found to havehepatitis C virus infection. New England Journal of Medicine1996,334(26):1691-1696.
    [6]. Makkonen J, Pietil inen KH, Rissanen A et al. Genetic factorscontribute to variation in serum alanine aminotransferase activityindependent of obesity and alcohol: a study in monozygotic anddizygotic twins. Journal of hepatology2009,50(5):1035-1042.
    [7]. Herbeth B, Samara A, Ndiaye C et al. Metabolic syndrome-relatedcomposite factors over5years in the STANISLAS Family Study:Genetic heritability and common environmental influences. ClinicaChimica Acta2010,411(11):833-839.
    [8]. Hirschhorn JN, Daly MJ. Genome-wide association studies forcommon diseases and complex traits. Nature Reviews Genetics2005,6(2):95-108.
    [9]. Murcray CE, Lewinger JP, Gauderman WJ. Gene-environmentinteraction in genome-wide association studies. American journal ofepidemiology2009,169(2):219-226.
    [10]. Yuan X, Waterworth D, Perry JR et al. Population-based genome wideassociation studies reveal six loci influencing plasma levels of liverenzymes. The American Journal of Human Genetics2008,83(4):520-528.
    [11]. Kamatani Y, Wattanapokayakit S, Ochi H ret al. A genome-wideassociation study identifies variants in the HLA-DP locus associatedwith chronic hepatitis B in Asians. Nature genetics2009,41(5):591-595.
    [12]. Tan A, Gao Y, Yang X et al. Low serum osteocalcin level is a potentialmarker for metabolic syndrome: results from a Chinese malepopulation survey. Metabolism2011,60(8):1186-1192.
    [13]. Greenfield TK, Midanik LT, Rogers JD. A10-year national trendstudy of alcohol consumption,1984-1995: is the period of decliningdrinking over? American Journal of Public Health2000,90(1):47.
    [14]. Liu Z, Hu Y, Yang X et al. Combinative analysis of factors influenceserum alanine aminotransferase activity in adult male populationfrom southern China. Clinical biochemistry2012,45(18):1683-1688.
    [15]. Chitturi S, Farrell GC, Hashimoto E et al. Non‐alcoholic fatty liverdisease in the Asia–Pacific region: Definitions and overview ofproposed guidelines. Journal of gastroenterology and hepatology2007,22(6):778-787.
    [16]. Fan JG, Saibara T, Chitturi S et al. What are the risk factors andsettings for non‐alcoholic fatty liver disease in Asia–Pacific? Journalof gastroenterology and hepatology2007,22(6):794-800.
    [17]. Marchini J, Howie B, Myers S et al. A new multipoint method forgenome-wide association studies by imputation of genotypes. Naturegenetics2007,39(7):906-913.
    [18]. Purcell S, Neale B, Todd-Brown K et al. PLINK: a tool set forwhole-genome association and population-based linkage analyses.The American Journal of Human Genetics2007,81(3):559-575.
    [19]. Price AL, Patterson NJ, Plenge RM et al. Principal componentsanalysis corrects for stratification in genome-wide association studies.Nature genetics2006,38(8):904-909.
    [20]. Rothman KJ. Epidemiology: an introduction: Oxford UniversityPress;2012.
    [21]. Hosmer DW, Lemeshow S. Confidence interval estimation ofinteraction. Epidemiology1992,3(5):452-456.
    [22]. Brouwers MC, Cantor RM, Kono N et al. Heritability and genetic lociof fatty liver in familial combined hyperlipidemia. Journal of lipidresearch2006,47(12):2799-2807.
    [23]. Ishida N, Kawakita M. Molecular physiology and pathology of thenucleotide sugar transporter family (SLC35). Pflügers Archiv2004,447(5):768-775.
    [24]. Nishimura M, Suzuki S, Satoh T et al. Tissue-specific mRNAexpression profiles of human solute carrier35transporters. Drugmetabolism and pharmacokinetics2008,24(1):91-99.
    [25]. Hwang S-J, Yang Q, Meigs J et al. A genome-wide association forkidney function and endocrine-related traits in the NHLBI'sFramingham Heart Study. BMC medical genetics2007,8(Suppl1):S10.
    [26]. Independent RSBSO. Annual meeting of the International geneticepidemiology society. Genetic Epidemiology2012,36:118-171.
    [27]. Laz EV, Holloway MG, Chen C-S et al. Characterization ofthree growth hormone-responsive transcription factors preferentiallyexpressed in adult female liver. Endocrinology2007,148(7):3327-3337.
    [28]. Kwekel JC, Desai VG, Moland CL et al. Age and sex dependentchanges in liver gene expression during the life cycle of the rat. BMCgenomics2010,11(1):675.
    [29]. Jeffery B, Choudhury AI, Horley N et al. Peroxisome proliferatoractivated receptor α regulates a male-specific cytochrome P450inmouse liver. Archives of biochemistry and biophysics2004,429(2):231-236.
    [30]. Muller D, Schmidt C, Barbosa-Sicard E et al. Mouse Cyp4aisoforms: enzymatic properties, gender-and strain-specific expression,and role in renal20-hydroxyeicosatetraenoic acid formation.BiochemJ2007,403:109-118.
    [31]. Brunetto MR, Oliveri F, Colombatto P et al. Hepatitis B surfaceantigen serum levels help to distinguish active from inactive hepatitisB virus genotype D carriers. Gastroenterology2010,139(2):483-490.
    [32]. Chen CH, Huang MH, Yang JC et al. Prevalence and etiology ofelevated serum alanine aminotransferase level in an adult populationin Taiwan. Journal of gastroenterology and hepatology2007,22(9):1482-1489.
    [33]. Pendino GM, Mariano A, Surace P et al. Prevalence and etiologyof altered liver tests: a population‐based survey in a mediterraneantown. Hepatology2005,41(5):1151-1159.
    [34]. Clark JM, Brancati FL, Diehl AM. The prevalence and etiology ofelevated aminotransferase levels in the United States. The Americanjournal of gastroenterology2003,98(5):960-967.
    [35]. Zeng Z, Guan L, An P et al. A population-based study to investigatehost genetic factors associated with hepatitis B infection andpathogenesis in the Chinese population. BMC infectious diseases2008,8(1):1.
    [36]. Fang ZL, Harrison TJ, Yang JY et al. Prevalence of hepatitis B virusinfection in a highly endemic area of southern China after catch‐upimmunization. Journal of medical virology2012,84(6):878-884.
    [37]. Lakka TA, Laaksonen DE, Lakka H-M et al. Sedentary lifestyle, poorcardiorespiratory fitness, and the metabolic syndrome. Medicine andscience in sports and exercise2003,35(8):1279-1286.
    [38]. Wagner A, Dallongeville J, Haas B et al. Sedentary behaviour,physical activity and dietary patterns are independently associatedwith the metabolic syndrome. Diabetes&metabolism2012,38(5):428-435.
    [39]. Edwards KL, Newman B, Mayer E et al. Heritability of factors of theinsulin resistance syndrome in women twins. Genetic Epidemiology1997,14(3):241-253.
    [40]. Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. TheLancet2005,365(9468):1415-1428.
    [41]. Joy T, Lahiry P, Pollex RL et al. Genetics of metabolic syndrome.Current diabetes reports2008,8(2):141-148.
    [42]. Jadaho SB, Yang RZ, Lin Q et al. Murine alanine aminotransferase:cDNA cloning, functional expression, and differential gene regulationin mouse fatty liver. Hepatology2004,39(5):1297-1302.
    [1]. Kim W, Flamm SL, Di Bisceglie AM et al. Serum activity of alanineaminotransferase (ALT) as an indicator of health and disease.Hepatology2008,47(4):1363-1370.
    [2]. Pratt DS, Kaplan MM. Evaluation of abnormal liver-enzyme results inasymptomatic patients. New England Journal of Medicine2000,342(17):1266-1271.
    [3]. Liu Z, Hu Y, Yang X et al. Combinative analysis of factors influenceserum alanine aminotransferase activity in adult male population fromsouthern China. Clinical biochemistry2012,45(18):1683-1688.
    [4]. Chen CH, Huang MH, Yang JC et al. Prevalence and etiology ofelevated serum alanine aminotransferase level in an adult population inTaiwan. Journal of gastroenterology and hepatology2007,22(9):1482-1489.
    [5]. Pendino GM, Mariano A, Surace P et al. Prevalence and etiology ofaltered liver tests: a population‐based survey in a mediterranean town.Hepatology2005,41(5):1151-1159.
    [6]. Clark JM, Brancati FL, Diehl AM. The prevalence and etiology ofelevated aminotransferase levels in the United States. The Americanjournal of gastroenterology2003,98(5):960-967.
    [7]. Makkonen J, Pietil inen KH, Rissanen A et al. Genetic factorscontribute to variation in serum alanine aminotransferase activityindependent of obesity and alcohol: a study in monozygotic anddizygotic twins. Journal of hepatology2009,50(5):1035-1042.
    [8]. Herbeth B, Samara A, Ndiaye C et al. Metabolic syndrome-relatedcomposite factors over5years in the STANISLAS Family Study:Genetic heritability and common environmental influences. ClinicaChimica Acta2010,411(11):833-839.
    [9]. Shen X, Carlborg. Beware of risk for increased false positive rates ingenome-wide association studies for phenotypic variability. Frontiersin genetics2013,4.
    [10]. Hayes B. Overview of Statistical Methods for Genome-WideAssociation Studies (GWAS). In: Genome-Wide Association Studiesand Genomic Prediction. Springer;2013:149-169.
    [11]. Austin M, Psaty B, Schwartz S. Genetic association studies. Geneticepidemiology: methods and applications2013:68-96.
    [12]. Freedman ML, Monteiro AN, Gayther SA et al. Principles for thepost-GWAS functional characterization of cancer risk loci. Naturegenetics2011,43(6):513-518.
    [13]. Choy E, Yelensky R, Bonakdar S et al. Genetic analysis of humantraits in vitro: drug response and gene expression in lymphoblastoidcell lines. PLoS genetics2008,4(11):e1000287.
    [14]. Herigstad B, Hamilton M, Heersink J. How to optimize the drop platemethod for enumerating bacteria. Journal of Microbiological Methods2001,44(2):121-129.
    [15]. Awad M, Abdel-Rahman M, Hassan S. Acrylamide toxicity inisolated rat hepatocytes. Toxicology in vitro1998,12(6):699-704.
    [16]. Jadaho SB, Yang RZ, Lin Q et al. Murine alanine aminotransferase:cDNA cloning, functional expression, and differential gene regulationin mouse fatty liver. Hepatology2004,39(5):1297-1302.
    [17].陈瑞铭,朱德厚,叶秀珍等.体外培养三个人体肝癌细胞系的建立及其特征.中国科学A辑1979,12.
    [18]. Wu K-L, Zhang X, Zhang J et al. Inhibition of Hepatitis B virus geneexpression by single and dual small interfering RNA treatment. Virusresearch2005;112:100-7.
    [19].董荣春,周荣华,吕发度等. SMMC-7721人体肝癌细胞株的建立及其生物学特性的初步观察.第二军医大学学报1980,1(1):5-9.
    [20]. Aden DP, Fogel A, Plotkin S et al. Controlled synthesis of HBsAg ina differentiated human liver carcinoma-derived cell line. Nature1979,282(5739):615-616
    [21]. Tian J, Tang ZY, Ye S et al. New human hepatocellular carcinoma(HCC) cell line with highly metastatic potential (MHCC97) and itsexpressions of the factors associated with metastasis. British journalof cancer1999,81(5):814.
    [22]. Sohocki MM, Sullivan LS, Harrison WR et al. Human glutamatepyruvate transaminase (GPT): localization to8q24.3, cDNA andgenomic sequences, and polymorphic sites. Genomics1997,40(2):247-252.
    [23]. Yang R-Z, Blaileanu G, Hansen BC et al. cDNA cloning, genomicstructure, chromosomal mapping, and functional expression of anovel human alanine aminotransferase. Genomics2002,79(3):445-450.
    [24]. Pickrell JK, Marioni JC, Pai AA et al. Understanding mechanismsunderlying human gene expression variation with RNA sequencing.Nature2010,464(7289):768-772.
    [25]. Ge B, Pokholok DK, Kwan T et al. Global patterns of cis variation inhuman cells revealed by high-density allelic expression analysis.Nature genetics2009,41(11):1216-1222.
    [26]. Nishimura M, Suzuki S, Satoh T et al. Tissue-specific mRNAexpression profiles of human solute carrier35transporters. Drugmetabolism and pharmacokinetics2008,24(1):91-99.
    [27]. Hwang S-J, Yang Q, Meigs J et al. A genome-wide association forkidney function and endocrine-related traits in the NHLBI'sFramingham Heart Study. BMC medical genetics2007,8(Suppl1):S10.
    [28]. Independent RSBSO. Annual meeting of the international geneticepidemiology society. Genetic Epidemiology2012,36:118-171.
    [29]. Brouwers MC, Cantor RM, Kono N et al. Heritability and genetic lociof fatty liver in familial combined hyperlipidemia. Journal of lipidresearch2006,47(12):2799-2807.
    [30]. Jeffery B, Choudhury AI, Horley N et al. Peroxisome proliferatoractivated receptor α regulates a male-specific cytochrome P450inmouse liver. Archives of biochemistry and biophysics2004,429(2):231-236.
    [31]. Muller D, Schmidt C, Barbosa-Sicard E et al. Mouse Cyp4aisoforms: enzymatic properties, gender-and strain-specific expression,and role in renal20-hydroxyeicosatetraenoic acid formation.Biochem J2007,403:109-118.
    [32]. Tian J, Tang ZY, Ye S et al. New human hepatocellular carcinoma(HCC) cell line with highly metastatic potential (MHCC97) and itsexpressions of the factors associated with metastasis. British journalof cancer1999,81(5):814.
    [33]. Dong R, Zhou R, Lu F et al. Establishment of a humanhepatocarcinoma cell line SMMC-7721and initial observations on itsbiologic characteristics. Primary liver cancer1989:145-153.
    [34]. Knowles BB, Howe CC, Aden DP. Human hepatocellular carcinomacell lines secrete the major plasma proteins and hepatitis B surfaceantigen. Science1980,209(4455):497-499.
    [35]. Tang Z-Y, Sun F-X, Tian J et al. Metastatic human hepatocellularcarcinoma models in nude mice and cell line with metastatic potential.World journal of gastroenterology2001,7(5):597-601.
    [36]. Fujimoto A, Totoki Y, Abe T et al. Whole-genome sequencing ofliver cancers identifies etiological influences on mutation patterns andrecurrent mutations in chromatin regulators. Nature genetics2012,44(7):760-764.
    [37]. Gibson G. Hints of hidden heritability in GWAS. Nature genetics2010,42(7).
    [38]. Gunji T, Matsuhashi N, Sato H et al. Risk factors for serum alanineaminotransferase elevation: A cross-sectional study of healthy adultmales in Tokyo, Japan. Digestive and Liver Disease2010,42(12):882-887.
    [39]. Watkins PB, Kaplowitz N, Slattery JT et al. Aminotransferaseelevations in healthy adults receiving4grams of acetaminophen daily:a randomized controlled trial. Jama2006,296(1):87-93.
    [40]. Lin Y-C, Hsiao T-J, Chen P-C. Shift work aggravates metabolicsyndrome development among early-middle-aged males withelevated ALT. World journal of gastroenterology: WJG2009,15(45):5654.
    [41]. Fraser A, Longnecker MP, Lawlor DA. Prevalence of elevated alanineaminotransferase among US adolescents and associated factors:NHANES1999–2004. Gastroenterology2007,133(6):1814-1820.
    [42]. Córdoba J, O'Riordan K, Dupuis J et al. Diurnal variation of serumalanine transaminase activity in chronic liver disease. Hepatology1998,28(6):1724-1725.
    [43]. Ruhl CE, Everhart JE. Diurnal Variation in Serum AlanineAminotransferase Activity in the United States Population. Journal ofclinical gastroenterology2013,47(2):165.
    [44]. Gomez-Lechon M, Donato M, Lahoz A et al. Cell lines: a toolfor in vitro drug metabolism studies. Current drug metabolism2008,9(1):1-11.
    [45]. Yuan X, Waterworth D, Perry JR et al. Population-based genome wideassociation studies reveal six loci influencing plasma levels of liverenzymes. The American Journal of Human Genetics2008,83(4):520-528.
    [46]. Kamatani Y, Matsuda K, Okada Y et al. Genome-wide associationstudy of hematological and biochemical traits in a Japanesepopulation. Nature genetics2010,42(3):210-215.
    [47]. Chambers JC, Zhang W, Sehmi J et al. Genome-wide associationstudy identifies loci influencing concentrations of liver enzymes inplasma. Nature genetics2011,43(11):1131-1138.
    [48]. Kim YJ, Go MJ, Hu C et al. Large-scale genome-wide associationstudies in East Asians identify new genetic loci influencing metabolictraits. Nature genetics2011,43(10):990-995.
    [49]. Park T-J, Hwang J-Y, Go MJ et al. Genome-Wide Association Studyof Liver Enzymes in Korean Children. Genomics&informatics2013,
    11(3):149-154.
    [1]. Hoek JB, Pastorino JG. Ethanol, oxidative stress, and cytokine-inducedliver cell injury. Alcohol2002,27(1):63-68.
    [2]. Choi J, James Ou J-H. Mechanisms of liver injury. III. Oxidative stressin the pathogenesis of hepatitis C virus. American Journal ofPhysiology-Gastrointestinal and Liver Physiology2006,290(5):G847-G851.
    [3]. Peng T, Li L-Q, Peng M-H et al. Evaluation of oxidative stress in agroup of adolescents exposed to a high level of aflatoxin B1—amulti-center and multi-biomarker study. Carcinogenesis2007,28(11):2347-2354.
    [4]. Cederbaum AI, Lu Y, Wu D. Role of oxidative stress in alcoholinduced liver injury. Archives of toxicology2009,83(6):519-548.
    [5]. O'Shea RS, Dasarathy S, McCullough AJ. Alcoholic liver disease.Hepatology2010,51(1):307-328.
    [6]. Rehm J, Taylor B, Mohapatra S. Alcohol as a risk factor for livercirrhosis: A systematic review and meta‐analysis. Drug and alcoholreview2010,29(4):437-445.
    [7]. Kim W, Flamm SL, Di Bisceglie AM et al. Serum activity of alanineaminotransferase (ALT) as an indicator of health and disease.Hepatology2008,47(4):1363-1370.
    [8]. Conigrave KM, Davies P, Haber P et al. Traditional markersof excessive alcohol use. Addiction2003,98(s2):31-43.
    [9]. Wickramasinghe S, Corridan B, Izaguirre J et al. Ethnic differences inthe biological consequences of alcohol abuse: a comparison betweensouth Asian and European males. Alcohol and alcoholism1995,30(5):675-680.
    [10]. Stewart SH. Racial and ethnic differences in alcohol-associatedaspartate aminotransferase and γ-glutamyltransferase elevation.Archives of internal medicine2002,162(19):2236-2239.
    [11]. Meier P, Seitz HK. Age, alcohol metabolism and liver disease.Current Opinion in Clinical Nutrition&Metabolic Care2008,11(1):21-26.
    [12]. Neuman MG, Cameron RG, Shear NH et al. Effect of tauroursodeoxycholic and ursodeoxycholic acid on ethanol-induced cellinjuriesin the human Hep G2cell line. Gastroenterology1995,109(2):555-563.
    [13]. Clemens DL, Halgard CM, Miles RR et al. Establishment of arecombinant hepatic cell line stably expressing alcoholdehydrogenase. Archives of biochemistry and biophysics1995,321(2):311-318.
    [14]. D'Addario C, Johansson S, Candeletti S et al. Ethanol andacetaldehyde exposure induces specific epigenetic modifications inthe prodynorphin gene promoter in a human neuroblastoma cell line.The FASEB Journal2011,25(3):1069-1075.
    [15].叶新平:乙醇相关氧化应激在广西原发性肝癌发病及经皮无水酒精注射治疗反应性中的作用.广西医科大学;2007.
    [16]. Awad M, Abdel-Rahman M, Hassan S. Acrylamide toxicity inisolated rat hepatocytes. Toxicology in vitro1998,12(6):699-704.
    [17]. Downs IL. Hepatic innate immunity&oxidative stress regulation:Louisiana state university health sciences center-shreveport;2013.
    [18]. Dey A, Cederbaum AI. Alcohol and oxidative liver injury.Hepatology2006,43(S1):S63-S74.
    [19]. Keyes KM, Liu XC, Cerda M. The role of race/ethnicity inalcohol-attributable injury in the United States. Epidemiologicreviews2012,34(1):89-102.
    [20]. Alvanzo AA, Storr CL, La Flair L et al. Race/ethnicity and sexdifferences in progression from drinking initiation to the developmentof alcohol dependence. Drug and alcohol dependence2011,118(2):375-382.
    [21]. Crabbe JC. Genetic contributions to addiction*. Annual review ofpsychology2002,53(1):435-462.
    [22]. Enoch M-A. Genetic influences on response to alcohol and responseto pharmacotherapies for alcoholism. Pharmacology Biochemistryand Behavior2013.
    [23]. Enoch M-A, Goldman D. The genetics of alcoholism and alcoholabuse. Current Psychiatry Reports2001,3(2):144-151.
    [24]. Stewart S, Jones D, Day CP. Alcoholic liver disease: new insightsinto mechanisms and preventative strategies. Trends in molecularmedicine2001,7(9):408-413.
    [25]. Amini M, Runyon BA. Alcoholic hepatitis2010: a clinician’s guide todiagnosis and therapy. World journal of gastroenterology: WJG2010,16(39):4905.
    [26]. Okamoto K, Murawaki Y, Yuasa I et al. Effect of ALDH2andCYP2E1gene polymorphisms on drinking behavior and alcoholicliver disease in Japanese male workers. Alcoholism: Clinical andExperimental Research2001,25(s2):19S-23S.
    [27].叶新平,彭涛,刘唐威等. ALDH2和CYP2E1基因多态性及饮酒习惯与肝细胞癌易感性的关系.卫生研究2010,39(1):42-45.
    [28]. Harries H, Fletcher S, Duggan C et al. The use of genomicstechnology to investigate gene expression changes in cultured humanliver cells. Toxicology in vitro2001,15(4):399-405.
    [29]. Gordon AS, Collier K, Diamond I. Ethanol regulation of adenosinereceptor-stimulated cAMP levels in a clonal neural cell line: an invitro model of cellular tolerance to ethanol. Proceedings of theNational Academy of Sciences1986,83(7):2105-2108.
    [30]. Elowitz MB, Levine AJ et al. Stochastic gene expression in a singlecell. Science2002,297(5584):1183-1186.
    [31]. Aden DP, Fogel A, Plotkin S et al. Controlled synthesis of HBsAg ina differentiated human liver carcinoma-derived cell line. Nature1979,282(5739):615-616
    [32]. Wu K-L, Zhang X, Zhang J, et al. Inhibition of Hepatitis B virus geneexpression by single and dual small interfering RNA treatment. Virusresearch2005;112:100-7.
    [33]. Jaeschke H, Gores GJ, Cederbaum AI et al. Mechanisms ofhepatotoxicity. Toxicological sciences2002,65(2):166-176.
    [34]. Yu J-Q, Yin Y, Lei J-C et al. Activation of apoptosis by ethyl acetatefraction of ethanol extract of Dianthus superbus in HepG2cell line. Cancer epidemiology2012,36(1):e40-e45.
    [35]. Becker HC, Lopez MF, Doremus-Fitzwater TL. Effects of stress onalcohol drinking: a review of animal studies. Psychopharmacology2011,218(1):131-156.
    [1]. Schwartz MK.[261c] Clinical aspects of aspartate and alanineaminotransferases. Methods in enzymology1971,17:866-875.
    [2]. Kim W, Flamm SL, Di Bisceglie AM et al. Serum activity of alanineaminotransferase (ALT) as an indicator of health and disease.Hepatology2008,47(4):1363-1370.
    [3]. Giannini EG, Testa R, Savarino V. Liver enzyme alteration: a guide forclinicians. Canadian medical association journal2005,172(3):367-379.
    [4]. Clark JM, Brancati FL, Diehl AM. The prevalence and etiology ofelevated aminotransferase levels in the United States. The Americanjournal of gastroenterology2003,98(5):960-967.
    [5]. Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. TheLancet2005,365(9468):1415-1428.
    [6]. James PT. Obesity: the worldwide epidemic. Clinics in dermatology2004,22(4):276-280.
    [7]. Yun JE, Kim SY, Kang H-C et al. Alanine aminotransferase isassociated with metabolic syndrome independently of insulinresistance. Circulation journal: official journal of the JapaneseCirculation Society2010,75(4):964-969.
    [8]. Liu Z, Hu Y, Yang X et al. Combinative analysis of factors influenceserum alanine aminotransferase activity in adult male population fromsouthern China. Clinical biochemistry2012,45(18):1683-1688.
    [9]. Poustchi H, George J, Esmaili S. Gender differences in healthy rangesfor serum alanine aminotransferase levels in adolescence. PloS one2011,6(6):e21178.
    [10]. Dong MH, Bettencourt R, Barrett-Connor E et al. Alanineaminotransferase decreases with age: the Rancho Bernardo Study.PloS one2010,5(12):e14254.
    [11]. Dong MH, Bettencourt R, Brenner DA et al. Serum levels of alanineaminotransferase decrease with age in longitudinal analysis. ClinicalGastroenterology and Hepatology2012,10(3):285-290. e281.
    [12]. Elinav E, Ben-Dov IZ, Ackerman E et al. Correlation between serumalanine aminotransferase activity and age: an inverted U curvepattern. The American journal of gastroenterology2005,100(10):2201-2204.
    [13]. Córdoba J, O'Riordan K, Dupuis J et al. Diurnal variation of serumalanine transaminase activity in chronic liver disease. Hepatology1998,28(6):1724-1725.
    [14]. Pacifico L, Ferraro F, Bonci E et al. Upper limit of normal for alanineaminotransferase: Quo vadis? Clinica Chimica Acta2013,422:29-39.
    [15]. Ruhl CE, Everhart JE. Diurnal Variation in Serum AlanineAminotransferase Activity in the United States Population. Journal ofclinical gastroenterology2013,47(2):165.
    [16]. Sherman KE. Alanine aminotransferase in clinical practice: a review.Archives of internal medicine1991,151(2):260-265.
    [17]. Ishiguro M, Takio K, Suzuki M et al. Complete amino acid sequenceof human liver cytosolic alanine aminotransferase (GPT) determinedby a combination of conventional and mass spectral methods.Biochemistry1991,30(43):10451-10457.
    [18]. Sohocki MM, Sullivan LS, Harrison WR et al. Human glutamatepyruvate transaminase (GPT): localization to8q24.3, cDNA andgenomic sequences, and polymorphic sites. Genomics1997,40(2):247-252.
    [19]. Toney MD. Reaction specificity in pyridoxal phosphate enzymes.Archives of biochemistry and biophysics2005,433(1):279-287.
    [20]. Yanai I, Benjamin H, Shmoish M et al. Genome-wide midrangetranscription profiles reveal expression level relationships in humantissue specification. Bioinformatics2005,21(5):650-659.
    [21]. Yang RZ, Park S, Reagan WJ et al. Alanine aminotransferaseisoenzymes: molecular cloning and quantitative analysis of tissueexpression in rats and serum elevation in liver toxicity. Hepatology2009,49(2):598-607.
    [22]. Flora KD, Keeffe EB. Evaluation of mildly abnormal liver tests inasymptomatic patients. J Insur Med1990,22(4):264-267.
    [23]. Weibrecht K, Dayno M, Darling C et al. Liver aminotransferasesare elevated with rhabdomyolysis in the absence of significant liverinjury. Journal of Medical Toxicology2010,6(3):294-300.
    [24]. Saengsirisuwan V, Phadungkij S, Pholpramool C. Renal and liverfunctions and muscle injuries during training and after competition inThai boxers. British journal of sports medicine1998,32(4):304-308.
    [25]. Fallon K, Sivyer G, Sivyer K et al. The biochemistry of runners ina1600km ultramarathon. British journal of sports medicine1999,33(4):264-269.
    [26]. Nathwani RA, Pais S, Reynolds TB et al. Serum alanineaminotransferase in skeletal muscle diseases. Hepatology2005,41(2):380-382.
    [27]. Noakes T, Carter J. Biochemical parameters in athletes before andafter having run160kilometres. South African medical journalSuid-Afrikaanse tydskrif vir geneeskunde1976,50(40):1562-1566.
    [28]. Edge K, Chinoy H, Cooper R. Serum alanine aminotransferaseelevations correlate with serum creatine phosphokinase levels inmyositis. Rheumatology2006,45(4):487-488.
    [29]. Hickman I, Jonsson J, Prins J et al. Modest weight loss and physicalactivity in overweight patients with chronic liver disease results insustained improvements in alanine aminotransferase, fasting insulin,and quality of life. Gut2004,53(3):413-419.
    [30]. BABA CS, ALEXANDER G, KALYANI B et al. Effect of exerciseand dietary modification on serum aminotransferase levels in patientswith nonalcoholic steatohepatitis. Journal of gastroenterology andhepatology2006,21(1):191-198.
    [31]. Dufour D. Effects of habitual exercise on routine laboratory tests. In:CLINICAL CHEMISTRY:1998: AMER ASSOC CLINICALCHEMISTRY2101L STREET NW, SUITE202, WASHINGTON,DC20037-1526USA;1998: A136-A136.
    [32]. Mijovic V, Contreras M, Barbara J. Serum alanine aminotransferase(ALT) and gamma-glutamyltransferase (gamma-GT) activities innorth London blood donors. Journal of clinical pathology1987,40(11):1340-1344.
    [33]. Cotler S, Dhamija M, Luc B et al. The prevalence and clinicalcorrelates of elevated ALT levels in an urban Chinatown community.Journal of viral hepatitis2010,17(2):148-152.
    [34]. Pendino GM, Mariano A, Surace P et al. Prevalence and etiologyof altered liver tests: a population‐based survey in a mediterraneantown. Hepatology2005,41(5):1151-1159.
    [35]. Chen CH, Huang MH, Yang JC et al. Prevalence and etiology ofelevated serum alanine aminotransferase level in an adult populationin Taiwan. Journal of gastroenterology and hepatology2007,22(9):1482-1489.
    [36]. Prati D, Taioli E, Zanella A et al. Updated definitions ofhealthy ranges for serum alanine aminotransferase levels. Annals ofinternal medicine2002,137(1):1-10.
    [37]. Lee JK, Shim JH, Lee HC et al. Estimation of the healthy upper limitsfor serum alanine aminotransferase in Asian populations with normalliver histology. Hepatology2010,51(5):1577-1583.
    [38]. Ruhl CE, Everhart JE. Upper limits of normal for alanineaminotransferase activity in the United States population. Hepatology2012,55(2):447-454.
    [39]. Kariv R, Leshno M, Beth‐Or A et al. Re‐evaluation of serum alanineaminotransferase upper normal limit and its modulating factors in alarge‐scale population study. Liver International2006,26(4):445-450.
    [40]. Pan J-J, Qu H-Q, Rentfro A et al. Prevalence of metabolic syndromeand risks of abnormal serum alanine aminotransferase in Hispanics: apopulation-based study. PloS one2011,6(6):e21515.
    [41]. Ford ES, Giles WH, Dietz WH. Prevalence of the metabolicsyndrome among US adults: findings from the third National Healthand Nutrition Examination Survey. Jama2002,287(3):356-359.
    [42]. Saito T, Nishise Y, Makino N et al. Impact of metabolic syndrome onelevated serum alanine aminotransferase levels in the Japanesepopulation. Metabolism2009,58(8):1067-1075.
    [43]. Browning JD, Szczepaniak LS, Dobbins R et al. Prevalence of hepaticsteatosis in an urban population in the United States: impact ofethnicity. Hepatology2004,40(6):1387-1395.
    [44]. Lavanchy D. Worldwide epidemiology of HBV infection, diseaseburden, and vaccine prevention. Journal of clinical virology2005,34:S1-S3.
    [45]. Shepard CW, Finelli L, Alter MJ. Global epidemiology of hepatitis Cvirus infection. The Lancet infectious diseases2005,5(9):558-567.
    [46]. Rehermann B, Nascimbeni M. Immunology of hepatitis B virus andhepatitis C virus infection. Nature Reviews Immunology2005,5(3):215-229.
    [47]. Liaw Y-F, Chu C-M. Hepatitis B virus infection. The Lancet2009,373(9663):582-592.
    [48]. Lok AS, McMahon BJ. Chronic hepatitis B. Hepatology2007,45(2):507-539.
    [49]. Dienstag JL. Hepatitis B virus infection. New England Journal ofMedicine2008,359(14):1486-1500.
    [50]. Lai M, Hyatt BJ, Nasser I et al. The clinical significance ofpersistently normal ALT in chronic hepatitis B infection. Journal ofhepatology2007,47(6):760-767.
    [51]. Alter HJ, Conry‐Cantilena C, Melpolder J et al. Hepatitis C inasymptomatic blood donors. Hepatology1997,26(S3):29S-33S.
    [52]. Conry-Cantilena C, VanRaden M, Gibble J et al. Routes of infection,viremia, and liver disease in blood donors found to have hepatitis Cvirus infection. New England Journal of Medicine1996,334(26):1691-1696.
    [53]. Gunji T, Matsuhashi N, Sato H et al. Risk factors for serum alanineaminotransferase elevation: A cross-sectional study of healthy adultmales in Tokyo, Japan. Digestive and Liver Disease2010,42(12):882-887.
    [54]. Belfrage P, Berg B, Cronholm T et al. Prolonged administration ofethanol to young, healthy volunteers: effects on biochemical,morphological and neurophysiological parameters. Acta medicaScandinavica Supplementum1972,552:1-44.
    [55]. Wickramasinghe S, Corridan B, Izaguirre J et al. Ethnic differences inthe biological consequences of alcohol abuse: a comparison betweensouth Asian and European males. Alcohol and alcoholism1995,30(5):675-680.
    [56]. Conigrave KM, Davies P, Haber P et al. Traditional markersof excessive alcohol use. Addiction2003,98(s2):31-43.
    [57]. Alatalo PI, Koivisto HM, Hietala JP et al. Effect of moderate alcoholconsumption on liver enzymes increases with increasing body massindex. The American journal of clinical nutrition2008,88(4):1097-1103.
    [58]. Ruhl CE, Everhart JE. Joint effects of body weight and alcohol onelevated serum alanine aminotransferase in the United Statespopulation. Clinical Gastroenterology and Hepatology2005,3(12):1260-1268.
    [59]. Davies MJ, Baer DJ, Judd JT et al. Effects of moderate alcohol intakeon fasting insulin and glucose concentrations and insulin sensitivityin postmenopausal women: a randomized controlled trial. Jama2002,287(19):2559-2562.
    [60]. Pratt DS, Kaplan MM. Evaluation of abnormal liver-enzyme resultsin asymptomatic patients. New England Journal of Medicine2000,342(17):1266-1271.
    [61]. Watkins PB, Kaplowitz N, Slattery JT et al. Aminotransferaseelevations in healthy adults receiving4grams of acetaminophen daily:a randomized controlled trial. Jama2006,296(1):87-93.
    [62]. Ford I, Mooijaart SP, Lloyd S et al. The inverse relationship betweenalanine aminotransferase in the normal range and adversecardiovascular and non-cardiovascular outcomes. Internationaljournal of epidemiology2011,40(6):1530-1538.
    [63]. Tolman KG. The liver and lovastatin. The American journal ofcardiology2002,89(12):1374-1380.
    [64]. Sniderman AD. Is there value in liver function test and creatinephosphokinase monitoring with statin use? The American journal ofcardiology2004,94(9):30-34.
    [65]. Cohen DE, Anania FA, Chalasani N. An assessment of statin safetyby hepatologists. The American journal of cardiology2006,97(8):S77-S81.
    [66]. Ruhl CE, Everhart JE. Coffee and caffeine consumption reduce therisk of elevated serum alanine aminotransferase activity in the UnitedStates. Gastroenterology2005,128(1):24-32.
    [67]. Lee K-G, Mitchell A, Shibamoto T. Antioxidative activities of aromaextracts isolated from natural plants. Biofactors2000,13(1):173-178.
    [68]. Matteoni CA, Younossi ZM, Gramlich T et al. Nonalcoholic fattyliver disease: a spectrum of clinical and pathological severity.Gastroenterology1999,116(6):1413-1419.
    [69]. Angulo P. Nonalcoholic fatty liver disease. New England Journal ofMedicine2002,346(16):1221-1231.
    [70]. Marchesini G, Brizi M, Bianchi G. Nonalcoholic fatty liver disease afeature of the metabolic syndrome. Diabetes2001,50(8):1844-1850.
    [71]. Marchesini G, Bugianesi E, Forlani G et al. Nonalcoholic fattyliver, steatohepatitis, and the metabolic syndrome. Hepatology2003,37(4):917-923.
    [72]. Liu C-M, Tung T-H, Liu J-H et al. A community-basedepidemiological study of elevated serum alanine aminotransferaselevels in Kinmen, Taiwan. World J Gastroenterol2005,11(11):1616-1622.
    [73]. Liangpunsakul S, Chalasani N. Unexplained elevations in alanineaminotransferase in individuals with the metabolic syndrome: resultsfrom the third National Health and Nutrition Survey (NHANES III).The American journal of the medical sciences2005,329(3):111-116.
    [74]. Sass DA, Chang P, Chopra KB. Nonalcoholic fatty liver disease: aclinical review. Digestive diseases and sciences2005,50(1):171-180.
    [75]. Charlton M. Nonalcoholic fatty liver disease: a review of currentunderstanding and future impact. Clinical Gastroenterology andHepatology2004,2(12):1048-1058.
    [76]. Day CP, James OF. Steatohepatitis: a tale of two “hits”?Gastroenterology1998,114(4):842-845.
    [77]. Neuschwander‐Tetri BA, Caldwell SH. Nonalcoholic steatohepatitis:summary of an AASLD Single Topic Conference. Hepatology2003,37(5):1202-1219.
    [78]. Powell EE, Cooksley WGE, Hanson R et al. The natural history ofnonalcoholic steatohepatitis: a follow‐up study of forty‐two patientsfor up to21years. Hepatology1990,11(1):74-80.
    [79]. Sonsuz A, Basaranoglu M, Ozbay G. Relationship betweenaminotransferase levels and histopathological findings in patientswith nonalcoholic steatohepatitis. The American journal ofgastroenterology2000,95(5):1370-1371.
    [80]. Miyake Y, Iwasaki Y, Terada R et al. Persistent normalization ofserum alanine aminotransferase levels improves the prognosis of type1autoimmune hepatitis. Journal of hepatology2005,43(6):951-957.
    [81]. Czaja AJ: Natural history, clinical features, and treatment ofautoimmune hepatitis. In: Seminars in liver disease:1984;1984:1-12.
    [82]. Murray-Lyon I, Stern R, Williams R. Controlled trial of prednisoneand azathioprine in active chronic hepatitis. The Lancet1973,301(7806):735-737.
    [83]. Czaja AJ, Ammon HV, Summerskill W. Clinical features andprognosis of severe chronic active liver disease (CALD) aftercorticosteroid-induced remission. Gastroenterology1980,78(3):518-523.
    [84]. Manns MP, Czaja AJ, Gorham JD et al. Diagnosis and management ofautoimmune hepatitis. Hepatology2010,51(6):2193-2213.
    [85]. Miyake Y, Iwasaki Y, Terada R et al. Persistent elevation of serumalanine aminotransferase levels leads to poor survival andhepatocellular carcinoma development in type1autoimmunehepatitis. Alimentary pharmacology&therapeutics2006,24(8):1197-1205.
    [86]. Muratori P, Granito A, Quarneti C et al. Autoimmune hepatitis inItaly: the Bologna experience. Journal of hepatology2009,50(6):1210-1218.
    [87]. Fabbri A, Lenzi M. Non‐invasive markers of inflammation inautoimmune hepatitis. Liver International2013,33(9):1295-1297.
    [88]. Jeong S, Nam H, Rhee J et al. Metabolic syndrome and ALT: acommunity study in adult Koreans. International journal of obesity2004,28(8):1033-1038.
    [89]. Suh S-Y, Choi S-E, Ahn H-Y et al. The association between normalalanine aminotransferase levels and the metabolic syndrome:2005Korean National Health and Nutrition Examination Survey.Metabolism2009,58(12):1731-1736.
    [90]. Ioannou GN, Boyko EJ, Lee SP. The prevalence and predictors ofelevated serum aminotransferase activity in the United States in1999–2002. The American journal of gastroenterology2006,101(1):76-82.
    [91]. Piton A, Poynard T, Imbert‐Bismut F et al. Factors associated withserum alanine transaminase activity in healthy subjects:consequences for the definition of normal values, for selection ofblood donors, and for patients with chronic hepatitis C. Hepatology1998,27(5):1213-1219.
    [92]. Falck-Ytter Y, Younossi ZM, Marchesini G et al: Clinical features andnatural history of nonalcoholic steatosis syndromes. In: Seminars inliver disease:2001;2001:15-22.
    [93]. Ruhl CE, Everhart JE. Determinants of the association of overweightwith elevated serum alanine aminotransferase activity in the UnitedStates. Gastroenterology2003,124(1):71-79.
    [94]. Park SH, Heo NY, Park JH et al. Obesity, insulin resistance, and therisk of an elevated alanine aminotransferase activity in the Koreanadolescent population. Journal of Pediatric Endocrinology andMetabolism2012,25(9-10):945-949.
    [95]. Matthews D, Hosker J, Rudenski A et al. Homeostasis modelassessment: insulin resistance and β-cell function from fasting plasmaglucose and insulin concentrations in man. Diabetologia1985,28(7):412-419.
    [96]. Bardella MT, Vecchi M, Conte D et al. Chronic unexplainedhypertransaminasemia may be caused by occult celiac disease.Hepatology1999,29(3):654-657.
    [97]. Abdo A, Meddings J, Swain M. Liver abnormalities in celiac disease.Clinical Gastroenterology and Hepatology2004,2(2):107-112.
    [98]. Bardella MT, Fraquelli M, Quatrini M et al. Prevalence ofhypertransaminasemia in adult celiac patients and effect ofgluten‐free diet. Hepatology1995,22(3):833-836.
    [99]. Jacobsen M, Fausa O, Elgjo K et al. Hepatic lesions in adultcoeliac disease. Scandinavian journal of gastroenterology1990,25(7):656-662.
    [100]. Novacek G, Miehsler W, Wrba F et al. Prevalence and clinicalimportance of hypertransaminasaemia in coeliac disease. Europeanjournal of gastroenterology&hepatology1999,11(3):283-288.
    [101]. Janssen G, Kuipers H, Willems G et al. Plasma activity of muscleenzymes: quantification of skeletal muscle damage and relationshipwith metabolic variables. International journal of sports medicine1989,10(S3):S160-S168.
    [102]. Powell LW, George DK, McDonnell SM et al. Diagnosis ofhemochromatosis. Annals of internal medicine1998,129(11_Part_2):925-931.
    [103]. Grossi E, Colombo R, Cavuto S et al. Age and genderrelationships of serum alanine aminotransferase values in healthysubjects. The American journal of gastroenterology2006,101(7):1675-1676.
    [104]. Schooling CM, Kelvin EA, Jones HE. Alanine transaminase hasopposite associations with death from diabetes and ischemic heartdisease in NHANES III. Annals of epidemiology2012,22(11):789-798.
    [105]. Elinav E, Ackerman Z, Maaravi Y et al. Low AlanineAminotransferase Activity in Older People Is Associated withGreater Long‐Term Mortality. Journal of the American GeriatricsSociety2006,54(11):1719-1724.
    [106]. Van der Poorten D, Kenny DT, Butler T et al. Liver disease inadolescents: A cohort study of high‐risk individuals. Hepatology2007,46(6):1750-1758.
    [107]. V lzke H, Alte D, Ittermann T, Schmidt CO et al. Subjects withsonographical hepatic steatosis should be excluded from studies toestablish upper reference levels of serum transaminases. LiverInternational2011,31(7):985-993.
    [108]. Schwimmer JB, Dunn W, Norman GJ et al. SAFETY study: alanineaminotransferase cutoff values are set too high for reliable detectionof pediatric chronic liver disease. Gastroenterology2010,138(4):1357-1364. e1352.
    [109]. Kang HS, Um SH, Seo YS et al. Healthy range for serum ALT andthe clinical significance of “unhealthy” normal ALT levels in theKorean population. Journal of gastroenterology and hepatology2011,26(2):292-299.
    [110]. Wu WC, Wu CY, Wang YJ et al. Updated thresholds for serumalanine aminotransferase level in a large‐scale population studycomposed of34346subjects. Alimentary pharmacology&therapeutics2012,36(6):560-568.
    [111]. Zheng M-H, Shi K-Q, Fan Y-C et al. Upper limits of normal forserum alanine aminotransferase levels in Chinese Han population.PloS one2012,7(9):e43736.
    [112]. Park SH, Heo NY, Kim CH et al. Upper reference limits foraminotransferase activities and the prevalence of elevatedaminotransferase activities in a Korean population. Journal ofclinical gastroenterology2013,47(1):76-82.
    [113]. Park SH, Park HY, Kang JW et al. Aminotransferase upper referencelimits and the prevalence of elevated aminotransferases in theKorean adolescent population. Journal of pediatric gastroenterologyand nutrition2012,55(6):668-672.
    [114]. Sohn W, Jun DW, Kwak MJ et al. Upper limit of normal serumalanine and aspartate aminotransferase levels in Korea. Journal ofgastroenterology and hepatology2013,28(3):522-529.
    [115]. Tanaka K, Hyogo H, Ono M, Takahashi H, Kitajima Y, Ono N,Eguchi T, Fujimoto K, Chayama K, Saibara T: The upper limit ofnormal serum alanine aminotransferase levels in Japanese subjects.Hepatology Research2013.
    [116]. Al-hamoudi W, Ali S, Hegab B et al. Revising the Upper Limit ofNormal for Levels of Serum Alanine Aminotransferase in a MiddleEastern Population with Normal Liver Histology. Digestive diseasesand sciences2013,58(8):2369-2375.
    [117]. Kabir A, Pourshams A, Khoshnia M et al. Normal Limit for SerumAlanine Aminotransferase Level and Distribution of MetabolicFactors in Old Population of Kalaleh, Iran. Hepatitis monthly2013,13(10).
    [118]. Pacifico L, Ferraro F, Bonci E et al. Upper limit of normal foralanine aminotransferase: Quo vadis? Clinica Chimica Acta2013.
    [119]. Jamali R, Pourshams A, Amini S et al. The upper normal limit ofserum alanine aminotransferase in Golestan Province, northeast Iran.Arch Iran Med2013,11(6):602-607.
    [120]. Kibaya RS, Bautista CT, Sawe FK et al. Reference ranges for theclinical laboratory derived from a rural population in Kericho,Kenya. PloS one2013,3(10):e83327.
    [1]. Kim W, Flamm SL, Di Bisceglie AM et al. Serum activity of alanineaminotransferase (ALT) as an indicator of health and disease.Hepatology2008,47(4):1363-1370.
    [2]. Pratt DS, Kaplan MM. Evaluation of abnormal liver-enzyme results inasymptomatic patients. New England Journal of Medicine2000,342(17):1266-1271.
    [3]. Conigrave KM, Davies P, Haber P et al. Traditional markers ofexcessive alcohol use. Addiction2003,98(s2):31-43.
    [4]. Watkins PB, Kaplowitz N, Slattery JT et al. Aminotransferaseelevations in healthy adults receiving4grams of acetaminophen daily:a randomized controlled trial. Jama2006,296(1):87-93.
    [5]. Clark JM, Brancati FL, Diehl AM et al. The prevalence and etiologyof elevated aminotransferase levels in the United States. TheAmerican journal of gastroenterology2003,98(5):960-967.
    [6]. Chen CH, Huang MH, Yang JC et al. Prevalence and etiology ofelevated serum alanine aminotransferase level in an adult populationin Taiwan. Journal of gastroenterology and hepatology2007,22(9):1482-1489.
    [7]. Pendino GM, Mariano A, Surace P et al. Prevalence and etiology ofaltered liver tests: A population‐based survey in a Mediterranean town.Hepatology2005,41(5):1151-1159.
    [8]. Liu Z, Hu Y, Yang X et al. Combinative analysis of factors influenceserum alanine aminotransferase activity in adult male population fromsouthern China. Clinical biochemistry2012,45(18):1683-1688.
    [9]. Manolio T, Burke G, Savage P et al. Sex-and race-related differencesin liver-associated serum chemistry tests in young adults in theCARDIA study. Clinical chemistry1992,38(9):1853-1859.
    [10]. Dong MH, Bettencourt R, Brenner DA et al. Serum levels of alanineaminotransferase decrease with age in longitudinal analysis. ClinicalGastroenterology and Hepatology2012,10(3):285-290. e281.
    [11]. Grossi E, Colombo R, Cavuto S et al. Age and genderrelationships of serum alanine aminotransferase values in healthysubjects. The American journal of gastroenterology2006,101(7):1675-1676.
    [12]. Poustchi H, George J, Esmaili S et al. Gender differences in healthyranges for serum alanine aminotransferase levels in adolescence.PLoS One2011,6(6):e21178.
    [13]. Elinav E, Ben-Dov IZ, Ackerman E et al. Correlation between serumalanine aminotransferase activity and age: an inverted U curvepattern. The American journal of gastroenterology2005,100(10):2201-2204.
    [14]. Dong MH, Bettencourt R, Barrett-Connor E. Alanineaminotransferase decreases with age: the Rancho Bernardo Study.PloS one2010,5(12):e14254.
    [15]. Schindhelm RK, Diamant M, Dekker JM et al. Alanineaminotransferase as a marker of non‐alcoholic fatty liver disease inrelation to type2diabetes mellitus and cardiovascular disease.Diabetes/metabolism research and reviews2006,22(6):437-443.
    [16]. Yun JE, Kim SY, Kang H-C et al. Alanine aminotransferase isassociated with metabolic syndrome independently of insulinresistance. Circulation journal: official journal of the JapaneseCirculation Society2010,75(4):964-969.
    [17]. Saito T, Nishise Y, Makino N et al. Impact of metabolic syndrome onelevated serum alanine aminotransferase levels in the Japanesepopulation. Metabolism2009,58(8):1067-1075.
    [18]. Makkonen J, Pietil inen KH, Rissanen A et al. Genetic factorscontribute to variation in serum alanine aminotransferase activityindependent of obesity and alcohol: a study in monozygotic anddizygotic twins. Journal of hepatology2009,50(5):1035-1042.
    [19]. Bathum L, Petersen HC, Rosholm J-U et al. Evidence for asubstantial genetic influence on biochemical liver function tests:results from a population-based Danish twin study. Clinicalchemistry2001,47(1):81-87.
    [20]. Middelberg RP, Medland SE, Martin NG et al. A longitudinal geneticstudy of uric acid and liver enzymes in adolescent twins. TwinResearch and Human Genetics2007,10(5):757-764.
    [21]. Rahmioglu N, Andrew T, Cherkas L et al. Epidemiology and geneticepidemiology of the liver function test proteins. PloS one2009,4(2):e4435.
    [22]. van Beek JH, de Moor MH, de Geus EJ et al. The GeneticArchitecture of Liver Enzyme Levels: GGT, ALT and AST. Behaviorgenetics2013:1-11.
    [23]. Lander ES, Linton LM, Birren B et al. Initial sequencing andanalysis of the human genome. Nature2001,409(6822):860-921.
    [24]. McCarthy MI, Abecasis GR, Cardon LR et al. Genome-wideassociation studies for complex traits: consensus, uncertainty andchallenges. Nature Reviews Genetics2008,9(5):356-369.
    [25]. Hirschhorn JN, Daly MJ. Genome-wide association studies forcommon diseases and complex traits. Nature Reviews Genetics2005,6(2):95-108.
    [26]. Yuan X, Waterworth D, Perry JR et al. Population-based genomewide association studies reveal six loci influencing plasma levels ofliver enzymes. The American Journal of Human Genetics2008,83(4):520-528.
    [27]. Kamatani Y, Matsuda K, Okada Y et al. Genome-wide associationstudy of hematological and biochemical traits in a Japanesepopulation. Nature genetics2010,42(3):210-215.
    [28]. Chambers JC, Zhang W, Sehmi J et al. Genome-wide associationstudy identifies loci influencing concentrations of liver enzymes inplasma. Nature genetics2011,43(11):1131-1138.
    [29]. Kim YJ, Go MJ, Hu C et al. Large-scale genome-wide associationstudies in East Asians identify new genetic loci influencingmetabolic traits. Nature genetics2011,43(10):990-995.
    [30]. Park T-J, Hwang J-Y, Go MJ et al. Genome-Wide Association Studyof Liver Enzymes in Korean Children. Genomics&informatics2013,11(3):149-154.
    [31]. Kim H-Y, Byun M-J, Kim H. A replication study of genome-wideCNV association for hepatic biomarkers identifies nine genesassociated with liver function. Biochemistry and Molecurar BiologyReports2011,44(9):578-583.
    [32]. Kim H-Y, Park J-H, Kim H et al. Semantic networks for genomewide CNV associated with AST and ALT in Korean cohorts.Molecular&Cellular Toxicology2013,9(2):103-111.
    [33]. Romeo S, Kozlitina J, Xing C et al. Genetic variation inPNPLA3confers susceptibility to nonalcoholic fatty liver disease.Nature genetics2008,40(12):1461-1465.
    [34]. Sookoian S, Casta o GO, Burgue o AL et al. A nonsynonymousgene variant in the adiponutrin gene is associated with nonalcoholicfatty liver disease severity. Journal of lipid research2009,50(10):2111-2116.
    [35]. Rotman Y, Koh C, Zmuda JM et al. The association of geneticvariability in patatin‐like phospholipase domain‐containing protein3(PNPLA3) with histological severity of nonalcoholic fatty liverdisease. Hepatology2010,52(3):894-903.
    [36]. Speliotes EK, Butler JL, Palmer CD et al. PNPLA3variantsspecifically confer increased risk for histologic nonalcoholic fattyliver disease but not metabolic disease. Hepatology2010,52(3):904-912.
    [37]. Larrieta-Carrasco E, León-Mimila P, Villarreal-Molina T et al.Association of the I148M/PNPLA3 variant with elevatedalanine transaminase levels in normal-weight and overweight/obeseMexican children. Gene2013,520(2):185-188.
    [38]. Thomas D. Gene–environment-wide association studies: emergingapproaches. Nature Reviews Genetics2010,11(4):259-272.
    [39]. Murcray CE, Lewinger JP, Gauderman WJ. Gene-environmentinteraction in genome-wide association studies. American journal ofepidemiology2009,169(2):219-226.
    [40]. Plomin R, Owen MJ, McGuffin P. The genetic basis of complexhuman behaviors. Science1994,264(5166):1733-1739.
    [41]. McClearn GE, Johansson B, Berg S et al. Substantial geneticinfluence on cognitive abilities in twins80or more years old.Science1997,276(5318):1560-1563.
    [42]. Sham P. Statistics in human genetics: Arnold London;1998.
    [43]. Neale M, Boker S, Xie G et al. Mx: Statistical modeling.Richmond, VA: Department of Psychiatry. Virginia Institute forPsychiatric and Behavior Genetics, Virginia CommonwealthUniversity2003.
    [44]. Gibbs RA, Belmont JW, Hardenbol P et al. The internationalHapMap project. Nature2003,426(6968):789-796.
    [45]. Marth GT, Korf I, Yandell MD et al. A general approach tosingle-nucleotide polymorphism discovery. Nature genetics1999,23(4):452-456.
    [46]. Kwok P-Y. Single Nucleotide Polymorphisms: Springer;2003.
    [47]. Valenti L, Alisi A, Galmozzi E et al. I148M patatin‐likephospholipase domain‐containing3gene variant and severity ofpediatric nonalcoholic fatty liver disease. Hepatology2010,52(4):1274-1280.
    [48]. Valenti L, Al‐Serri A, Daly AK et al. Homozygosity for thepatatin‐like phospholipase‐3/adiponutrin I148M polymorphisminfluences liver fibrosis in patients with nonalcoholic fatty liverdisease. Hepatology2010,51(4):1209-1217.
    [49]. Zimmermann R, Strauss JG, Haemmerle G et al. Fat mobilization inadipose tissue is promoted by adipose triglyceride lipase. Science2004,306(5700):1383-1386.
    [50]. Huang Y, He S, Li JZ et al. A feed-forward loop amplifies nutritionalregulation of PNPLA3. Proceedings of the National Academy ofSciences2010,107(17):7892-7897.
    [51]. Jenkins CM, Mancuso DJ, Yan W wt al. Identification, cloning,expression, and purification of three novel humancalcium-independent phospholipase A2family memberspossessing triacylglycerol lipase and acylglycerol transacylaseactivities. Journal of Biological Chemistry2004,279(47):48968-48975.
    [52]. He S, McPhaul C, Li JZ et al. A sequence variation (I148M) inPNPLA3associated with nonalcoholic fatty liver disease disruptstriglyceride hydrolysis. Journal of Biological Chemistry2010,285(9):6706-6715.
    [53]. Chen W, Chang B, Li L et al. Patatin‐like phospholipase domaincontaining3/adiponutrin deficiency in mice is not associated withfatty liver disease. Hepatology2010,52(3):1134-1142.
    [54]. Basantani MK, Sitnick MT, Cai L et al. Pnpla3/Adiponutrindeficiency in mice does not contribute to fatty liver disease ormetabolic syndrome. Journal of lipid research2011,52(2):318-329.
    [55]. WONG VS, WONG GH, TSANG SC et al. Metabolic andhistological features of non‐alcoholic fatty liver disease patients withdifferent serum alanine aminotransferase levels. Alimentarypharmacology&therapeutics2009,29(4):387-396.
    [56]. Wang R, Lu Q, Feng J et al. Coexistence of non-alcoholic fatty liverdisease with elevated alanine aminotransferase is associated withinsulin resistance in young Han males. Endocrine2012,41(1):70-75.
    [57]. Hotta K, Yoneda M, Hyogo H et al. Association of the rs738409polymorphism in PNPLA3with liver damage and thedevelopment of nonalcoholic fatty liver disease. BMC medicalgenetics2010,11(1):172.
    [58]. Petit J-M, Guiu B, Masson D et al. Specifically PNPLA3mediated accumulation of liver fat in obese patients with type2diabetes. Journal of Clinical Endocrinology&Metabolism2010,95(12):E430-E436.
    [59]. Romeo S, Sentinelli F, Cambuli VM et al. The148M allele of the PNPLA3 gene is associated with indices of liver damageearly in life. Journal of hepatology2010,53(2):335-338.
    [60]. Romeo S, Sentinelli F, Dash S et al. Morbid obesity exposes theassociation between PNPLA3I148M (rs738409) and indices ofhepatic injury in individuals of European descent. Internationaljournal of obesity2010,34(1):190-194.
    [61]. Qu H-Q, Li Q, Grove ML et al. Population-based Risk Factorsfor Elevated Alanine Aminotransferase in a South TexasMexican–American Population. Archives of medical research2012,43(6):482-488.
    [62]. Verrijken A, Beckers S, Francque S et al. A gene variant ofPNPLA3, but not of APOC3, is associated with histologicalparameters of NAFLD in an obese population. Obesity2013,21(10):2138-2145.
    [63]. Lin Y-C, Chang P-F, Chang M-H et al. Genetic variants in GCKRand PNPLA3confer susceptibility to nonalcoholic fatty liver diseasein obese individuals. The American Journal of Clinical Nutrition2014:ajcn.079749.
    [64]. Kotronen A, Johansson L, Johansson L et al. A common variant inPNPLA3, which encodes adiponutrin, is associated with liver fatcontent in humans. Diabetologia2009,52(6):1056-1060.
    [65]. Kantartzis K, Peter A, Machicao F et al. Dissociation between fattyliver and insulin resistance in humans carrying a variant of thepatatin-like phospholipase3gene. Diabetes2009,58(11):2616-2623.
    [66]. Sookoian S, Pirola CJ. Meta‐analysis of the influence of I148Mvariant of patatin‐like phospholipase domain containing3gene(PNPLA3) on the susceptibility and histological severity ofnonalcoholic fatty liver disease. Hepatology2011,53(6):1883-1894.
    [67]. Anstee QM, Day CP. The genetics of NAFLD. Nature ReviewsGastroenterology and Hepatology2013.
    [68]. Romeo S, Huang-Doran I, Baroni MG. Unravelling thepathogenesis of fatty liver disease: patatin-like phospholipasedomain-containing3protein. Current opinion in lipidology2010,21(3):247-252.
    [69]. Rydel TJ, Williams JM, Krieger E et al. The crystal structure,mutagenesis, and activity studies reveal that patatin is a lipid acylhydrolase with a Ser-Asp catalytic dyad. Biochemistry2003,42(22):6696-6708.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.