混合动力挖掘机动臂能量回收单元及系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动臂能量回收是进一步降低混合动力挖掘机燃油消耗和废气排放的有效途径,对改善挖掘机高能耗、高排放的现状具有重要意义,相关研究还可为其它类型工程机械的能量回收提供一定的参考和借鉴。
     对于混合动力挖掘机,能量回收的引入改变了动臂作业的控制模式,如何同时保证良好的节能性和操作性是当前制约该技术实际应用的瓶颈。为了解决该难题,论文提出了一种新型的动臂能量回收系统方案及工作原理:系统方案采用液压马达-发电机能量回收单元加串流节流阀结构,在工作原理上引入压力补偿的思想,即控制发电机使其电磁转矩自动适应负载压力,一方面保证节流阀前后压差恒定且较小,进而调节其阀口开度可有效控制动臂运动,另一方面由液压马达-发电机单元对能量进行回收再利用;根据矢量控制发电机转速信息和节流阀流量-压差映射关系对节流阀压差进行估计,并应用于基于压差控制的动臂能量回收系统,实现了可降低成本及复杂性的无传感器控制方案。此外,论文对影响能量回收系统性能的关键部件——液压马达-发电机单元进行了深入研究:针对能量回收发电机尺寸约束下保持高效率及低转矩脉动的性能要求,提出了通过参数化电磁设计模型和有限元分析对其定、转子结构参数进行分步协同优化的设计方法,兼顾了设计效率和准确性;分别在电气和机械层面探讨了液压马达-发电机单元的控制,设计了反馈和前馈相结合的电流控制器和带扰动补偿的转速控制器,保证其在转矩和转速模式下均具有较为理想的动态性能。论文提出的一整套动臂能量回收系统设计和控制方法,可同时实现良好的动臂操作性和能量的高效回收,有力地推动了动臂能量回收系统在混合动力挖掘机的实际应用。
     论文各章内容分述如下:
     第一章阐述了当前能源紧缺、环境恶化背景下开展挖掘机动臂能量回收研究的重要意义;介绍了工程机械动臂能量回收的研究现状,分析了几种能量回收方案的特点及存在的问题;针对适用于混合动力挖掘机的电气式能量回收系统,介绍了液压马达-发电机能量回收单元的元件选型,并综述了永磁发电机的设计和控制方法;最后提出了课题的主要研究内容。
     第二章从总体上对混合动力挖掘机动臂能量回收系统进行了研究。分析了系统作业工况特点,归纳了系统主要性能评价指标,包括节能性和操作性。提出了液压马达-发电机能量回收单元加串联节流阀的新型系统结构方案。建立了系统主要元器件的数学模型,分析了能量传递流中各个转换环节的损耗,探讨了系统的参数设计问题,为进一步开展元件级的研究打下了基础。
     第三章对能量回收发电机的设计及优化方法展开了研究。针对能量回收发电机尺寸约束下保持高效率及低转矩脉动的性能要求,提出了定、转子结构参数分步优化的设计方法:先以结构尺寸受限下的损耗最低为目标,基于参数化模型和粒子群算法获得最优的定子结构参数和磁感应强度分布;再以气隙磁感应强度的波形畸变最小为目标,利用有限元方法优化永磁体结构参数,并保证磁感应强度的实际分布与定子优化结果一致。分别对电枢反应、永磁体最大去磁、间歇性作业下的温升进行了计算和校核。研制了能量回收发电机样机并进行了性能和参数测试,测试结果验证了设计及优化方法的有效性。
     第四章研究了液压马达-发电机能量回收单元的控制。在电气层面研究了永磁发电机的电流控制,为了降低反电动势的影响,设计了带前馈补偿的比例-积分电流控制器;在机械层面研究了液压马达-发电机单元的转速控制,针对液压马达入口压力变化剧烈的特点,引入了扰动补偿以提高系统的抗干扰能力。建立了相应的仿真模型,对设计的控制方法进行了仿真研究。搭建了基于模拟加载的试验台架并进行了试验研究,试验结果表明,液压马达-发电机单元在转矩和转速模式均具有良好的控制性能,为进一步研究动臂能量回收系统的控制方法提供了支撑。
     第五章研究了对动臂操作性具有主导性影响的能量回收系统控制方法。结合系统结构和特点提出了三种控制方法:直接转速控制,通过控制液压马达-发电机单元的转速调节动臂液压缸速度,节流阀基本处于全开状态;负载压力控制,通过节流阀调节动臂液压缸速度,根据负载压力反馈确定单元的目标转矩;节流阀压差控制,也通过节流阀调速,但根据节流阀压差闭环控制确定单元的目标转矩。推导了系统在各种方法下的传递函数,根据对动态性能的分析和比较,论证了节流阀压差控制具有最优的频响和阻尼特性。搭建了混合动力挖掘机动臂能量回收试验台架并进行了试验研究,试验结果验证了理论分析。
     第六章进一步深入研究了基于压差控制方法的能量回收系统。通过与定差减压型压力补偿器的类比,将能量回收的原理由动臂下放过程扩展到包括提升和下放的全过程,并分析了两种工况的可回收能量。为了避免使用额外的压差传感器以降低系统成本及复杂性,提出了利用矢量控制发电机的转速反馈信息和节流阀的流量-压差映射关系进行压差估计的无传感器控制方法,分别从稳态和动态上论证了有/无传感器控制的等效性。最后从操作性和节能性两方面进行了大量试验研究,试验结果表明,提出的动臂能量回收系统及控制方法在典型作业过程中具有良好的动态性能,能够适应各种动作需求;实际回收能量与理论分析一致,总回收效率在40%-50%之间,且具有一定改善空间。
     第七章总结了论文的主要研究工作和创新点,并对课题后续的研究方向进行了展望。
Boom energy recovery is an effective approach to further reduce the fuel consumption and emission of hybrid excavators.It is helpful for the low efficiency and heavy pollution of excavators in current. The involved results can also provide the energy recovery research of other construction machinery with references.
     Since the control mode of the boom with energy recovery in a hybrid excavator is changed in comparison with a conventional machine, how to obtain significant energy saving and good operability simultaneously becomes the key problem which restricts the practical application of boom energy recovery. To solve the problem, this dissertation proposes a novel boom energy recovery scheme and working principle. The system structure is composed of a hydraulic motor-generator element and a throttle in series. Using pressure compensation principle, the electromagnetic torque of the generator is adaptive to the loaded pressure. Therefore, on the one hand, the pressure drop over the throttle is guaranteed to a small constant and then the velocity of the boom cylinder can be governed effectively by controlling the opening of the throttle; on the other hand, boom energy can be recovered and reused by the hydraulic motor-generator element. With the speed information of the vector-controlled generator and the relationship between the flow rate and pressure drop over the throttle, the pressure drop can be estimated and a control scheme without pressure sensors is realized to avoid additional hardware and reduce complexity. In addition, the dissertation investigates the hydraulic motor-generator element which has a profound influence on the system performance. To satisfy the requirements of high efficiency and low torque ripple under dimensional restraints of the energy recovery generator, a design method which takes both of design efficiency and accuracy into account is proposed to optimize the stator and rotor stepwise based on the cooperation of an analytical parametric model and finite element analysis. In terms of the element control, a current controller which combines feedforward and feedback together and a speed controller with disturbance compensation are proposed respectively to ensure the dynamic performance of the element either in torque mode or speed mode. The design and control methods of boom energy recovery proposed in this dissertation, which can realize energy recovery with good boom operability, strongly push forward the practical application of boom energy recovery system in hybrid excavators. The dissertation is organized as follows.
     In Chapter1, the significance of study on boom energy recovery of excavators under the background of energy crisis and environmental pollution is discussed.In the introduction of the state-of-art of boom energy recovery, the characteristics and existing problems of several schemes are analyzed in detail. For electrical energy recovery which is the suitable scheme of hybrid excavators, the type selection of the hydraulic motor-generator is discussed and the permanent magnet generator is reviewed in terms of design and control. Finally, the main research contents of the dissertation are presented.
     In Chapter2, the boom energy recovery system of hybrid excavators is researched in whole. The working conditions are analyzed and the evaluation indexes are summarized as energy saving and operability. The structure scheme which consists of a hydraulic motor-generator element and a throttle in series is proposed. Based on the mathematical models of main components, the losses in every energy conversion are calculated and the design of key parameters in the system is discussed. The aforementioned work also establishes the basis of component research. In Chapter3,as a key component, the energy recovery generator is designed and optimized. A design method which optimizes the stator and rotor stepwise is proposed to satisfy the requirements of high efficiency and low torque ripple under dimensional restraints of the energy recovery generator. Firstly, the stator structural parameters and flux density distribution are optimized with the goal of minimum losses by an analytical parametric model and the particle swarm algorithm. Secondly, the rotor structural parameters are optimized with the goal of minimum waveform distortion in airgap flux density distribution, and the practical distribution should be the same as the predetermined result. Armature reaction, demagnetization and temperature rise in intermittent working condition are calculated and checked. A prototype of the generator is fabricated and the test results verify the effectiveness of the design,
     In Chapter4, the control of the hydraulic motor-generator element is discussed.In the current control of the energy recovery generator, a proportion-integration current controller with feedforward compensation is designed to reduce the effect of back electromotive force.In the rotational speed control of the element, since the pressure in the inlet of the hydraulic motor is fluctuant, disturbance compensation is introduced to improve the dynamic performance of the element. The control systems are researched by simulation. Then, an experimental platform is built to test the energy recovery element. The results show that good control performance of the element can be achieved either in torque mode or speed mode, which promises the feasibility of the element's applications in the boom energy recovery system.
     In Chapter5, three control methods are proposed and researched according to the structure and characteristics of the energy recovery system. Direct speed control method governs the boom velocity by controlling the rotational speed of the hydraulic motor-generator element directly and the throttle is almost kept opening totally. Load pressure control method governs the boom velocity by controlling the opening of the throttle and the object electromagnetic torque of the generator is given by the feedback of loaded pressure. Pressure drop control method also governs the boom velocity with the throttle, and the generator torque is determined by the feedback of pressure drop over the throttle. The transfer functions of the system under different control methods are derived and the pressure drop control method has the best frequency response and damping ratio by comparing and analyzing their dynamic performances. Performance tests are implemented on an experimental platform of boom energy recovery for hybrid excavators, and the results are in accordance with the analytical analysis.
     In Chapter6, the energy recovery system with pressure drop control method is further investigated. Analogized to a conventional pressure compensator, the principle of energy recovery is extended to the whole boom motion which includes the lowering and lifting process. The recoverable energy under the two conditions is evaluated. A sensorless control approach, which uses the speed information of the vector-controlled generator and the relationship between the flow rate and pressure drop over the throttle, is proposed to avoid additional hardware and reduce complexity. The equivalence of the control methods with and without pressure drop sensors is proved at both steady and dynamic states. A large number of experiments are carried out in terms of energy saving and operability. The results show that the proposed boom energy recovery system and control method have good control performance in various operations. The recovered energy in experiments is in accordance with analytical value and the recovery efficiency is in the range between40%and50%, which can be further improved in practical application.
     In Chapter7, the main conclusions and achievements are summarized and the further research work is put forward.
引文
[1]T. Lin, Q. Wang, B. Hu and W. Gong. Development of hybrid powered hydraulic construction machinery. Automation in Construction,2010,19(1):11-19.
    [2]肖清.液压挖掘机混合动力系统的控制策略与参数匹配研究.浙江大学,2008.
    [3]T. Kwon, S. Lee, S. Sul, C. Park, N. Kim, B. Kang and M. Hong. Power control algorithm for hybrid excavator with supercapacitor. IEEE Transactions on Industry Application,2010, 46(4):1447-1455.
    [4]广濑久士,丹下昭二.电动车及混合动力车的现状和展望.汽车工程,2003,25(2):204-209.
    [5]H. Inoue. Introduction of PC200-8 hybrid hydraulic excavator. KOMATSU Technical Report,2008,54(161):1-6.
    [6]王冬云,潘双夏,林潇,管成.基于混合动力技术的液压挖掘机节能方案研究.计算机集成制造系统,2009,15(1):188-196.
    [7]王庆丰,张彦廷,肖清.混合动力工程机械节能效果评价及液压系统节能的仿真研究.机械工程学报,2005,41(12):135-140.
    [8]肖清,王庆丰.液压挖掘机混合动力系统的参数匹配方法.中国公路学报,2008,21(1):121-126.
    [9]Q. Xiao, Q. Wang and Y. Zhang. Control strategies of power system in hybrid hydraulic excavator. Automation in Construction,2008,17(4):361-367.
    [10]X. Lin, S. Pan and D. Wang. Dynamic simulation and optimal control strategy for a parallel hybrid hydraulic excavator. Journal of Zhejiang University SCIENCE A,2008, 9(5):624-632.
    [11]K. Jin, T. Park and H. Lee, A control method to suppress the swing vibration of a hybrid excavator using sliding mode approach. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science,2012,226:1237-1253.
    [12]B. Hu, Q. Wang, H. Wang and H. Yao. Study on control of the rotational speed of diesel engine under state-switch mode in parallel hybrid hydraulic excavator. Applied Mechanics and Materials,2013,290:97-106.
    [13]聂相虹,俞小莉,方奕栋,陈平录.基于冷却水能量回收的气动/柴油混合动力试验研 究.内燃机工程,2010,31(5):58-62.
    [14]蔡临宁,吕新福,何振歧,李波.催化裂化再生烟气能量回收系统的风险决策.化工学报,2002,53(3):307-309.
    [15]曹志锡,汪小洪,袁巨龙.液体压力能回收新技术.中国机械工程,14(14):1182-1184.
    [16]D. Margolis. Energy regenerative actuator for motion control with application to fluid power systems. ASME Journal of Dynamic Systems, Measurement, and Control,2005, 127:33-40.
    [17]H. Yang, W. Sun and B. Xu. New investigation in energy regeneration of hydraulic elevators. IEEE/ASME Transactions on Mechatronics,2007,12(5):519-526.
    [18]张彦廷.基于混合动力与能量回收的液压挖掘机节能研究.浙江大学,2006.
    [19]N. Sannomiya and S. Tanaka. Hydraulic recovery system for construction machine and construction machine using the same. US 6502499B2, Jun.7,2003.
    [20]韩慧仙.液压挖掘机动臂液压缸再生回路控制.液压气动与密封,2008,5:48-50.
    [21]B. Yao and C. DeBoer. Energy-saving adaptive robust motion control of single-rod hydraulic cylinders with programmable valves. Proceedings of the American Control Conference, Anchorage,2002:4819-4824.
    [22]S. Liu and B. Yao, "Automated onboard modeling of cartridge valve flow mapping," IEEE/ASME Transactions on Mechatronics, vol.11, no.4, pp.381-388, Aug.2006.
    [23]S. Liu and B. Yao. Coordinate control of energy saving programmable valves. IEEE Transactions on Control Systems Technology,2008,16(1):34-45.
    [24]B. Yao. Integrated mechatronic design of precision and energy saving electro hydraulic systems. Proceedings of the 7th International Conference on Fluid Power Transmission and Control, Hangzhou,2009:360-372.
    [25]梁宏宝,伊莲娜,孙旭东.游梁式抽油机节能技术改造综述.应用能源技术,2011,3:6-9.
    [26]徐兵,林建杰,杨华勇.液压电梯中的能量回收技术.液压与气动,2004,6:72-74.
    [27]王晓霞,王洪样,潘琪.液压技术中的节能与能量回收.机械工程师,1999,7:24-25.
    [28]刘海昌,姜继海.飞轮储能型二次调节流量耦联系统.华南理工大学学报(自然科学版),2009,37(4):75-79.
    [29]H. Liu, J. Jiang. Flywheel energy storage-an upswing technology for energy sustainability. Energy and Buildings,2007,39:599-604.
    [30]马雅丽,黄志坚.蓄能器实用技术.北京,化学工业出版社,2007:19-24.
    [31]H. Sun and J. Jing. Research on the system configuration and energy control strategy for parallel hydraulic hybrid loader. Automation in Construction,2010,19(2):213-220.
    [32]L. Bruun. Swedish developed energy saving system in Caterpillars excavators. Fluid Scandinavia,2002,2:6-9.
    [33]L. Bruun. Mobile working machine. US 6584769B1, Jul.1,2003.
    [34]赵丁选,陈明东,戴群亮,章二平,徐春博.油液混合动力液压挖掘机动臂势能回收系统.吉林大学学报(工学版),2011,41(1):150-154.
    [35]X. Liang and T. Virvalo. Energy reutilization and balance analysis in a hydraulic crane. Proceedings of the 5th International Conference on Fluid Power Transmission and Control, Hangzhou,2001:306-310.
    [36]X. Liang and T. Virvalo. Development and research of an energy saving drive in a hydraulic crane. Proceedings of the 7th Scandinavian International Conference on Fluid Power, Linkoping,2001:151-161.
    [37]X. Liang and T. Virvalo. An energy recovery system for a hydraulic crane. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science,2001,215(6):737-744.
    [38]W. Sun and T. Virvalo. Accumulator-pump-motor as energy saving in hydraulic boom. Proceedings of the 8th Scandinavian International Conference on Fluid Power, Tampere, 2003:297-309.
    [39]W. Sun and T. Virvalo. Simulation study on a hydraulic-accumulator-balancing energy-saving system in hydraulic boom. Proceedings of the 50th National Conference on Fluid Power, Las Vegas, Nevada,2005:371-381.
    [40]T. Virvalo and W. Sun. Improving energy utilization in hydraulic booms-what it is all about. Proceedings of the 6th International Conference on Fluid Power Transmission and Control, Hangzhou,2005:55-65.
    [41]J. Nyman and K. Rydberg. Energy saving lifting hydraulic systems. Proceedings of the 7th Scandinavian International Conference on Fluid Power, Linkoping,2001:163-177.
    [42]J. Nyman, J. Barnstrom and K. Rydberg. Use of accumulators to reduce the need of electric power in hydraulic lifting systems. Proceedings of the 8th Scandinavian International Conference on Fluid Power, Tampere,2003:311-326.
    [43]K. Rydberg. Hydraulic accumulators as key components in energy efficient mobile systems. Proceedings of the 6th International Conference on Fluid Power Transmission and Control, Hangzhou,2005:124-129.
    [44]D. Peter and A. Achten. What a difference a hole makes-the commercial value of the Innas hydraulic transformer. Proceedings of the 6th Scandinavian International Conference on Fluid Power, Tampere,1999:873-886.
    [45]杨华勇,欧阳小平,徐兵.液压变压器的发展现状.机械工程学报,2003,39(5):1-5.
    [46]G. Vael, E. Orlando and R. Stukenbrock. Toward maximum flexibility in working machinery, IHT control in a Mecalac excavator. Proceedings of the 4th International Fluid Power Conference, Dresden,2004:171-182.
    [47]欧阳小平,徐兵,杨华勇.液压变压器及其在液压系统中的节能应用.农业机械学报,2003,34(4):100-104.
    [48]董宏林,姜继海,吴盛林.液压变压器与液压蓄能器串联使用的优化条件及能量回收研究.中国机械工程,2003,14(3):192-195.
    [49]卢红影,姜继海.液压变压器四象限工作特性研究.哈尔滨工业大学学报,2009,41(1):62-66
    [50]张树忠,邓斌,曹学鹏,李磊.挖掘机动臂流量再生与势能回收节能系统研究.机械科学与技术,2010,29(7):926-929.
    [51]张树忠,邓斌,柯坚.基于液压变压器的挖掘机动臂势能再生系统.中国机械工程,21(10):1161-1166.
    [52]周新民,孙晖.新型储能元件综述-超级电容及其应用.变频器世界,2009,6:28-30.
    [53]T. Andersen, M. Hansen, H. Pedersen and F. Conrad. Regeneration of potential energy in hydraulic forklift trucks. Proceedings of the 6th International Conference on Fluid Power Transmission and Control, Hangzhou,2005:302-306.
    [54]T. Minav, L. Laurila, P. Immonen, M. Haapala and J. Pyrhonen. Electric energy recovery system efficiency in a hydraulic forklift. Proceedings of the EUROCON 2009, St. Petersburg,2009:758-765.
    [55]T. Minav, L. Laurila and J. Pyrhonen. Energy recovery efficiency comparison in an electro-hydraulic forklift and in a diesel hybrid heavy forwarder. Proceedings of the International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Pisa,2010:574-579.
    [56]T. Minav, P. Immonen, L. Laurila, V. Vtorov, J. Pyrhonen and M. Niemela. Electric energy recovery system for a hydraulic forklift-theoretical and experimental evaluation. IET Electric Power Applications,2011,5(4):377-385.
    [57]T. Minav, L. Laurila, and J. Pyrhonen. Analysis of electro-hydraulic lifting system's energy efficiency with direct electric drive pump control. Automation in Construction,2013,30: 144-150.
    [58]T. Minav, P. Immonen, J. Pyrhonen and L. Laurila. Effect of PMSM sizing on the energy efficiency of an electro-hydraulic forklift. Proceedings of the International Conference on Electrical Machines, Rome,2010.
    [59]T. Minav, J. Pyrhonen, and L. Laurila. Permanent magnet synchronous machine sizing: effect on the energy efficiency of an electrohydraulic forklift. IEEE Transactions on Industrial Electronics,2012,59(6):2466-2474.
    [60]T. Minav, J. Pyrhonen, and L. Laurila. Induction machine drive in energy efficient industrial forklift. Proceedings of the International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Sorrento,2012:415-419.
    [61]T. Minav, L. Laurila, and J. Pyrhonen. Effect of driving electric machine type on the system efficiency of an industrial forklift. Proceedings of the International Conference on Electrical Machines, Marseille,2012:1964-1970.
    [62]T. Minav, A. Virtanen, L. Laurila, and J. Pyrhonen. Storage of energy recovered from an industrial forklift. Automation in Construction,2012,22:506-515.
    [63]江明辉,萧子渊.电动叉车的能量回收控制.流体传动与控制,2005,2:29-30.
    [64]彭昌宗,袁佳,萧子渊,陈树国.节能型全液压叉车.流体传动与控制,2011,1:36-37.
    [66]B. Kang and S. Oh. A study on the boom energy regeneration system for a hybrid excavator. Proceedings of the 7th International Fluid Power Conference, Aachen,2010: 129-142.
    [67]M. Naruse, M. Tamaru and K. Kimoto. Hybrid construction equipment. US 6708787B2, Mar.23,2004.
    [68]M. Ochiai and S. Rye. Hybrid in construction machinery. Proceedings of the 7th JFPS International Symposium on Fluid Power, Toyama,2008:41-44.
    [69]张彦廷,王庆丰,肖清.混合动力液压挖掘机液压马达能量回收的仿真及试验研究.机械工程学报,2007,43(8):218-223.
    [70]K. Kyoung and Q. Dinh. Development of energy saving hybrid excavator using hybrid actuator. Proceedings of the 7th International Conference on Fluid Power Transmission and Control, Hangzhou,2009:205-209.
    [71]林潇,管成,裴磊,潘双夏.混合动力液压挖掘机动臂势能回收系统.农业机械学报,2009,40(4):96-101.
    [72]林添良.混合动力液压挖掘机势能回收系统的基础研究.浙江大学,2011.
    [73]T. Lin, Q. Wang, B. Hu and W. Gong. Research on the energy regeneration systems for hybrid hydraulic excavators. Automation in Construction,2010,19(8):1016-1026.
    [74]T. Lin and Q. Wang. Hydraulic accumulator-motor-generator energy regeneration system for a hybrid hydraulic excavator. Chinese Journal of Mechanical Engineering,2012,25(6): 1121-1129.
    [75]L. Loi, T. Chan.分布式发电-感应和永磁发电机.北京,机械工业出版社,2009.
    [76]唐任远.现代永磁电机理论与设计.北京,机械工业出版社,2010.
    [77]Z. Zhu and D. Howe. Electrical machines and drives for electric, hybrid, and fuel cell vehicles. Proceedings of the IEEE,2007,95(4):746-765.
    [78]A. Rahideh and T. Korakianitis. Analytical calculation of open-circuit magnetic field distribution of slotless brushless PM machines. Electrical Power and Energy System,2013, 44:99-114.
    [79]N. Bianchi, S. Bolognani and F. Luise. Analysis and design of a PM brushless motor for high-speed operations. IEEE Transactions on Energy Conversion,2005,20(3):629-637.
    [80]A. Proca, A. Keyhani, A. Antably, W. Lu and M. Dai. Analytical model for permanent magnet motors with surface mounted magnets. IEEE Transactions on Energy Conversion, 2003,18(3):386-391.
    [81]K. Rasmussen, J. Davies, T. Miller, M. McGilp and M. Olaru. Analytical and numerical computation of air-gap magnetic fields in brushless motors with surface permanent magnets. IEEE Transactions on Industry Applications,2000,36(6):1547-1554.
    [82]M. Markovic and Y. Perriard. Optimization design of a segmented Halbach permanent-magnet motor using an analytical model. IEEE Transactions on Magnetics, 2009,45(7):2955-2960.
    [83]Z. Zhu, L. Wu and Z. Xia. An accurate subdomain model for magnetic field computation in slotted surface-mounted permanent-magnet machines. IEEE Transactions on Magnetics, 2010,46(4):1100-1115.
    [84]L. Alberti, M. Barcaro, M. Pre, A. Faggion, L. Sgarbossa, N. Bianchi and S. Bolognani. IPM machine drive design and tests for an integrated starter-alternator application. IEEE Transactions on Industry Applications,2010,46(3):993-1001.
    [85]Z. Makni, M. Besbes and C. Marchand. Multiphysics design methodology of permanent-magnet synchronous motors. IEEE Transactions on Vehicular Technology, 2007,56(4):1524-1530.
    [86]S. Vaez-Zadeh, A. Ghasemi. Design optimization of permanent magnet synchronous motors for high torque capability and low magnet volume. Electric Power Systems Research.2005,74:307-313.
    [87]B. Cassimere, S. Sudhoff and D. Sudhoff. Analytical design model for surface-mounted permanent-magnet synchronous machines. IEEE Transactions on Energy Conversion, 2009,24(2):347-357.
    [88]Y. Kano, T. Kosaka and N. Matsui. Some considerations on simple nonlinear magnetic analysis-based optimum design of multipole permanent magnet machines. Electrical Engineering in Japan,2004,149(3):196-203.
    [89]M. Comanescu, A. Keyhani and M. Dai. Design and analysis of 42-V permanent-magnet generator for automotive applications. IEEE Transactions on Energy Conversion,2003, 18(1):107-112.
    [90]S. Eriksson and H. Bernhoff. Loss evaluation and design optimization for direct driven permanent magnet synchronous generators for wind power. Applied Energy,2011,88(1): 265-271.
    [91]K. Laskaris and A. Kladas. Internal permanent magnet motor design for electric vehicle drive. IEEE Transactions on Industrial Electronics,2010,57(1):138-145.
    [92]T. Kefalas, G Kalokiris, A. Kladas and J. Tegopoulos. Design of skewed mounted permanent magnet synchronous generators based on 2D and 3D finite element techniques. Journal of Materials Processing Technology.2005,161:288-293.
    [93]S. Ruoho, J. Kolehmainen, J. Ikaheimo and A. Arkkio. Interdependence of demagnetization, loading, and temperature rise in a permanent-magnet synchronous motor. IEEE Transactions on Magnetics,2010,46(3):949-953.
    [94]J. Legranger, G. Friedrich, S. Vivier and J. C. Mipo. Combination of finite-element and analytical models in the optimal multidomain design of machines:application to an interior permanent-magnet starter generator. IEEE Transactions on Industry Applications, 2010,46(1):232-239.
    [95]A. Wang, H. Li and C. Liu. On the material and temperature impacts of interior permanent magnet machine for electric vehicle applications. IEEE Transactions on Magnetics,2008, 44(11):4329-4332.
    [96]M. Lukaniszyn, M. JagieLa and R. Wrobel. Optimization of permanent magnet shape for minimum cogging torque using a genetic algorithm. IEEE Transactions on Magnetics, 2004,40(2):1228-1231.
    [97]D. Sim, D. Cho, J. Chun, H. Jung and T. Chung. Efficiency optimization of interior permanent magnet synchronous motor using genetic algorithms. IEEE Transactions on Magnetics,1997,33(2):1880-1883.
    [98]K. Kim, J. Lee, H. Kim and D. Koo. Multiobjective optimal design for interior permanent magnet synchronous motor. IEEE Transactions on Magnetics,2009,45(3):1780-1783.
    [99]王自强,张龙,黄燕丹.飞行控制用无刷直流电动机的优化设计.北京航空航天大学学报.2004,30(7):588-592.
    [100]B. Cassimere and S. Sudhoff. Population-based design of surface-mounted permanent-magnet synchronous machines. IEEE Transactions on Energy Conversion, 2009,24(2):338-346.
    [101]J. Chun, J. Lim and J. Yoon. Optimal design of synchronous motor with parameter correction using immune algorithm. IEEE Transactions on Energy Conversion,1999, 14(3):610-615.
    [102]乔静秋,陈旭东,杨仕友,倪光正.基于Tabu算法的轮毂式永磁电机优化研究.浙江大学学报(工学版),2002,36(6):713-717.
    [103]K. Hwang, S. Rhee, B. Yang and B. Kwon. Rotor pole design in spoke-type brushless DC motor by response surface method. IEEE Transactions on Magnetics,2007,43(4): 1833-1836.
    [104]L. Zhong, M. Rahman, Y. Hu, K. Lim and M. Rahman. A direct torque controller for permanent magnet synchronous motor drives. IEEE Transactions on Energy Conversion, 1999,14(3):637-642.
    [105]L. Tang, L. Zhong, M. Rahman and Y. Hu. A novel direct torque control for interior permanent-magnet synchronous machine drive with low ripple in torque and flux-a speed-sensorless approach. IEEE Transactions on Industry Applications,2003,39(6): 1748-1756.
    [106]苏陈云,杨向宇.永磁同步电机直接转矩控制转矩脉动的产生及其抑制方法综述.微电机,2010,43(3):81-85.
    [107]郭庆鼎,赵希梅.直流无刷电动机原理与技术应用.中国电力出版社,北京,2008.
    [108]M. Chinchilla, S. Arnaltes and J. Burgos. Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to the grid. IEEE Transactions on Energy Conversion,2006,21(1):130-135.
    [109]W. Qiao, L. Qu and R. Harley. Control of IPM synchronous generator for maximum wind power generation considering magnetic saturation. IEEE Transactions on Industry Applications,2009,45(3):1095-1105.
    [110]S. Li and Z. Liu. Adaptive speed control for permanent-magnet synchronous motor system with variations of load inertia. IEEE Transactions on Industrial Electronics,2009,56(8): 3050-3059.
    [111]R. Jan, C. Tseng and R. Liu. Robust PID control design for permanent magnet synchronous motor:a genetic approach. Electric Power Systems Research,2008,78: 1161-1168.
    [112]S. Yang and Y Zhong. Robust speed tracking of permanent magnet synchronous motor servo systems by equivalent disturbance attenuation. IET Control Theory Application. 2007,1(3):595-603.
    [113]R. Wu and G Slemon. A permanent magnet motor drive without a shaft sensor. IEEE Transactions on Industry Applications,1991,21(5):1005-1011.
    [114]P. Acarnley and J. Watson. Review of position-sensorless operation of brushless permanent-magnet machines. IEEE Transactions on Industrial Electronics,2006,53(2): 352-362.
    [115]方斯琛,周波.滑模控制的永磁同步电机伺服系统一体化设计.中国电机工程学报,2009,29(3):96-101.
    [116]C. Elmas, O. Ustun and H. Sayan. A neuro-fuzzy controller for speed control of a permanent magnet synchronous motor drive. Expert Systems with Applications,2008,34: 657-664.
    [117]J. Yu, S. Kim, B. Lee, C. Won and J. Hur. Fuzzy-logic-based vector control scheme for permanent-magnet synchronous motors in elevator drive applications. IEEE Transactions on Industrial Electronics,2007,54(4):2190-2200.
    [118]B. Yao, F. Bu, J. Reedy and G. Chiu. Adaptive robust motion control of single-rod hydraulic actuators:theory and experiments. IEEE/ASME Transactions on Mechatronics, 2000,5(1):79-91.
    [119]M. Kazmierkowski and L. Malesani. Current control techniques for three-phase voltage-source PWM converters:a survey. IEEE Transactions on Industrial Electronics, 1998,45(5):691-703.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.