花生AhFAD2基因的RNAi抑制表达遗传转化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
花生(Arachis hypogaea L.)起源于南美洲,是世界第四大含油种子作物。花生油主要由棕榈酸,油酸和亚油酸组成。油类中多不饱和脂肪酸的含量、组成和生理状态是油类品质最重要的决定因素。植物油富含油酸,是比富含多不饱和脂肪酸的油类更优质的产品。高油酸、低多不饱和脂肪酸的油类便于贮藏,对人体健康大有益处,是商业和营养上所需要的。Δ12-油酸脱氢酶(Δ12-oleic acid desaturase,FAD2)向脂肪酸碳链上引入第二个双键,是促进油酸转化为亚油酸的关键酶。FAD2基因开放读码框(ORF)为1140bp,编码379个氨基酸,它包含一个内含子,位于编码区3’末端。花生中存在两个FAD2同源基因(AhFAD2A, AhFAD2B),它们可能是来自原始二倍体起源种的同源基因。ahFAD2A的突变和ahFAD2B转录物水平的大量降低共同造成了花生品种中的高油酸表型,并且一个编码功能性酶的表达基因似乎对正常油酸表型是足够的。FAD2基因的表达水平还受温度影响。总之,FAD2A、FAD2B这两个同功酶基因是控制油酸含量的关键酶基因,但可能其他酶基因或多种调控机制也起着重要作用。FAD2在微生物工程、油料作物基因工程和植物油质改造等方面成为科学研究的热点之一。
     本试验将倒位重复的Δ12脂肪酸脱氢酶基因AhFAD2片段与经改造的含CaMV35S启动子的表达载体pCAMBIA1302相连,构建了载体pCSF;将倒位重复的AhFAD2基因与种子特异性表达的大豆凝集素启动子相连连接到表达载体pCAMBIA1300中,构建了载体pCLF,将两个载体导入农杆菌LBA4404和EHA105,以山东主产大花生鲁花14号和丰花1号成熟种子的上胚轴和子叶为受体材料进行遗传转化,实现该倒位重复基因片段对花生中AhFAD2基因表达的抑制。由于在双子叶植物,特别是花生中,使用潮霉素做筛选剂的少有报道,且不同品种花生、花生不同部位对潮霉素浓度的敏感度差异较大,因此在进行花生的遗传转化之前,我们设计了一组梯度筛选试验。最终确定花生胚轴转化体系的筛选浓度为潮霉素25mg/L,子叶转化体系的筛选浓度为潮霉素10mg/L,即为筛选剂的基础压力。此外,不同农杆菌菌株对不同植物的转化效率差异很大。曾有报道指出农杆菌LBA4404和EHA105对花生具有较高的转化效率,为确定哪种对花生转化效率更高,我们选取了这两种菌株进行对照实验。结果显示与LBA4404 42.01%的转化率相比,EHA105对花生具有更高的转化率,可达48.74%。经潮霉素选择培养基筛选培养,获得了转化植株400余株,其中CaMV35S启动子启动的180余株,种子特异性表达的大豆凝集素启动子启动的230余株。我们对转化苗进行了分子生物学的验证,PCR结果显示,CaMV35S启动子调控表达的植株和种子特异性表达的大豆凝集素启动子调控表达的植株均有大部分扩增出372bp的特异性目的条带,表明Δ12脂肪酸脱氢酶基因AhFAD2的RNAi抑制表达框架已整合进花生中。PCR Southern结果表明,野生型植株(对照)没有明显的杂交信号,转基因株系有强阳性信号。
     作为对照,我们同时培养了未经转化的再生苗。与再生植株相比经筛选获得的转化苗部分植株表现畸形,出现叶片皱缩浓绿,基部膨大,果枝间距缩短,不能正常生根等现象,其余虽形态正常但大都生长缓慢,茎秆弱小,尝试了多种方法进行改进,但效果不太理想。脂肪酸代谢是生物体基本生命活动之一,脂肪酸是膜脂结构的重要组成部分,这些现象也许是由于抑制了Δ12脂肪酸脱氢酶基因所引起的,但是也有报道指出潮霉素对组培植株的生长发育具有很多不利影响,并且花生切口深入培养基中,造成了丛生芽形成和生长过程中呼吸不畅,还有报道指出高浓度的BA抑制了原先芽点的生长及随后新芽的继续分化生长。因此,对于造成上述现象的深层原因还有待进一步研究。
Peanut (Arachis hypogaea L.) is the fourth largest oilseed crop in the world, which originated from South America. Peanut oilseeds consists mainly of palmitic, oleic and linoleic acids. The content, composition and condition of the polyunsaturated fatty acids in oilseeds are the most important determinant factors of oil quality. Plant oils rich in oleate are considered superior products compared to oils rich in polyunsaturated fatty acids. Oils with higher oleic acid and lower polyunsaturated fatty acids are good for health , and satisfy desirability commercially and nutritionally.Δ~(12)- oleic acid desaturase which places the second double bond in the fatty acid chain, is the key enzyme which desaturates oleic acid to linoleic acid. The ?12- oleic acid desaturase gene contains a putative intron, the coding region at the 3′end, and an open reading frame (ORF) of 1140 bp encoding 379 amino acids. There exist two homeologous genes(AhFAD2A, AhFAD2B) forΔ~(12)-oleic acid desaturase in peanut, which derived from the original diploid progenitor species. A mutation in ahFAD2A and significant reduction in levels of the ahFAD2B transcript together cause the high oleate phenotype in peanut varieties, and that one of them expressed a functional enzyme appears to be sufficient for the normal oleate phenotype. The expression of ?12- oleic acid desaturase gene also are affected by temperature. All in all, the two homeologous genes, FAD2A and FAD2B, are the key genes which detemine the concentration of oleic acid in peanut, although other genes or control mechanisms may also play an important role.Δ~(12)- oleic acid desaturase has become one of the major researching enzyme in the area of microbial engineering , oilseeds crop gene engineering and plant lipid modification.
     We linked the inverted repeat sequence of partialΔ~(12) fatty acid desaturase gene AhFAD2 with CaMV35S promoter and inserted them into binary plant vector pCAMBIA1300, and linked the inverted repeat sequence of partial AhFAD2 gene with strong seed specific soybean Lectin promoter and inserted them into binary plant vector pCAMBIA1302. The resulting plasmid, named pCSF and pCLF, respectively, were mobilized to Agrobacterium tumefaciens strain LBA4404 and EHA105, used for plant transformation. We used hypocotyls and cotyledons of matured peanut seeds of Luhua No.14 and Fenghua No.1 as recipients, the inverted repeat sequence of partialΔ~(12) fatty acid desaturase gene AhFAD2 was introduced into Arachis hypogaea L via Agrobacterium tumefaciens infection. Because there are only a little reportes about the screening concentration of hygromicin B in dicotyledonous plants, especially in Arachis hypogaea L, furthermore, there are big sensitivity differences between different species and different part of Arachis hypogaea L, we designed a gradient screening tests before transformation. Finally, we determined the screening concentration of hygromicin B for hypocotyls is 25mg/L and for cotyledons is 10mg/L. In addition, to differnent species of plants, there are big transformation efficiency differences between different strains of Agrobacterium tumefaciens. It was reported that Agrobacterium tumefaciens strain LBA4404 and EHA105 both had high transformation efficiency to Arachis hypogaea L. In order to determine which strain had higher transformation efficiency to Arachis hypogaea L, we made a contrast experiment between the two strains. The result showed that compared with LBA4404, EHA105 had higher transformation efficiency to Arachis hypogaea L. Transformants were selected for their ability to grow on medium containing hygromicin B, more than 400 lines that were all tolerant to hygromicin B were selected, 180 of them were driven by CaMV35S promoter, and 230 of them were driven by strong seed specific soybean Lectin promoter. The transformants used for further molecular determination. PCR showed that most of the transformants had strong positive signals, and no signal was shown in wild type plants. This indicated that the inverted repeat structure had introduced into Arachis hypogaea L successfully. PCR Southern blotting analysis also indicated that the structure had been integrated into all of the transgenic plants’genomes.
     As control, we cultured the regeneration plants at the same time which haven’t been transformated. Compared with regeneration plants, some of the transformants showed abnormal form, such as leaves dark green and wrinkle, the base of plant swollen, the space of branch shortened, root abnormal, and so on. Although the form of others were normal, most of them showed slow-growing and the branches of them were weak. Tried many methods to improve, but the effcets were not noticeable. Fatty acids matebolism is one of the basic vital processes, and fatty acids are imprtant component part of membranous lipids, so the phenomenons above may result from the supressed expression ofΔ12 fatty acid desaturase gene AhFAD2. And also there are reportes showed that hygromicin B has many disadvantages for plant develepoment. Thus, the reasons which result in the phenomenons above, still need further research.
引文
[1]. Broun P, Gettner S, Somerville C,Genetic engineering of plant lipids. Annu Rev Nutr,1999, 19: 197-216
    [2]. St Angelo AJ, Ory RL,Investigations of causes and prevention of fatty acid peroxidation in peanut butter. J Am Peanut Res Educ Assoc,1973, 5: 128-133
    [3]. Grundy SM,Comparison of monounsaturated fatty acids and carbohydrates for lowering plasma cholesterol in man. New Eng J Med,1986, 314: 745-748
    [4]. O'Byrne DJ, Knauft DA, Shireman RB, .Low fat-monounsaturated rich diets containing high-oleic peanuts improve serum lipoprotein profiles. Lipids,1997,32: 687-695
    [5]. Braddoc JC, Sims CA, O'Keefe SF, Flavor and oxidative stability of roasted high oleic acid peanuts. J Food Sci 1995, 60: 489-493
    [6]. Mugendi JB, Sims CA, Gorget DW, O'Keefe SF, Flavor stability of high-oleic peanuts stored at low humidity. J Am Oil Chem S℃,1998, 75: 21-25
    [7]. Kinney AJ, Manipμlating ˉux throμgh plant metabolic pathways. Curr Opin Plant Biol, 1998a, 1: 173-178
    [8]. Tanhuanpaa P, Vilkki J, VihinenM, Mapping and cloning of FAD2 gene to develop allele-specific PCR for oleic acid in spring turnip rape (Brassica rapa ssp. oleifera). Mol Breed,1998, 4:543-550
    [9]. Napier JA, Michaelson LV, Stobart AK, Plant desaturases: harvesting the fat of the land. Curr Opin Plant Biol 1999,2: 123-127
    [10]. 李春丽, 现代食品工业指南, 南京:东南大学出版社,2002: 211.
    [11]. 陈合, 许牡丹, 新型食品原料制备技术与应用.北京:化学 工业出版社,2003:193.
    [12]. 金霞, 余纲哲, 食用油脂与人体健康.生物学通报,2000, 35(2):13-15.
    [13]. 李璇, 郑建仙, 脂肪与心血管疾病相互关系最新进展及对 食品工业的指导意义.食品与发酵工业,1997,24(1):74-79.
    [14]. RassiasG, KestinM.L, NestelPJ.J, Clin.Nutr.1991,53:315-320.
    [15]. 施万英,徐甲芬, 蔺淑贤, 高单不饱和脂肪酸型肠内营养制剂(Clucema)用于2型糖尿病.中国临床营养杂志, 2004,12(1):39-42.
    [16]. 王军波, 肖颖, 梁学军等, 膳食脂质对中老年高胆固醇血症患者血清胆固醇的影响, 卫生研究,2000, 29(3): 162-163.
    [17]. 郭红卫,席静, 膳食脂肪对高血压人群血脂水平的影响, 中华预防医学杂志, 2002, 36(4):250-252.
    [18]. 肖颖,王军波,梁学军,等.富含单不饱和脂肪酸的坚果 对高脂大鼠血脂水平的影响.卫生研究,2003,32(3): 120-122.
    [19]. 肖颖,王军波,梁学军,等.富含单不饱和脂肪酸的坚果对高脂血症患者血脂水平的影响.中国公共卫生,2002,18(8):931-934.
    [20]. 周斌,彭淑牖,牟一平,等.茶油对梗阻性黄疸心脏保护作用的实验研究.肝胆外科杂志,2000,8(4):308-310.
    [21]. 吴时敏.功能性油脂.北京:中国轻工业出版社,2001:82-110.
    [22]. MattsonFH.单不饱和脂肪酸的作用.国外医学卫生分册,1999(3):160-163.
    [23]. Browse J, Somerville C. Glycerolipid synthesis: biochemistry and regulation. Annu Rev Plant Physiol Plant Mol Biol ,1991,42:467-506
    [24]. Cohen Z , Shiran D , Khozin I , et al. Fatty acid unsaturation in the red alga Porphyri di um ruent um. Biochim Biophys Acta ,1997 , 1344 (1) :59-62
    [25] 咸漠,毕颖丽,李文江等。脂肪酸去饱和酶的结构与催化特性研究进展,分子催化,2000,14(12):473-476
    [26] Tocher D.R., Leaver M.J. and Hodgson P.A..Recent advances in the biochemistry and molecular biology of fatty acyl desaturases, Prog. Lipid Res, 1998,37,No. 2/3,73-117
    [27]. Fox BG, Shanklin J. ,Jingyuan A, et al, Resonance Raman evidence for an Fe-o-Fe center in stearoyl-ACP desaturase. Primary sequence identity with other diiron-oxo proteins. Biochemistry,1994,33:12776-12786
    [28]. Lindqvist Y, Hu WT, Schneider G, et al. Crystal structure of ?9 stearoyl-ACP desaturase from caster seed and its relationship to other di-iron protein. EMBO J, 1996, 15(16):4081~4092
    [29]. Mitchell AG, Martin C. A novel cytochrome b5 like domain is linked to the carboxyl terminus of the Saccharomyces cerevisiae ?9 fatty acid desaturase. J Biol Chem, 1995, 270(50):29766~29772
    [30]. Sperling P , Schmidt H , Heinz E. A cytochrome b5 - containing fusion protein similar to plant acyl desaturase. Eur J Biochem ,1995 , 232 :798-805
    [31]. Cahoon E B. Redesign of soluble fatty acid desaturase from plants for altered substrate specificity and double bond position. Proc.Natl.Acad.Sci.USA. 1997,94:4872-4877
    [32]. LindgvidY., Hu WT, Schneider G, et al. Crystal structure of △ 9 stearoyl-ACP desaturase from caster seed and its relationship to otherdi-iron protein. EMBO.J, 1996,15(16):4081-4092
    [33]. Cahoon E B, △ 6 Hecadecenoif acid is synthesized by the activity fo a soluble △6 palmitoyl-acyl carrirrer protein desaturase in Thunberglala Endosperm. J Biol Chem,1994,269:27519-27526
    [34] Wada H, Gombos Z, Murata N. Enhancement of chilling tolerance of a cyanoboacterium by genetic manipulation of fatty acid desaturation, Nature,1990,347(13):200-203
    [35] Wada H, Gombos Z, Murata N. Contribution of membrane lipids to the ability of thephotosynthetic machinery to tolerate temperature stress. Plant Biology, 1994,91:4273-4277
    [36] Somerville C , Browse J . Dissecting desaturation. Trends in Cell Biol ,1996 , 6 :148-153
    [37]. Wada H, Gombos Z, Sakamoto T, et al. Genetic manipulation of the extent of desaturation of fatty acid in membrane lipids in the cyanobacterium Synecocystis PCC 6803. Plant Cell Physiol, 1992, 33(5):535~540
    [38]. Tasaka Y, Gombos Z, Nishiyaa Y, et al. Targeted mutagenesis of AcyL-lipid desaturase in Synichocystis: evidence for the important roles of polyunsaturated membrane lipids in growth respiration and photosynthesis. EMBO J, 1996, 15(23):6416~6425
    [39]. Hugly S, Somerville C. A role for membrane lipid polyunsaturation in chloroplast biogenesis at low temperature. Plant Physiol, 1992, 99: 197~202
    [40]. Sakamoto T, Bryant DA.. Temperature-regulated mRNA accumulation and stabilization for fatty acid desaturase genes in the cyanobacterium Synechococcus sp. strain PCC 7002. Mol Microbiol. 1997 Mar;23(6):1281-1292
    [41]. Sakamoto T, Higashi S, Wada H, Murata N, Bryant DA. Low- temperature- induced desaturation of fatty acids and expression of desaturase genes in the cyanobacterium Synechococcus sp. PCC 7002. FEMS Microbiol Lett. 1997 Jul 15;152(2):313-320
    [42]. Murata N, Los DA. Membrane Fluidity and Temperature Perception. Plant Physiol. 1997 ,115(3):875-879
    [43]. Elmer P. Heppard, Anthony J. Kinney, Kevin L. Stecca, and Guo-Hua Miao. Developmental and Growth Temperature Regulation of Two Different Microsomal w-6 Desaturase Genes in Soybeans. Plant Physiol. , 1996, 110: 311-319
    [44].Guo Q. T., William P. N., Carol H.G., Steven C. H., and Ralph E. D., Oleate desaturase enzymes of soybean: evidence of regulation through differential stability and phosphorylation, The Plant Journal, 2005,44, 433–446
    [45]López Y., Nadaf H.L., Smith O.D., Connell J.P., Reddy A.S., and Fritz A.K., Isolation and characterization of the ?12-fatty acid desaturase in peanut (Arachis hypogaea L.) and search for polymorphisms for the high oleate trait in Spanish market-type lines, Theor Appl Genet, 2000, 101:1131–1138
    [46].Seiki T., Eiji S., Akiko T., Misa I.O., Hiroshi K., Toshihiko A., and Sakayu S..,Improvement of the Fatty Acid Composition of an Oil-Producing Filamentous Fungus, Mortierella alpina 1S-4, through RNA Interference with 12-Desaturase Gene Expression, Appl Environ Microbiol, 2005,71(9): 5124–5128.
    [47].Iba K., Gibson S., Nishiuchi T., Fuse T., Nishimura M., Arondel V., Hugly S., and Somerville C., A gene encoding a chloroplast omega-3 fatty acid desaturase complements alterations in fatty acid desaturation and chloroplast copy number of the fad7 mutant of Arabidopsis thaliana, J Biol Chem, 1993,15;268(32):24099-24105
    [48].Jung S., Swift D., Sengoku E., Patel M., Teule F., Powell G., Moore K., and Abbott A., The high oleate trait in the cultivated peanut [Arachis hypogaea L.].I. Isolation and characterization of two genes encoding microsomal oleoyl-PC desaturases, Mol Gen Genet, 2000a, 263: 796-805
    [49].Liu Q., Brubaker C.L., Green A.G., Marshall D.R., Sharp P.J., and Singh S.P., Evolution of the FAD2-1 fatty acid desaturase 5' UTR intron and the molecular systematics of Gossypium (Malvaceae), Am J Bot, 2001,88(1): 92-102
    [50].Panpoom S., Los D.A., and Murata N., 1998, Biochemical characterization of a delta12 acyl-lipid desaturase after overexpression of the enzyme in Escherichia coli, Biochim Biophys Acta, 1390(3):323-332
    [51]. Shanklin J., and Cahoon E.B., Desaturation and related modifications of fatty acids, Annu Rev Plant Physiol Plant Mol Biol, 1998,49:611-641
    [52].元冬娟和江黎明,海洋微藻脂肪酸去饱和酶.生命的化学,2006,26卷5期,422-425
    [53].Ann C. B., Sook J., Albert G. A., and Gary L. P., ,The Naturally Occurring High Oleate Oil Character in Some Peanut Varieties Results from Reduced Oleoyl-PC Desaturase Activity from Mutation of Aspartate 150 to Asparagine, Crop Sci, 200141:522–526.
    [54].Guillermo A. P., Silvia G. A., and Antonio D. U., Trypanosoma brucei oleate desaturase may use a cytochrome b5-like domain in another desaturase as an electron donor,Eur. J. Biochem, 2004, 271, 1079–1086
    [55].Andrew W. M., Jonh M.D.,Preetinder K.D., Peter K.K., David W.A, James A. M.,and Robert T.M. , Membrance-bound fatty acid desaturases are inserted co-translationally into the ER and contain different ER retrieval motifs at their carboxy termini,The Plant Journal, 2004, 37,156-173
    [56]. John M. D., Dorselyn C. C., Jui-Chang W. K., Robert T. M., Charlotta T., Thomas A. M., and Armand B. P., Molecular Analysis of a Bifunctional Fatty Acid Conjugase/Desaturase from Tung. Implications for the Evolution of Plant Fatty Acid Diversity, Plant Physiology, 2002, 130:2027–2038.
    [57].Jung S., Tate P. L., Horn R., Kochert G., Moore K., and Abbott A. G., The Phylogenetic Relationship of Possible Progenitors of the Cultivated Peanut, Journal of Heredity, 2003, 94(4):334–340
    [58]. Jung S., Powell G., Moore K., and Abbott A., The high oleate trait in the cultivated peanut [Arachis hypogaea L.].II. Molecular basis and genetics of the trait, Mol Gen Genet, 2000b, 263: 806-811
    [59]. Patel M., Jung S., Moore K., Powell G., Ainsworth C., and Abbott A., High-oleate peanut mutants result from a MITE insertion into the FAD2 gene, Theor Appl Genet, 2004,108 (8):1492-502
    [60]. Patrick S. C., and Darwin W. R.., Functional Expression of the Extraplastidial Arabidopsis thaliana Oleate Desaturase Gene (FAD2) in Saccharomyces cerevisiae, Plant Physiol, 1996, 111:223-226
    [61]. Susumu K., Atsuya S., Toshio F., Toshihiro T., Katsumi N., and Kazuhisa O., Polyunsaturated Fatty Acid Biosynthesis in Saccharomyces cerevisiae: Expression of Ethanol Tolerance and the FAD2 Gene from Arabidopsis thaliana, Applied and Environmental Micorobiology, 1996, 62: 4309–4313
    [62]. Koushirou S., Ken-ichi H., Naoki F., Hideyuki S., Koutarou N., Fuminori S., Yoshie H., Isao M., Takahisa M.), Shoji H., and Masayoshi I., Two Low- temperature- inducible Chlorella Genes for ?12and ω-3 Fatty Acid Desaturase (FAD): Isolation of ?12 and ω-3 fad cDNA Clones, Expression of ?12 fad in saccharomyces cerevisiae,and Expression of ω-3 fad in Nicotiana tabacum, Biosci.Biotechnol.Bi ℃ hem, 2002,66(6):1314-1327
    [63]. Kyoko W., Takahiro O., Hiromichi S., and Susumu K., Yeast Δ12 Fatty Acid Desaturase: Gene Cloning, Expression, and Founction, Biosci. Biotechnol.Biochem 2004, 68(3): 721-727,
    [64]. 王敬乔,陈薇,曾黎琼,和江明,董云松,寸守铣,李根泽,Δ12-脂肪酸去饱和酶基因(fad2)突变对油菜叶片表面结构和透性的影响,植物生理与分子生物学学报, 2003,29(3) :192-198
    [65]. Li M.C., Li H., Wei D.S., and Xing L.J., Cloning and molecular characterization of ?12-fatty acid desaturase gene from Mortierella isabellina, World J Gastroenterol, 2006,12(21): 3373-3379
    [66]. Kinney AJ, Knowlton S. Designer oils: the high oleic acid soybean. In: Roller S, Harlander S (eds) Genetic modification in the food industry, Blackie, London, 1998,pp 193-213
    [67]. Liu Q, Singh SP, Brubaker CL, Sharp PJ, Green AG, Marshall DR. Molecular cloning and expression of a cDNA encoding a microsomal fatty acid desaturase in cotton (Gossupiumhirsutum L.). Australian Journal of Plant Physiology,1999, 26: 101-106
    [68]. Stoutjesdijk P, Singh SP, Liu Q, Hurlstone C, Waterhouse P, Green A. HpRNA-mediated targeting of the Arabidopsis thaliana FAD2 gene gives highly efficient and stable silencing. Plant Physiology,2002, 129: 1723-1731
    [69]. Liu Q, Singh SP, Green AG.High-stearic and high-oleic cottonseed oils: nutritionally improved cooking oils developed using gene silencing. Journal of the American College of Nutrition, 2002b,21: 205S-211S
    [70]. Knutzon DS, Hayes TR, Wyrick A, Xiong H, Davies HM, Voelker TA, Lysophosphatidic acid acyltransferase from coconut endosperm mediates the insertion of laurate at the sn-2 position of triacylglycerols in lauric rapeseed oil and can increase total laurate levels. Plant Physiology,1999, 109: 999-1006
    [71]. Bao X, Katz S, Pollard M, Ohlrogge J, Carbocyclic fatty acids in plants: biochemical and molecular genetic characterization of cyclopropane fatty acid synthesis of Sterculia foetida. Proceedings of the National Academy of Sciences of USA, 2002, 99: 7172-7177
    [72]. Sayanova OV, Napier JA.Eicosapentaenoic acid: biosynthetic routes and the potential for synthesis transgenic plants. Phytochemistry, 2004,65: 147-158
    [73]. Hu FB, Stampfer MJ, Manson JE, Rimm E, Golditz GA, Rosner BA, Hennekens CH, Willett WC, Dietary fat intake and the risk of coronary heart disease in women. New England Journal of Medicine, 1997, 337:1491-1499
    [74]. Jones PJH, Ntanios FY, Raeini-Sarjez M, Vanstone CA, Cholesterol-lowering efficacy of a sitostanolcontaining phytosterol mixture with a prudent diet in hyperlipidemic men. American Journal of Clinical Nutrition, 1999, 69: 1144-1150
    [75]. Jung, S., D. Swift, E. Sengoku, M. Patel, F. Teule, G. Powell, K. Moore, and A. Abbott.. High oleate trait in the cultivated peanut [Arachis hypogaea L]: I. Isolation and characterization of two microsomal oleoyl-PC desaturases. Mol. Gen. Genet. 2000a, 263:796–805.
    [76]. Kinney AJ Development of genetically engineered soybean oils for food applications. Journal of FoodLipids, 1996, 3: 273-292
    [77]. Buhr T, Sato S, Ebrahim F, Xing A, Zhou Y, Mathiesen M, Schweiger B, Kinney A, Staswick P, Clemente TRibozyme termination of RNA transcripts downregulate seed fatty acid genes in transgenic soybean. The Plant Journal, 2002, 30: 155-163
    [78]. Liu Q, Singh SP, Green AG High-stearic and high-oleic cottonseed oils produced by hpRNA-mediated posttranscriptional gene silencing. Plant Physiology, 2002a, 129: 1732-1743
    [79]. Kinney AJ, Knowlton S, Designer oils: the high oleic acid soybean. In Roller S andHarlander S eds.Genetic modification of the food industry. BlackieAcademic, London, 1998, pp. 193-213
    [80]. 石东乔, 周奕华, 陈正华.植物脂肪酸调控基因工程研究. 生命科学, 2002, 14: 291-295
    [81]. 石东乔, 周奕华, 张丽华, 刘桂珍, 陈正华.农杆菌介导的油菜脂肪酸调控基因工程研究. 高技术通讯, 2001, 2:1-7
    [82]. 熊兴华, 官春云, 李恂, 王学军, 周小云, 李家洋.甘蓝型油菜FAD2 基因片段的克隆和反义表达载体的构建. 中国油料作物学报, 2002, 24: 1-4
    [83]. 熊兴华, 官春云, 李恂, 江巨螯, 邬克彬, 王学军, 周小云.基因枪法向甘蓝型油菜转移反义FAD2 基因的研究. 湖南农业大学学报, 2003, 29: 188-191
    [84]. 陈松,张杰夫,陈峰,陈新军,龙卫华,浦惠明,戚存扣. 甘蓝型油菜种子特异性表达fad2基因ihpRNA载体构建。中国油料作物学报,2006, 28(3):251-256
    [85]. D. Malcolm Livingstone, Jaime L. Hampton, Patrick M. Phipps, and Elizabeth A. Grabau. Enhancing Resistance to Sclerotinia minor in Peanut by Expressing a Barley Oxalate Oxidase Gene. Plant Physiology, April 2005, Vol. 137, pp. 1354–1362
    [86]. Zenaida V.Magbanua1, H. DaytonWilde1, James K. Roberts1, Kamal Chowdhury, Jorge Abad, James W. Moyer, Hazel Y. Wetzstein and Wayne A. Parrott. Field resistance to Tomato spotted wilt virus in transgenic peanut (Arachis hypogaea L.) expressing an antisense nucleocapsid gene sequence. Molecular Breeding, 2000, 6: 227–236
    [87]. MADHUMITA JOSHI, CHEN NIU, GERALDINE FLEMING, SULEKHA HAZRA, YE CHU, C. JOSEPH NAIRN, HONGYU YANG, AND PEGGY OZIAS-AKINS. USE OF GREEN FLUORESCENT PROTEIN AS A NON-DESTRUCTIVE MARKER FOR PEANUT GENETIC TRANSFORMATION. Biol. Plant July–August, 2005,Vol. 41:437–445
    [88]. 陈红岩,张军,高毅,杜海莲,马英,郑文竹,夏宁邵. 乙肝病毒表面抗原基因在花生中的遗传转化及免疫原性检测. 生物技术通讯,2002, VOL.13 No.4
    [89]. Cheng M, Jarret R L, Li Z, et al. Production of fertile transgenic peanut (Arachis hypogaea L.) plants using Agrobacterium tumefaciens. Plant Cell Reports, 1996,15:653-657.
    [90]. Cheng M, Jarret R L, Li Z, et al. Expression and inheritance of foreign genes in transgenic peanut plants generated by Agrobacterium-mediated transformation. Plant Cell Reports, 1997,16:541-544.
    [91]. 单世华,庄伟建,官德义,李春娟,刘思衡.以农杆菌为介导花生的遗传转化研究I.质粒载体的分子鉴定及农杆菌菌株的转换.花生学报,2003年第2期
    [92]. Horsch R B,Fry T E,Hoffmann N L,et al.A simple and general method for transferring genes into plants.Science,1985,227:1227-1231.
    [93]. 徐平丽,单雷,王传堂,等.花生胚轴丛生芽的诱导和植株再生.花生科技,1999(增刊):254—256.
    [94]. 袁美 , 李双 铃 , 李海渤 , 张成 松 , 农杆 菌 介导 的 花 生遗 传 转 化现 状与 分析 , 花生学报,2003,32 卷 B11 期,285-290
    [95]. 李 春 娟 , 万 书 波 , 许 婷 婷 , 庄 伟 建 , 单 世 华 , 花 生 遗 传 转 化 影 响 因 素 研 究 , 花 生 学报,2004,33(4):20-25
    [96]. Peter A. Stoutjesdijk, Surinder P. Singh, Qing Liu, et al. hpRNA-Mediated Targeting of the Arabidopsis FAD2 Gene Gives Highly Efficient and Stable Silencing[J].Plant Physiology, 2002, 1291723–1731
    [97]. S. Varsha Wesley, Christopher A. Helliwell, Neil A. Smith,, et al. Construct design for efficient, effective and high-throughput gene silencing in plants.[J]. The Plant Journal 2001,27(6): 581-590
    [98]. 何红卫,宾金华. 花生上胚轴的丛生芽诱导和植株再生. 华南农业大学学报,2003,24(3):46-49
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.