用于二氧化碳捕获与封存的微孔聚合物材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化碳(C02)的大量排放所导致的全球变暖给地球环境带来了严重的威胁。为了稳定目前大气中CO2的浓度,CO2的捕获成为国内外关注的焦点,采用有效的方法从工业烟道气中捕获CO2成为一项重要的研究课题。微孔材料因其具有低密度、大比表面积和高孔隙率而在CO2捕获方面有着潜在的应用。近几年来,微孔材料尤其是微孔有机聚合物的设计与合成取得了显著的研究成果。然而,到目前为止,绝大多数材料的合成需要精细地设计单体结构,选择合适的反应路径。此外,反应过程中通常会用到昂贵的过渡金属催化剂或有毒的溶剂。这些因素均会增加材料的生产成本,从而制约微孔聚合材料的工业化生产及其在CO2捕获方面的大规模应用。因此,低成本法合成高比表面积的微孔聚合物材料,成为材料学家和化学家当前亟待解决的重要课题之一。
     本论文以一些低成本的工业化原料为构筑单体,采用简单的合成方法制备了高比表面积的微孔聚合物材料。通过红外、固体核磁、氮气等温吸附-脱附等表针手段对所合成的微孔材料进行了表征,并初步研究了这些微孔有机聚合物材料在CO2吸附与分离方面的应用。论文研究的主要内容及结论如下:
     (1)芳香羟甲基化合物能够在Lewis酸的存在下发生Friedel-Crafts烷基化反应。通过FeCl3催化,苯甲醇和1,4-苯二甲醇自缩合反应,分别合成了两种具有高比表面积的超交联聚合物材料HCP-BA和HCP-BDM。低温氮气吸附实验结果显示,所合成的两种聚合物均具有一定的微孔结构,BET比表面积分别为742m2g-1和847m2g-1。值得一提的是,这是首次采用单官能团化合物作为自缩合单体得到高比表面积聚合物的报道。CO2吸附测试表明,273K/1.0bar下,两种材料的CO2吸附量分别为8.46wt%和12.6wt%。相对于二者的比表面积,HCP-BDM的C02吸附量显著提高的原因可归结于其较小的孔径尺寸和材料中残存的氧原子。
     (2)理论研究和实验结果表明:多孔骨架中氮原子的存在有利于提高材料的C02吸附性能。因此,以商业化原料三聚氰胺和二酐单体为基本反应原料,选择工业生产聚酰亚胺的方法,制备了一系列具有微孔和介孔结构的聚酰亚胺交联网络。这一合成策略区别于其他多孔聚酰亚胺的制备通常需要用到昂贵的具有空间立体结构的单体,而且反应在进行过程中没有用到任何有毒的溶剂和催化剂。此外,通过改变二酐单体的分子尺寸,可以有效控制聚合物网络的比表面积等孔结构性质。通过77K下的氮气吸附实验测得它们的最高比表面积可达660m2g-1。273K/1.13bar下能够吸附7.3wt%的C02。
     (3)直接以芳香杂环化合物——噻吩、吡咯、呋喃——为构筑单体,二甲氧基甲烷(FDA)为外交联剂,在温和的溶剂热条件下合成了一系列孔壁饰有大量杂原子的微孔聚合物材料,并结合计算机模拟研究了所合成材料的孔结构性能以及对C02气体的吸附行为。实验结果表明:尽管相比于其他微孔有机聚合物材料,所合成的这些微孔芳杂环网络的比表面积并不高(437~726m2g-1),但是却表现出优异的CO2吸附性能。在低覆盖下,CO2吸附热高达27~36kJmol-1。尤其是以吡咯为单体合成的聚合物网络Py-1,显示了超高的C02选择性吸附能力:在273K下,Py-1对CO2/N2的选择性高达117,这一选择性数据已居于目前世界报道的前列。
     (4)以路易斯酸为催化剂,在温和的条件下通过简单的一锅法偶联合成了含有卟啉结构的微孔聚合物网络PTPP。并利用卟啉环的配位作用,通过后合成改性法在所得聚合物网络中引入了镁、锌等过渡金属离子。研究结果发现,引入镁离子后能够增强材料的二氧化碳吸附性能。
Global warming caused by large CO2emission has an alarming impact on the earth's fragile environment. In order to stabilize the CO2concentrations in the atmosphere, carbon dioxide capture has attracted the interests of international in recent years, and the development of efficient methods for capturing CO2from industial flue gas has become an important issue. Microporous materials have potential applications for CO2capture due to many advantages such as low density, high specific surface areas and high porosity. Siginificant progress has been made in recent years on these materials, especially on the design and synthesis of microporous organic polymers (MOPs). To date, however, most monomers used in construction of the MOPs should be carefully designed and synthesized. Moreover, toxic solvents or/and catalysts are usually used during the reaction process. All these factors are prone to limit the wide use of the MOPs in industry. Therefore, the synthesis of cost-effective microporous polymers with high surface area is still a major challenge for chemists and materials scientists.
     The main task of this PhD thesis is to synthesized several hypercrosslinked polymers under mild reaction conditions by using cheap commercially chemicals as starting monomers. The polymers are characterized by solid-state13C NMR, N2gas sorption, and FT-IR spectroscopy. In addition, the CO2-capture applications of these porous organic compounds have also been studied. The main contents are listed as follows:
     (1) Two hypercrosslinked polymer networks has been synthesized by the self-condensation of bishydroxymethyl monomer,1,4-benzenedimethanol (BDM), and monohydroxymethyl compound, benzyl alcohol (BA). This is different from the previous reports that multifunctional monomers or crosslinkers is crucial for constructing the porous polymer networks. N2sorption isotherms for the polymers showed that both materials are predominantly microporous with the Brunauer-Emmett-Teller (BET) surface areas of847m2g-1for HCP-BDM and742m2g-1for HCP-BA. At273K/1bar, the CO2uptake was about12.6and8.46wt%for HCP-BDM and HCP-BA, respectively. Based on these results, this study opens up the possibility of synthesizing porous materials using the monofunctional monomers.
     (2) A series of porous polyimides with surface area up to660m2g-1have been synthesized by polycondensation of melamine and several readily available dianhydride monomers. Notably, the polymerization was carried out without toxic catalysts. Moreover, all of the starting compounds used in this study are low price, whereas other porous polyimides prepared often require expensive twisted (spiro type) or tetrahedral-based monomers. The environmental application of the polymers have also been investigated and it was found that PI1can adsorb7.3wt%CO2at273K/1.13bar.
     (3) The incorporation of heteroatoms into the porous polymers has the potential to increase the sorption and the selectivity for CO2. With this consideration in mind, we reported a facile and versatile strategy for preparing aromatic heterocycle-based microporous organic polymers. Unlike the elaborately designed monomers used in previous studies, all the heterocyclic molecules were directly crosslinked to form the highly porous networks by using formaldehyde dimethyl acetal (FDA) as external cross-linker. Considering their moderate surface areas, all these materials demonstrate ultrahigh CO2storage properties compared to other microporous with comparable surface area in the range of400~700m2g-1. Specifically, the network based on pyrrol (Py-1) shows an extraordinarily high selective adsorption of CO2over N2(about178at273K). To our knowledge, this value is the highest among all microporous materials reported to date.
     (4) The synthesis of a microporous organic polymer containing free-base porphyrin subunits has been accomplished by coupling the meso-tetraphenylporphyrin with Lewis acid as the catalyst. Metallation by post-synthesis modification affords microporous materials incorporating either Mg or Zn(porphyrins) that have been shown to be benifited to the CO2uptake.
引文
[1]Jiang, J. X.; Cooper, A. I. In Functional metal-organic frameworks:Gas storage, separation and catalysis; Springer-Verlag Berlin:Berlin,2010; Vol.293, p 1-33.
    [2]Davankov, V. A.; Tsyurupa, M. P. Structure and properties of hypercrosslinked polystyrene—the first representative of a new class of polymer networks. React. Polym.1990, 13(1-2):27-42.
    [3]Xu, S.; Luo, Y.; Tan, B. Recent development of hypercrosslinked microporous organic polymers. Macromol. Rapid Commun.2013,34(6):471-484.
    [4]Davankov, V. A.; Rogozhin, S. V.; Tsyurupa, M. P. In Chem. Abstr. US,1971, p 457.
    [5]Tsyurupa, M. P.; Davankov, V. A. Hypercrosslinked polymers:Basic principle of preparing the new class of polymeric materials. Reactive and Functional Polymers 2002,53(2-3): 193-203.
    [6]Kaliva, M.; Armatas, G. S.; Vamvakaki, M. Microporous polystyrene particles for selective carbon dioxide capture. Langmuir 2012,28(5):2690-2695.
    [7]Babarao, R.; Hu, Z.; Jiang, J., et al. Storage and separation of CO2 and CH4 in silicalite, c)68 schwarzite, and IRMOF-1:A comparative study from monte carlo simulation. Langmuir 2007,23(2):659-666.
    [8]Yang, Q.; Zhong, C. Molecular simulation of carbon dioxide/methane/hydrogen mixture adsorption in metal-organic frameworks. J. Phys. Chem.B 2006,110(36):17776-17783.
    [9]Belmabkhout, Y.; Sayari, A. Adsorption of CO2 from dry gases on MCM-41 silica at ambient temperature and high pressure.2:Adsorption of CO2/N2, CO2/CH4 and CO2/H2 binary mixtures. Chem. Eng. Sci 2009,64(17):3729-3735.
    [10]Cavenati, S.; Grande, C. A.; Rodrigues, A. E. Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures. J. Chem. Eng. Data 2004,49(4): 1095-1101.
    [11]Ahn, J. H.; Jang, J. E.; Oh, C. G., et al. Rapid generation and control of microporosity, bimodal pore size distribution, and surface area in Davankov-type hyper-cross-linked resins. Macrmolecules 2006,39(2):627-632.
    [12]Lee, J. Y.; Wood, C. D.; Bradshaw, D., et al. Hydrogen adsorption in microporous hypercrosslinked polymers. Chem. Commun.2006, (25):2670-2672.
    [13]Germain, J.; Hradil, J.; Frechet, J. M. J., et al. High surface area nanoporous polymers for reversible hydrogen storage. Chem. Mater.2006,18(18):4430-4435.
    [14]Macintyre, F. S.; Sherrington, D. C.; Tetley, L. Synthesis of ultrahigh surface area monodisperse porous polymer nanospheres. Macromolecules2006,39(16):5381-5384.
    [15]Liu, Q. Monodisperse polystyrene nanospheres with ultrahigh surface area:Application for hydrogen storage. Macromol. Chem. Phys.2010,211(9):1012-1017.
    [16]Li, B.; Huang, X.; Liang, L., et al. Synthesis of uniform microporous polymer nanoparticles and their applications for hydrogen storage. J. Mater. Chem.2010,20(35):7444-7450.
    [17]Li, B.; Gong, R.; Luo, Y., et al. Tailoring the pore size of hypercrosslinked polymers. Soft Matter 2011,7(22):10910-10916.
    [18]Wood, C. D.; Tan, B.; Trewin, A., etal. Hydrogen storage in microporous hypercrosslinked organic polymer networks. Chem. Mater.2007,19(8):2034-2048.
    [19]Wood, C. D.; Tan, B.; Trewin, A., et al. Microporous organic polymers for methane storage. Adv. Mater.2008,20(10):1916-1921.
    [20]Martin, C. F.; Stockel, E.; Clowes, R., et al. Hypercrosslinked organic polymer networks as potential adsorbents for pre-combustion CO2 capture. J. Mater. Chem. 2011,21(14): 5475-5483.
    [21]Li, B.; Gong, R.; Wang, W., et al A new strategy to microporous polymers:Knitting rigid aromatic building blocks by external cross-linker. Macromolecules 2011,44(8):2410-2414.
    [22]Dawson, R.; Stevens, L.; Drage, T. C., et al. Impact of water co-adsorption for carbon dioxide capture in mieroporous polymer sorbents.J. Am. Chem Soc.2012,134(26):10741-10744.
    [23]Katsoulidis, A. P.; Kanatzidis, M. G. Phloroglucinol based microporous polymeric organic frameworks with-OH functional groups and high CO2 capture capacity. Chem. Mater.2011, 23(7):1818-1824.
    [24]Dawson, R.; Stockel, E.; Hoist, J. R., et al. Microporous organic polymers for carbon dioxide capture. Energy Environ. Sci.2011,4(10):4239-4245
    [25]Dawson, R.; Ratvijitvech, T.; Corker, M., et al. Microporous copolymers for increased gas selectivity. Polym. Chem.2012,3(8):2034-2038.
    [26]Cote, A. P.; Benin, A. I.; Ockwig, N. W., et al Porous, crystalline, covalent organic frameworks. Science 2005,310(5751):1166-1170.
    [27]El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Cortes, J. L., etal. Designed synthesis of 3D covalent organic frameworks. Science 2007,316(5822):268-272.
    [28]Hunt, J. R.; Doonan, C. J.; LeVangie, J. D., et al. Reticular synthesis of covalent organic borosilicate frameworks. J. Am. Chem. Soc.2008,130(36):11872-11873.
    [29]Yuan, Y.; Ren, H.; Sun, F., et al. Sensitive detection of hazardous explosives via highly fluorescent crystalline porous aromatic frameworks. J. Mater. Chem.2012,22(47): 24558-24562.
    [30]Babarao, R.; Jiang, J. Exceptionally high CO2 storage in covalent-organic frameworks: Atomistic simulation study. Energy Environ. Sci.2008,1(1):139-143.
    [31]Millward, A. R.; Yaghi, O. M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc.2005,127(51): 17998-17999.
    [32]Furukawa, H.; Yaghi, O. M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc.2009, 131(25):8875-8883.
    [33]Reich, T. E.; Behera, S.; Jackson, K. T., et al. Highly selective CO2/CH4 gas uptake by a halogen-decorated borazine-linked polymer. J. Mater. Chem 2012,22(27):13524-13528.
    [34]Kahveci, Z.; Islamoglu, T.; Shar, G. A., et al. Targeted synthesis of a mesoporous triptycene-derived covalent organic framework. CrystEngComm2013,15(8):1524-1527.
    [35]Nagai, A.; Guo, Z.; Feng, X., et al. Pore surface engineering in covalent organic frameworks. Nat. Commun.2011,2:536.
    [36]Bunck, D. N.; Dichtel, W. R. Internal functionalization of three-dimensional covalent organic frameworks. Angew. Chem.-Int. Edit.2012,51(8):1885-1889.
    [37]Lan, J.; Cao, D.; Wang, W., et al. Doping of alkali, alkaline-earth, and transition metals in covalent-organic frameworks for enhancing CO2 capture by first-principles calculations and molecular simulations. ACS Nano 2010,4(7):4225-4237.
    [38]Choi, Y. J.; Choi, J. H.; Choi, K. M., et al. Covalent organic frameworks for extremely high reversible CO2 uptake capacity:A theoretical approach. J. Mater. Chem.2011,21(4): 1073-1078.
    [39]Uribe-Romo, F. J.; Hunt, J. R.; Furukawa, H., et al A crystalline imine-linked 3-D porous covalent organic framework. J. Am. Chem. Soc.2009,131(13):4570-4571.
    [40]Uribe-Romo, F. J.; Doonan, C. J.; Furukawa, H., et al Crystalline covalent organic frameworks with hydrazone linkages. J.Am. Chem. Soc.2011,133(30):11478-11481.
    [41]Wan, S.; Gandara, F.; Asano, A., et al. Covalent organic frameworks with high charge carrier mobility. Chem. Mater.2011,23(18):4094-4097.
    [42]Chen, X.; Addicoat, M. A.; Irle, S., et al. Control crystallinity and porosity of covalent organic frameworks through managing inter layer interactions based on self-complementary ^-electronic force. J.Am. Chem. Soc.2012,135(2):546-549.
    [43]Kandambeth, S.; Mallick, A.; Lukose, B., et al. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J.Am. Chem. Soc.2012,134(48):19524-19527.
    [44]Ding, S.-Y.; Gao, J.; Wang, Q., et al. Construction of covalent organic framework for catalysis: Pd/COF-LZUl in Suzuki-Miyaura coupling reaction. J. Am. Chem. Soc.2011,133(49): 19816-19822.
    [45]Pandey, P.; Katsoulidis, A. P.; Eryazici, I., et al Imine-linked microporous polymer organic frameworks. Chem. Mater.2010,22(17):4974-4979.
    [46]Schwab, M. G.; Fassbender, B.; Spiess, H. W., et al Catalyst-free preparation of melamine-based microporous polymer networks through schiff base chemistry. J. Am. Chem. Soc.2009,131(21):7216-7217.
    [47]Schwab, M. G.; Crespy, D.; Feng, X., et al. Preparation of microporous melamine-based polymer networks in an anhydrous high-temperature miniemulsion. Macromol. Rapid Commun.2011,32(22):1798-1803.
    [48]Xu, C.; Hedin, N. Synthesis of microporous organic polymers with high CO2-over-N2 selectivity and CO2 adsorption. J. Mater. Chem A 2013,1(10):3406-3414.
    [49]Laybourn, A.; Dawson, R.; Clowes, R., et al. Branching out with aminals:Microporous organic polymers from difunctional monomers. Polym. Chem.2012,3(2):533-537.
    [50]Ma, J.; Wang, M.; Du, Z., et al. Synthesis and properties of furan-based imine-linked porous organic frameworks. Polym. Chem.2012,3(9):2346-2349.
    [51]Yazaydin, A. O.; Snurr, R. Q.; Park, T.-H., et al. Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. J.Am. Chem. Soc.2009,131(51):18198-18199.
    [52]Mastalerz, M.; Hauswald, H.-J. S.; Stoll, R. Metal-assisted salphen organic frameworks (MaSOFs) with high surface areas and narrow pore-size distribution. Chem. Commun.2012, 48(1):130-132.
    [53]Modak, A.; Nandi, M.; Mondal, J., et al. Porphyrin based porous organic polymers:Novel synthetic strategy and exceptionally high CO2 adsorption capacity. Chem. Commun.2012, 48(2):248-250.
    [54]Rabbani, M. G.; El-Kaderi, H. M. Template-free synthesis of a highly porous benzimidazole-linked polymer for CO2 capture and H2 storage. Chem Mater.2011,23(7): 1650-1653.
    [55]Lin, S.; Yang, L. A simple and efficient procedure for the synthesis of benzimidazoles using air as the oxidant. Tetrahedron Lett.2005,46(25):4315-4319.
    [56]Rabbani, M. G.; El-Kaderi, H. M. Synthesis and characterization of porous benzimidazole-linked polymers and their performance in small gas storage and selective uptake. Chem. Mater.2012,24(8):1511-1517.
    [57]Zhao, Y.-C.; Cheng, Q.-Y.; Zhou, D., et al. Preparation and characterization of triptycene-based microporous poly(benzimidazole) networks. J. Mater. Chem.2012,22(23): 11509-11514.
    [58]Yu, H.; Tian, M.; Shen, C., et al. Facile preparation of porous polybenzimidazole networks and adsorption behavior of CO2 gas, organic and water vapors. Polym. Chem.2013,4(4): 961-968.
    [59]Mohanty, P.; Kull, L. D.; Landskron, K. Porous covalent electron-rich organonitridic frameworks as highly selective sorbents for methane and carbon dioxide. Nat. Commun.2011, 2:401-406.
    [60]Kuhn, P.; Antonietti, M.; Thomas, A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem-Int. Edit.2008,47(18):3450-3453.
    [61]Bojdys, M. J.; Jeromenok, J.; Thomas, A., et al. Rational extension of the family of layered, covalent, triazine-based frameworks with regular porosity. Adv. Mater.2010,22(19): 2202-2205.
    [62]Katekomol, P.; Roeser, J.; Weber, J., et al. Covalent triazine frameworks prepared from 1,3,5-tricyanobenzene. Chem. Mater.2013:DOI:10.1021/cm303751n.
    [63]Kuhn, P.; Forget, A.; Hartmann, J., et al. Template-free tuning of nanopores in carbonaceous polymers through ionothermal synthesis. Adv. Mater.2009,21(8):897-901.
    [64]Hug, S.; Tauchert, M. E.; Li, S., et al. A functional triazine framework based on n-heterocyclic building blocks. J. Mater. Chem.2012,22(28):13956-13964.
    [65]Ren, S.; Bojdys, M. J.; Dawson, R., et al. Porous, fluorescent, covalent triazine-based frameworks via room-temperature and microwave-assisted synthesis. Adv. Mater.2012, 24(17):2357-2361.
    [66]Zhu, X.; Tian, C.; Mahurin, S. M., et al. A superacid-catalyzed synthesis of porous membranes based on triazine frameworks for CO2 separation. J. Am. Chem. Soc.2012, 134(25):10478-10484.
    [67]Colson, J. W.; Woll, A. R.; Mukherjee, A., et al. Oriented 2D covalent organic framework thin films on single-layer graphene. Science 2011,332(6026):228-231.
    [68]McKeown, N. B.; Budd, P. M. Polymers of intrinsic microporosity (PIMs):Organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev. 2006,35(8):675-683.
    [69]McKeown, N.B.;Hanif,S.;Msayib,K., et al. Porphyrin-based nanoporous network polymers. Chem. Commun.2002, (23):2782-2783.
    [70]Zhang, C.; Liu, Y.; Li, B., etal. Triptycene-based microporous polymers:Synthesis and their gas storage properties. ACS Macro Letters 2011,1(1):190-193.
    [71]Budd, P. M.; Ghanem, B. S.; Makhseed, S., et al. Polymers of intrinsic microporosity (PIMs): Robust, solution-processable, organic nanoporous materials. Chem. Commun.2004, (2): 230-231.
    [72]Ghanem, B. S.; McKeown, N. B.; Budd, P. M., et al. Synthesis, characterization, and gas permeation properties of a novel group of polymers with intrinsic microporosity: PIM-Polyimides. Macromolecules 2009,42(20):7881-7888.
    [73]Du, N.; Robertson, G. P.; Pinnau, I., et al. Polymers of intrinsic microporosity derived from novel disulfone-based monomers. Macromolecules 2009,42(16):6023-6030.
    [74]Du, N.; Robertson, G. P.; Song, J., et al. High-performance carboxylated polymers of intrinsic microporosity (PIMs) with tunable gas transport propertfest. Macromolecules 2009,42(16): 6038-6043.
    [75]Weber, J.; Du, N.; Guiver, M. D. Influence of intermolecular interactions on the observable porosity in intrinsically microporous polymers. Macromolecules 2011,44(7):1763-1767.
    [76]Park, H. B.; Jung, C. H.; Lee, Y. M., et al. Polymers with cavities tuned for fast selective transport of small molecules and ions. Science 2007,318(5848):254-258.
    [77]Du, N.; Park, H. B.; Robertson, G. P., et al. Polymer nanosieve membranes for CO2-capture applications. Nat. Mater.2011,10(5):372-375.
    [78]Patel, H. A.; Yavuz, C. T. Noninvasive functionalization of polymers of intrinsic microporosity for enhanced CO2 capture. Chem. Commun.2012,48(80):9989-9991.
    [79]Bushell, A. F.; Budd, P. M.; Attfield, M. P., et al. Nanoporous organic polymer/cage composite membranes. Angew. Chem.2013,125(4):1291-1294.
    [80]Weber, J.; Antonietti, M.; Thomas, A. Microporous networks of high-performance polymers: Elastic deformations and gas sorption properties. Macromolecules 2008,41(8):2880-2885.
    [81]Weber, J.; Su, Q.; Antonietti, M., et al. Exploring polymers of intrinsic microporosity microporous, soluble polyamide and polyimide. Macromol. Rapid Commun.2007,28(18-19): 1871-1876.
    [82]Ritter, N.; Antonietti, M.; Thomas, A., et al. Binaphthalene-based, soluble polyimides:The limits of intrinsic microporosity. Macromolecules 2009,42(21):8017-8020.
    [83]Ritter, N.; Senkovska, I.; Kaskel, S., et al. Towards chiral microporous soluble polymers—binaphthalene-based polyimides. Macromol. Rapid Commun.2011,32(5): 438-443.
    [84]Ritter, N.; Senkovska, I.; Kaskel, S., et al. Intrinsically microporous poly(imide)s: Structure-porosity relationship studied by gas sorption and x-ray scattering. Macromolecules 2011,44(7):2025-2033.
    [85]Farha, O. K.; Spokoyny, A. M.; Hauser, B. G., et al. Synthesis, properties, and gas separation studies of a robust diimide-based microporous organic polymer. Chem. Mater.2009,21(14): 3033-3035.
    [86]Wang, Z.; Zhang, B.; Yu, H., etal. Microporous polyimide networks with large surface areas and their hydrogen storage properties. Chem. Commun.2010,46(41):7730-7732.
    [87]Rao, K. V.; Haldar, R.; Kulkarni, C., et al. Perylene based porous polyimides:Tunable, high surface area with tetrahedral and pyramidal monomers. Chem. Mater.2012,24(6):969-971.
    [88]Shultz, A. M.; Farha, O. K.; Hupp, J. T., et al. Synthesis of catalytically active porous organic polymers from metalloporphyrin building blocks. Chem. Sci.2011,2(4):686-689.
    [89]Wang, Z.; Zhang, B.; Yu, H., et al. Synthetic control of network topology and pore structure in microporous polyimides based on triangular triphenylbenzene and triphenylamine units. Soft Matter 2011,7(12):5723-5730.
    [90]Shanmugam, N.; Lee, K.-T.; Cheng, W.-Y., et al. Organic-inorganic hybrid polyaspartimide involving polyhedral oligomeric silsesquioxane via michael addition for CO2 capture. J. Polym. Sci., Part A:Polym. Chem.2012,50(13):2521-2526.
    [91]Liebl, M. R.; Senker, J. Microporous functionalized triazine-based polyimides with high CO2 capture capacity. Chem. Mater.2013,25(6):970-980.
    [92]Mulfort, K. L.; Hupp. J. T. Chemical reduction of metal-organic framework materials as a method to enhance gas uptake and binding. J. Am. Chem. Soc.2007,129(31):9604-9605.
    [93]Farha, O. K.; Bae, Y.-S.; Hauser, B. G., et al. Chemical reduction of a diimide based porous polymer for selective uptake of carbon dioxide versus methane. Chem. Commun.2010,46(7): 1056-1058.
    [94]Trewin, A.; Cooper, A. I. Predicting microporous crystalline polyimides. CrystEngComm 2009,11(9):1819-1822.
    [95]Dawson, R.; Cooper, A. I.; Adams, D. J. Nanoporous organic polymer networks. Prog. Polym. Sci.2012,37(4):530-563.
    [96]Jiang, J. X.; Su, F.; Trewin, A., et al. Conjugated microporous poly(aryleneethynylene) networks. Angew. Chem-Int. Edit.2007,46(45):8574-8578.
    [97]Jiang, J.-X.; Su, F.; Trewin, A., et al. Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks. J. Am. Chem. Soc.2008, 130(24):7710-7720.
    [98]Eddaoudi, M.; Kim, J.; Rosi, N., et al. Systematic design of pore size and functionality in isoreticular mofs and the ir application in methane storage. Science 2002,295(5554):469-472.
    [99]Dawson, R.; Laybourn, A.; Clowes, R., et al. Functionalized conjugated microporous polymers. Macromolecules 2009,42(22):8809-8816.
    [100]Teng, B.; Hao, R.; Shengqian, M., et al Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angewandte Chemie International Edition 2009,48(50):9457-9460.
    [101]Abbie, T.; Andrew I, C. Porous organic polymers:Distinction from disorder? Angew. Chem.-Int. Edit.2010,49(9):1533-1535.
    [102]Holst, J. R.; Stockel, E.; Adams, D. J., et al. High surface area networks from tetrahedral monomers:Metal-catalyzed coupling, thermal polymerization, and "click" chemistry. Macromolecules 2010,43(20):8531-8538.
    [103]Lu, W. G.; Yuan, D. Q.; Zhao, D., et al. Porous polymer networks:Synthesis, porosity, and applications in gas storage/separation. Chem. Mater.2010,22(21):5964-5972.
    [104]Yuan, D.; Lu, W.; Zhao, D., et al. Highly stable porous polymer networks with exceptionally high gas-uptake capacities. Adv. Mater.2011,23(32):3723-3725.
    [105]Ben, T.; Pei, C.; Zhang, D., et al. Gas storage in porous aromatic frameworks (PAFs). Energy Environ. Sci.2011,4(10):3991-3999.
    [106]Babarao, R.; Dai, S.; Jiang, D.-e. Functionalizing porous aromatic frameworks with polar organic groups for high-capacity and selective CO2 separation:A molecular simulation study. Langmuir 2011,27(7):3451-3460.
    [107]Lu, W.; Yuan, D.; Sculley, J., et al. Sulfonate-grafted porous polymer networks for preferential CO2 adsorption at low pressure. J. Am. Chem. Soc.2011,133(45):18126-18129.
    [108]Konstas, K.; Taylor, J. W.; Thornton, A. W., et al. Lithiated porous aromatic frameworks with exceptional gas storage capacity. Angew. Chem-Int. Edit.2012,51(27):6639-6642.
    [109]Xiang, Z. H.; Cao, D. P.; Wang, W. C., et al. Postsynthetic lithium modification of covalent-organic polymers for enhancing hydrogen and carbon dioxide storage. J. Phys. Chem. C2012,116(9):5974-5980.
    [110]Ma, H.; Ren, H.; Zou, X., et al. Novel lithium-loaded porous aromatic framework for efficient CO2 and H2 uptake. J. Mater. Chem. A 2013,1(3):752-758.
    [111]Kiskan, B.; Antonietti, M.; Weber, J. Teaching new tricks to an old indicator:Ph-switchable, photoactive microporous polymer networks from phenolphthalein with tunable CO2 adsorption power. Macromolecules 2012,45(3):1356-1361.
    [112]Lu, W.; Sculley, J. P.; Yuan, D., et al. Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas. Angew. Chem.-Int. Edit.2012,51(30):7480-7484.
    [113]Garibay, S. J.; Weston, M. H.; Mondloch, J. E., et al. Accessing functionalized porous aromatic frameworks (PAFs) through a de novo approach. CrystEngComm 2013,15(8): 1515-1519.
    [114]Dawson, R.; Adams, D. J.; Cooper, A. I. Chemical tuning of CO2 sorption in robust nanoporous organic polymers. Chem. Sci.2011,2:1173-1177.
    [115]Torrisi, A.; Bell, R. G.; Mellot-Draznieks, C. Functionalized mofs for enhanced CO2 capture. Cryst. Growth Des.2010,10(7):2839-2841.
    [116]Choi. J. H.; Choi, K. M.; Jeon, H. J., et al. Acetylene gas mediated conjugated microporous polymers (ACMPs):First use of acetylene gas as a building unit. Macromolecules 2010, 43(13):5508-5511.
    [117]Sun, L.; Liang, Z.; Yu, J., et al. Luminescent microporous organic polymers containing the 1,3,5-tri(4-ethenylphenyl)benzene unit constructed by Heck coupling reaction. Polym. Chem. 2013,4(6):1932-1938.
    [118]Pei, C. Y.; Ben, T.; Cui, Y., et al. Storage of hydrogen, methane, carbon dioxide in electron-rich porous aromatic framework (JUC-Z2). Adsorption 2012,18(5-6):375-380.
    [119]Ren, S.; Dawson, R.; Laybourn, A., et al. Functional conjugated microporous polymers:From 1,3,5-benzene to 1,3,5-triazine. Polym. Chem.2012,3(4):928-934.
    [120]Chen, Q.; Wang, J.-X.; Wang, Q., et al. Spiro(fluorene-9,9'-xanthene)-based porous organic polymers:Preparation, porosity, and exceptional hydrogen uptake at low pressure. Macromolecules 2011,44(20):7987-7993.
    [121]Lim, H.; Chang, J. Y. Preparation of clickable microporous hydrocarbon particles based on adamantane. Macromolecules 2010,43(17):6943-6945.
    [122]Patra, A.; Koenen, J.-M.; Scherf, U. Fluorescent nanoparticles based on a microporous organic polymer network:Fabrication and efficient energy transfer to surface-bound dyes. Chem. Commun.2011,47(34):9612-9614.
    [123]Zhang, P.; Weng, Z.; Guo, J., et al. Solution-dispersible, colloidal, conjugated porous polymer networks with entrapped palladium nanocrystals for heterogeneous catalysis of the Suzuki-Miyaura coupling reaction. Chem. Mater.2011,23(23):5243-5249.
    [124]Zhang, P.; Guo, J.; Wang, C. C. Magnetic cmp microspheres:Multifunctional poly(phenylene ethynylene) frameworks with covalently built-in Fe3O4 nanocrystals exhibiting pronounced sensitivity for acetaminophen microdetection. J. Mater. Chem.2012,22(40):21426-21433.
    [125]Zhang, L.; Lin, T.; Pan, X., et al. Morphology-controlled synthesis of porous polymer nanospheres for gas absorption and bioimaging applications. J. Mater. Chem.2012,22(19): 9861-9869.
    [126]Cho, H. C.; Lee, H. S.; Chun, J., et al. Tubular microporous organic networks bearing imidazolium salts and their catalytic CO2 conversion to cyclic carbonates. Chem. Commun. 2011,47(3):917-919.
    [127]Chun, J.; Park, J. H.; Kim, J., et al. Tubular-shape evolution of microporous organic networks. Chem. Mater.2012,24(17):3458-3463.
    [128]Kang, N.; Park, J. H.; Choi, J., el al. Nanoparticulate iron oxide tubes from microporous organic nanotubes as stable anode materials for lithium ion batteries. Angew. Chem.-Int. Edit. 2012,51(27):6626-6630.
    [129]Cheng, G.; Hasell, T.; Trewin, A., et al Soluble conjugated microporous polymers. Angew. Chem.2012,124(51):12899-12903.
    [1]Dawson,R.;Cooper,A.I.;Adams,D.J.Nanoporous organic polymer networks.Prog.Polym. Sci. 2012,37(4):530-563.
    [2]Dawson, R.; Laybourn, A.; Clowes, R., et al. Functionalized conjugated microporous polymers. Macromolecules 2009,42(22):8809-8816.
    [3]El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Cortes, J. L., etal. Designed synthesis of 3D covalent organic frameworks. Science 2007,316(5822):268-272.
    [4]Furukawa, H.; Yaghi, O. M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc.2009, 131(25):8875-8883.
    [5]Feng, X.; Ding, X.; Jiang, D. Covalent organic frameworks. Chem. Soc. Rev.2012,41(18): 6010-6022.
    [6]McKeown, N. B.; Budd, P. M. Polymers of intrinsic microporosity (PIMs):Organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev. 2006,35(8):675-683.
    [7]McKeown, N. B.; Budd, P. M. Exploitation of intrinsic microporosity in polymer-based materials. Macromolecules 2010,43(12):5163-5176.
    [8]Wood, C. D.; Tan, B.; Trewin, A., et al. Hydrogen storage in microporous hypercrosslinked organic polymer networks. Chem. Mater.2007,19(8):2034-2048.
    [9]Jiang, J.-X.; Su, F.; Trewin, A., et al. Conjugated microporous poly(aryleneethynylene) networks. Angew. Chem.-Int. Edit.2007,46(45):8574-8578.
    [10]Dawson, R.; Adams, D. J.; Cooper, A. I. Chemical tuning of CO2 sorption in robust nanoporous organic polymers. Chem. Sci.2011,2(6):1173-1177.
    [11]Kuhn, P.; Antonietti, M.; Thomas, A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem.-Int. Edit.2008,47(18):3450-3453.
    [12]Ren, S.; Bojdys, M. J.; Dawson, R., et al. Porous, fluorescent, covalent triazine-based frameworks via room-temperature and microwave-assisted synthesis. Adv. Mater.2012, 24(17):2357-2361.
    [13]Ben, T.; Pei, C.; Zhang, D., et al. Gas storage in porous aromatic frameworks (PAFs). Energy Environ. Sci.2011,4:3991-3999.
    [14]Ben, T.; Ren, H.; Ma, S. Q., et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew. Chem.-Int. Edit.2009,48(50): 9457-9460.
    [15]Lu, W.; Yuan, D.; Sculley, J., et al. Sulfonate-grafted porous polymer networks for preferential CO2 adsorption at low pressure. J. Am. Chem. Soc.2011,133(45):18126-18129.
    [16]Yuan, D.; Lu, W.; Zhao, D., et al. Highly stable porous polymer networks with exceptionally high gas-uptake capacities. Adv. Mater.2011,23(32):3723-3725.
    [17]Wu, D.; Xu, F.; Sun, B., et al. Design and preparation of porous polymers. Chem Rev.2012, 2012(112):3959-4015.
    [18]Li, B.; Gong, R.; Wang, W., et al A new strategy to microporous polymers:Knitting rigid aromatic building blocks by external cross-linker. Macromolecules 2011,44(8):2410-2414.
    [19]Dawson, R.; Ratvijitvech, T.; Corker, M., et al. Microporous copolymers for increased gas selectivity. Polym Chem.2012,3:2034-2038.
    [20]Dawson, R.; Stevens, L.; Drage, T. C., et al. Impact of water co-adsorption for carbon dioxide capture in microporous polymer sorbents. J. Am. Chem. Soc.2012,134(26):10741-10744.
    [21]Ahn, J. H.; Jang, J. E.; Oh, C. G., et al. Rapid generation and control of microporosity, bimodal pore size distribution, and surface area in Davankov-type hyper-cross-linked resins. Macromolecules 2006,39(2):627-632.
    [22]Tsyurupa, M. P.; Davankov, V. A. Porous structure of hypercrosslinked polystyrene: State-of-the-art mini-review. React. Funct. Polym.2006,66(7):768-779.
    [23]Jonathan, G.; Jean, M. J. F.; Frantisek, S. Nanoporous polymers for hydrogen storage. Small 2009,5(10):1098-1111.
    [24]Martin, C. F.; Stockel, E.; Clowes, R., et al. Hypercrosslinked organic polymer networks as potential adsorbents for pre-combustion CO2 capture. J. Mater. Chem.2011,21(14): 5475-5483.
    [25]Dawson, R.; Stockel, E.; Hoist, J. R., et al. Microporous organic polymers for carbon dioxide capture. Energy Environ. Sci.2011,4(10):4239-4245
    [26]Fontanals,N.; Cortes, J.; Galia,M., et al. Synthesis of Davankov-type hypercrosslinked resins using different isomer compositions of vinylbenzyl chloride monomer, and application in the solid-phase extraction of polar compounds. J. Polym. Sci., Part A:Polym. Chem.2005,43: 1718-1728.
    [27]Zeng, S.; Guo, L.; Zhang, L., et al. Facile synthesis of nanoporous hydroquinone/catechol formaldehyde resins and their highly selective, efficient and regenerate reactive adsorption for gold ions. Macromol. Chem. Phys.2010,211(8):845-853.
    [28]Davankov, V. A.; Iryin, M. M.; Tsyurupa, M. P., et al. From a dissolved polystyrene coil to an intramolecularly-hyper-cross-linked "nanosponge". Macromolecules 1996,29(26): 8398-8403.
    [29]Dawson, R.; Ratvijitvech, T.; Corker, M., et al. Microporous copolymers for increased gas selectivity. Polym. Chem 2012,3(8):2034-2038.
    [30]Chaikittisilp, W.; Kubo, M.; Moteki, T., et al. Porous siloxane-organic hybrid with ultrahigh surface area through simultaneous polymerization-destruction of functionalized cubic siloxane cages. J. Am. Chem. Soc.2011,133(35):13832-13835.
    [31]Schwab, M. G.; Lennert, A.; Pahnke, J., et al. Nanoporous copolymer networks through multiple Friedel-Crafts-alkylation-studies on hydrogen and methane storage. J. Mater. Chem. 2011,21(7):2131-2135.
    [32]Choudhary, V. R.; Jana, S. K.; Chaudhari, M. K. Polycondensation of benzyl chloride over ga-and in-modified zsm-5 type zeolites and Si-MCM-41 or Montmorillonite-K10 supported GaCl3 and InCl3 catalysts. J. Mol. Catal. A:Chem.2001,170(1-2):251-259.
    [33]Ben, T.; Pei, C.; Zhang, D., et al. Gas storage in porous aromatic frameworks (PAFs). Energy Environ. Sci.2011,4(10):3991-3999.
    [34]Chen, Q.; Wang, J.-X.; Wang, Q., et al. Spiro(fluorene-9,9'-xanthene)-based porous organic polymers:Preparation, porosity, and exceptional hydrogen uptake at low pressure. Macro molecules 2011,44(20):7987-7993.
    [35]Mastalerz, M.; Schneider, M. W.; Oppel,I. M., et al. A salicylbisimine cage compound with high surface area and selective CO2/CH4 adsorption. Angew. Chem-Int. Edit.2011,50(5): 1046-1051.
    [36]An, J.; Rosi, N. L. Tuning MOF CO2 adsorption properties via cation exchange. J. Am. Chem. Soc.2010,132(16):5578-5579.
    [37]Kiskan, B.; Antonietti, M.; Weber, J. Teaching new tricks to an old indicator:Ph-switchable, photoactive microporous polymer networks from phenolphthalein with tunable CO2 adsorption power. Macromolecules 2012,45(3):1356-1361.
    [38]Demessence, A.; D'Alessandro, D. M.; Foo, M. L., et al. Strong CO2 binding in a water-stable, triazolate-bridged metal-oganic framework functionalized with ethylenediamine. J. Am. Chem. Soc.2009,131(25):8784-8786.
    [39]Mohanty, P.; Kull, L. D.; Landskron, K. Porous covalent electron-rich organonitridic frameworks as highly selective sorbents for methane and carbon dioxide. Nat. Commun.2011, 2:401-406.
    [40]Rabbani, M. G.; El-Kaderi, H. M. Synthesis and characterization of porous benzimidazole-linked polymers and their performance in small gas storage and selective uptake. Chem. Mater.2012,24(8):1511-1517.
    [41]Laybourn, A.; Dawson, R.; Clowes, R., et al. Branching out with aminals:Microporous organic porymers from difunctional monomers. Polym Chem.2012,3(2):533-537.
    [42]Hao, G.-P.; Li, W.-C.; Qian, D., et al. Structurally designed synthesis of mechanically stable poly(benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO, capture sorbents. J. Am. Chem. Soc.2011,133(29):11378-11388.
    [1]Ben, T.; Ren, H.; Ma, S. Q., et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew. Chem.-Int. Edit.2009,48(50): 9457-9460.
    [2]Choi, J. H.; Choi, K. M.; Jeon, H. J., et al. Acetylene gas mediated conjugated microporous polymers (ACMPs):First use of acetylene gas as a building unit. Macromolecules 2010, 43(13):5508-5511.
    [3]Jiang, J. X.; Cooper, A. I. In Functional metal-organic frameworks:Gas storage, separation and catalysis; Springer-Verlag Berlin:Berlin,2010; Vol.293, p 1-33.
    [4]Lu, W. G.; Yuan, D. Q.; Zhao, D., et al. Porous polymer networks:Synthesis, porosity, and applications in gas storage/separation. Chem. Mater.2010,22(21):5964-5972.
    [5]Sprick, R. S.; Thomas, A.; Scherf, U. Acid catalyzed synthesis of carbonyl-functionalized microporous ladder polymers with high surface area. Polym. Chem.2010,1(3):283-285.
    [6]Mackintosh, H. J.; Budd, P. M.; McKeown, N. B. Catalysis by microporous phthalocyanine and porphyrin network polymers.J. Mater. Chem.2008,18(5):573-578.
    [7]Ding, X. S.; Guo, J.; Feng, X. A., etal. Synthesis of metallophthalocyanine covalent organic frameworks that exhibit high carrier mobility and photoconductivity. Angew. Chem.-Int Edit. 2011,50(6):1289-1293.
    [8]Wind, J. D.; Staudt-Bickel, C.; Paul, D. R., et al. The effects of crosslinking chemistry on CO2 plasticization of polyimide gas separation membranes, Ind. Eng. Chem. Res.2002,41(24): 6139-6148.
    [9]Morris, R. E.; Wheatley, P. S. Gas storage in nanoporous materials. Angew. Chem.-Int. Edit. 2008,47(27):4966-4981.
    [10]Emmler, T.; Heinrich, K.; Fritsch, D., etal. Free volume investigation of polymers of intrinsic microporosity (PIMs):PIM-1 and PIM1 copolymers incorporating ethanoanthracene units. Macromolecules 2010,43(14):6075-6084.
    [11]El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Cortes, J. L., etal. Designed synthesis of 3D covalent organic frameworks. Science 2007,316(5822):268-272.
    [12]Kuhn, P.; Antonietti, M.; Thomas, A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem.-Int. Edit.2008,47(18):3450-3453.
    [13]Germain, J.; Hradil, J.; Frechet, J. M. J., et al. High surface area nanoporous polymers for reversible hydrogen storage. Chem. Mater.2006,18(18):4430-4435.
    [14]Jiang, J.-X.; Su, F.; Trewin, A., et al. Conjugated microporous poly(aryleneethynylene) networks. Angew. Chem-Int. Edit.2007,46(45):8574-8578.
    [15]Choi, M. C.; Wakita, J.; Ha, C. S., et al. Highly transparent and refractive polyimides with controlled molecular structure by chlorine side groups. Macromolecules 2009,42(14): 5112-5120.
    [16]Ali Mohsin, M.; Akhter, Z.; Bolte, M., et al. Synthesis and characterization of some novel thermally stable poly(amide-imide)s. J. Mater. Sci.2009,44(18):4796-4805.
    [17]Shang, Y.; Fan, L.; Yang, S., et al. Synthesis and characterization of novel fluorinated polyimides derived from 4-phenyl-2,6-bis[4-(4'-amino-2'-trifluoromethyl-phenoxy)phenyl]pyridine and dianhydrides. Eur. Polym. J.2006,42(5):981-989.
    [18]Chavez, R.; Ionescu, E.; Fasel, C., et al. Silicon-containing polyimide-based polymers with high temperature stability. Chem. Mater.2010,22(13):3823-3825.
    [19]Ritter, N.; Antonietti, M.; Thomas, A., et al. Binaphthalene-based, soluble polyimides:The limits of intrinsic microporosity. Macromolecules 2009,42(21):8017-8020.
    [20]Weber, J.; Antonietti, M.; Thomas, A. Microporous networks of high-performance polymers: Elastic deformations and gas sorption properties. Macromolecules 2008,41(8):2880-2885.
    [21]Weber, J.; Su, Q.; Antonietti, M., et al. Exploring polymers of intrinsic microporosity-microporous, soluble polyamide and polyimide. Macromol. Rapid Commun.2007,28(18-19): 1871-1876.
    [22]Trewin, A. Predicting crystalline polyamic acids as precursors to porous polyimides. CrystEngComm2010,12(8):2315-2317.
    [23]Trewin, A.; Cooper, A. I. Predicting microporous crystalline polyimides. CrystEngComm 2009,11(9):1819-1822.
    [24]Farha, O. K.; Spokoyny, A. M.; Hauser, B. G., et al. Synthesis, properties, and gas separation studies of a robust diimide-based microporous organic polymer. Chem. Mater. 2009,21(14): 3033-3035.
    [25]Wang, Z.; Zhang, B.; Yu, H., etal. Microporous polyimide networks with large surface areas and their hydrogen storage properties. Chem. Commun.2010,46(41):7730-7732.
    [26]Schwab, M. G.; Fassbender, B.; Spiess, H. W., et al. Catalyst-free preparation of melamine-based microporous polymer networks through schiff base chemistry. J. Am Chem. Soc.2009,131(21):7216-7217.
    [27]Li, B.; Huang, X.; Liang, L., et al. Synthesis of uniform microporous polymer nanoparticles and their applications for hydrogen storage. J. Mater. Chem 2010,20(35):7444-7450.
    [28]Shi, X.; Liu, J.; Li, C., et al. Pore-size tunable mesoporous zirconium organophosphonates with chiral 1-proline for enzyme adsorption. Inorg. Chem.2007,46(19):7944-7952.
    [29]Walton, K. S.; Millward, A. R.; Dubbeldam, D., et al. Understanding inflections and steps in carbon dioxide adsorption isotherms in metal-organic frameworks. J. Am Chem. Soc.2008, 130(2):406-407.
    [30]Furukawa, H.; Yaghi, O. M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc.2009, 131(25):8875-8883.
    [31]Chen, W.; Yan, W.; Wu, S., et al. Preparation and properties of novel triphenylpyridine-containing hyperbranched polyimides derived from 2,4,6-tris(4-aminophenyl)pyridine under microwave irradiation. Macromol. Chem Phys. 2010,211(16):1803-1813.
    [1]Wang, Q. A.; Luo, J. Z.; Zhong, Z. Y., et al. CO2 capture by solid adsorbents and their applications:Current status and new trends. Energy Environ. Sci.2011,4(1):42-55.
    [2]Dawson, R.; Cooper, A. I.; Adams, D. J. Nanoporous organic polymer networks. Prog. Polym. Sci.2012,37(4):530-563.
    [3]McKeown, N. B.; Budd, P. M. Polymers of intrinsic microporosity (PIMs):Organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev. 2006,35(8):675-683.
    [4]Choi, J. H.; Choi, K. M.; Jeon, H. J., et al. Acetylene gas mediated conjugated microporous polymers (ACMPs):First use of acetylene gas as a building unit. Macromolecules 2010, 43(13):5508-5511.
    [5]Cooper, A. I. Conjugated microporous polymers. Adv. Mater.2009,21(12):1291-1295.
    [6]El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Cortes, J. L., etal. Designed synthesis of 3D covalent organic frameworks. Science 2007,316(5822):268-272.
    [7]Furukawa, H.; Yaghi, O. M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc.2009, 131(25):8875-8883.
    [8]Lee, J. Y.; Wood, C. D.; Bradshaw, D., et al. Hydrogen adsorption in microporous hypercrosslinked polymers. Chem. Commun.2006, (25):2670-2672.
    [9]Martin, C. F.; Stockel, E.; Clowes, R., et al. Hypercrosslinked organic polymer networks as potential adsorbents for pre-combustion CO2 capture. J. Mater. Chem.2011,21(14): 5475-5483.
    [10]Tsyurupa, M. P.; Davankov, V. A. Porous structure of hypercrosslinked polystyrene: State-of-the-art mini-review. React. Funct. Polym.2006,66(7):768-779.
    [11]Kuhn, P.; Antonietti, M.; Thomas, A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem-Int. Edit.2008,47(18):3450-3453.
    [12]Ben, T.; Pei, C.; Zhang, D., et al. Gas storage in porous aromatic frameworks (PAFs). Energy Environ. Sci.2011,4(10):3991-3999.
    [13]Jonathan, G.; Jean, M. J. F.; Frantisek, S. Nanoporous polymers for hydrogen storage. Small 2009,5(10):1098-1111.
    [14]Lassig, D.; Lincke, J.; Moellmer, J., et al. A microporous copper metal-organic framework with high H2 and CO2 adsorption capacity at ambient pressure. Angew. Chem.-Int. Edit.2011, 50(44):10344-10348.
    [15]Li, J. R.; Kuppler, R. J.; Zhou, H. C. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev.2009,38(5):1477-1504.
    [16]Si, X.; Jiao, C.; Li, F., et al. High and selective CO2 uptake, H2 storage and methanol sensing on the amine-decorated 12-connected MOF CAU-1. Energy Environ. Sci.2011,4(11): 4522-4527.
    [17]Babarao, R.; Dai, S.; Jiang, D.-e. Functionalizing porous aromatic frameworks with polar organic groups for high-capacity and selective CO2 separation:A molecular simulation study. Langmuir 2011,27(7):3451-3460.
    [18]Gnanakan, S. R. P.; Murugananthem, N.; Subramania, A. Organic acid doped polythiophene nanoparticles as electrode material for redox supercapacitors. Polym. Adv. Technol.2011, 22(6):788-793.
    [19]Gok, A.; Sari, B.; Talu, M. Chemical preparation of conducting polyfuran/poly(2-chloroaniline) composites and their properties:A comparison of their components, polyfuran and poly(2-chloroaniline). J. Appl. Polym. Sci.2003,88(13): 2924-2931.
    [20]Hughes, M.; Chen, G. Z.; Shaffer, M. S. P., et al. Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole. Chem. Mater.2002,14(4):1610-1613.
    [21]Marchesi, L. F. Q. P.; Simoes, F. R.; Pocrifka, L. A., et al. Investigation of polypyrrole degradation using electrochemical impedance spectroscopy. J. Phys. Chem.B2011,115(31): 9570-9575.
    [22]Schmidt, J.; Weber, J.; Epping, J. D., et al. Microporous conjugated poly(thienylene arylene) networks. Adv. Mater.2009,21(6):702-705.
    [23]Xia, J.; Yuan, S.; Wang, Z., et al. Nanoporous poryporphyrin as adsorbent for hydrogen storage. Macromolecules 2010,43(7):3325-3330.
    [24]Brandt, J.; Schmidt, J.; Thomas, A., et al. Tunable absorption and emission wavelength in conjugated microporous polymers by copolymerization. Polym. Chem.2011,2(9): 1950-1952.
    [25]Jiang, J. X.; Laybourn, A.; Clowes, R., et al. High surface area contorted conjugated microporous polymers based on spiro-bipropylenedioxythiophene. Macromolecules 2010, 43(18):7577-7582.
    [26]Weber, J.; Schmidt, J.; Thomas, A., et al Micropore analysis of polymer networks by gas sorption and 129Xe NMR spectroscopy:Toward a better understanding of intrinsic microporosity. Langmuir 2010,26(19):15650-15656.
    [27]Yuan, S.; Kirklin, S.; Dorney, B., et al. Nanoporous polymers containing stereocontorted cores for hydrogen storage. Macromolecules 2009,42(5):1554-1559.
    [28]Germain, J.; Frechet, J. M.J.; Svec, F. Nanoporous, hypercrosslinked polypyrroles:Effect of crosslinking moiety on pore size and selective gas adsorption. Chem. Commun.2009, (12): 1526-1528.
    [29]Schwab, M. G.; Senkovska, I.; Rose, M., et al. High surface area polyhipes with hierarchical pore system. Soft Matter 2009,5(5):1055-1059.
    [30]Li, B.; Gong, R.; Wang, W., et al. A new strategy to microporous polymers:Knitting rigid aromatic building blocks by external cross-linker. Macromolecules 2011,44(8):2410-2414.
    [31]Benvenuti, F.; Raspolli Galletti, A. M.; Carlini, C., et al. Synthesis, structural characterization and electrical properties of highly conjugated soluble poly(furan)s. Polymer 1997,38(19): 4973-4982.
    [32]Rose, M.; Klein, N.; Bohlmann, W., et al. New element organic frameworks viasuzuki coupling with high adsorption capacity for hydrophobic molecules. Soft Matter 2010,6(16): 3918-3923.
    [33]Zhang, K.; Tieke, B.; Vilela, F., et al. Conjugated microporous networks on the basis of 2,3,5,6-tetraarylated dketopyrrolo[3,4-c]pyrrole. Macromol. Rapid Commun.2011,32(11): 825-830.
    [34]Zhao, Y.-C.; Zhou, D.; Chen, Q., etal. Thionyl chloride-catalyzed preparation of microporous organic polymers through aldol condensation. Macromolecules 2011,44(16):6382-6388.
    [35]Dawson, R.; Adams, D. J.; Cooper, A. I. Chemical tuning of CO2 sorption in robust nanoporous organic polymers. Chem. Sci.2011,2:1173-1177.
    [36]Dawson, R.; Stockel, E.; Holst, J. R., et al. Microporous organic polymers for carbon dioxide capture. Energy Environ. Sci.2011,4(10):4239-4245
    [37]Phan, A.; Doonan, C. J.; Uribe-Romo, F. J., et al. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res.2010,43(1):58-67.
    [38]Millward, A. R.; Yaghi, O. M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc.2005,127(51): 17998-17999.
    [39]Tozawa, T.; Jones, J. T. A.; Swamy, S. I., et al. Porous organic cages. Nat. Mater.2009,8: 973-978.
    [40]Farha, O. K.; Spokoyny, A. M.; Hauser, B. G., et al Synthesis, properties, and gas separation studies of a robust diimide-based microporous organic polymer. Chem. Mater.2009,21(14): 3033-3035.
    [41]Lu, W.; Yuan, D.; Sculley, J., et al. Sulfonate-grafted porous polymer networks for preferential CO2 adsorption at low pressure. J. Am. Chem. Soc.2011,133(45):18126-18129.
    [42]Rabbani, M. G.; El-Kaderi, H. M. Synthesis and characterization of porous benzimidazole-linked polymers and their performance in small gas storage and selective uptake. Chem. Mater.2012,24(8):1511-1517.
    [43]Mohanty, P.; Kull, L. D.; Landskron, K. Porous covalent electron-rich organonitridic frameworks as highly selective sorbents for methane and carbon dioxide. Nat. Commun.2011, 2:401-406.
    [44]An, J.; Geib, S. J.; Rosi, N. L. High and selective CO2 uptake in a cobalt adeninate metal-oganic framework exhibiting pyrimidine- and amino-decorated pores. J. Am. Chem. Soc.2010,132(1):38-39.
    [45]Rao, K. V.; Mohapatra, S.; Kulkarni, C., et al. Extended phenylene based microporous organic polymers with selective carbon dioxide adsorption. J. Mater. Chem.2011,21(34): 12958-12963.
    [46]Hao, G.-P.; Li, W.-C.; Qian, D., et al. Structurally designed synthesis of mechanically stable poly(benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents. J. Am. Chem. Soc.2011,133(29):11378-11388.
    [47]Wang, B.; Cote, A. P.; Furukawa, H., et al. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 2008,453(7192):207-211.
    [48]Wood, C. D.; Tan, B.; Trewin, A., et al. Hydrogen storage in microporous hypercrosslinked organic polymer networks. Chem. Mater.2007,19(8):2034-2048.
    [49]Rowsell, J. L. C.; Yaghi, O. M. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J. Am. Chem. Soc.2006,128(4):1304-1315.
    [50]Germain, J.; Frechet, J. M. J.; Svec, F. Nanoporous polymers for hydrogen storage. Small 2009,5(10):1098-1111.
    [51]Blin, J.-L.; Gerardin, C.; Rodehuser, L., et al. Influence of alkyl peptidoamines on the structure of functionalized mesoporous silica. Chem. Mater.2004,16(24):5071-5080.
    [1]Bae, Y. S.; Snurr, R. Q. Development and evaluation of porous materials for carbon dioxide separation and capture. Angew. Chem.-Int. Edit.2011,50(49):11586-11596.
    [2]Banerjee, R.; Furukawa, H.; Britt, D., et al. Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J.Am. Chem. Soc.2009,131(11):3875-3877.
    [3]Furukawa, H.; Yaghi, O. M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications.J. Am. Chem. Soc.2009, 131(25):8875-8883.
    [4]Raidongia, K.; Nag, A.; Hembram, K. P. S. S., et al. Bcn:A graphene analogue with remarkable adsorptive properties. Chem.-Eur. J.2010,16(1):149-157.
    [5]Tian, J.; Ma, S.; Thallapally, P. K., etal. Cucurbit[7]uril:An amorphous molecular material for highly selective carbon dioxide uptake. Chem. Commun.2011,47(27):7626-7628.
    [6]Li, F. Y.; Xiao, Y.; Chung, T.-S., et al. High-performance thermally self-cross-linked polymer of intrinsic microporosity (PIM-1) membranes for energy development. Macromolecules 2012,45(3):1427-1437.
    [7]Liebl, M. R.; Senker, J. Microporous functionalized triazine-based polyimides with high CO2 capture capacity. Chem. Mater.2013,25(6):970-980.
    [8]Xu, S.; Luo, Y.; Tan, B. Recent development of hypercrosslinked microporous organic polymers. Macromol. Rapid Commun.2013,34(6):471-484.
    [9]Katsoulidis, A. P.; Kanatzidis, M. G. Mesoporous hydrophobic polymeric organic frameworks with bound surfactants. Selective adsorption of c2h6 versus CH4. Chem. Mater. 2012,24(3):471-479.
    [10]Ben, T.; Ren, H.; Ma, S. Q., et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew. Chem.-Int. Edit.2009,48(50): 9457-9460.
    [11]Babarao, R.; Dai, S.; Jiang, D.-e. Functionalizing porous aromatic frameworks with polar organic groups for high-capacity and selective CO2 separation:A molecular simulation study. Langmuir 2011,27(7):3451-3460.
    [12]Konstas, K.; Taylor, J. W.; Thornton, A. W., et al. Lithiated porous aromatic frameworks with exceptional gas storage capacity. Angew. Chem-Int. Edit.2012,51(27):6639-6642.
    [13]Lu, W.; Sculley, J. P.; Yuan, D., et al. Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas. Angew. Chem-Int. Edit.2012,51(30):7480-7484.
    [14]Rose, M.; Klein, N.; Senkovska, I., et al. A new route to porous monolithic organic frameworks via cyclotrimerization. J. Mater. Chem.2011,21(3):711-716.
    [15]Mastalerz, M.; Hauswald, H.-J. S.; Stoll, R. Metal-assisted salphen organic frameworks (MaSOFs) with high surface areas and narrow pore-size distribution. Chem. Commun.2012, 48(1):130-132.
    [16]Wang, Z.; Yuan, S.; Mason, A., et al. Nanoporous porphyrin polymers for gas storage and separation. Macromolecules 2012,45(18):7413-7419.
    [17]Modak, A.; Nandi, M.; Mondal, J., et al. Porphyrin based porous organic polymers:Novel synthetic strategy and exceptionally high CO2 adsorption capacity. Chem. Commun.2012, 48(2):248-250.
    [18]Britt, D.; Furukawa, H.; Wang, B., et al. Highly efficient separation of carbon dioxide by a metal-organic frame work replete with open metal sites. Proc. Natl. Acad. Sci. U. S. A.2009, 106(49):20637-20640.
    [19]Wang, B.; Cote, A. P.; Furukawa, H., et al. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 2008,453(7192):207-211.
    [20]An, J.; Geib, S. J.; Rosi, N. L. High and selective CO2 uptake in a cobalt adeninate metal-oganic framework exhibiting pyrimidine- and amino-decorated pores. J. Am. Chem. Soc.2010,132(1):38-39.
    [21]Yuan, D.; Zhao, D.; Sun, D., et al. An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angew. Chem.-Int. Edit.2010,49(31):5357-5361.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.