甲醇(或乙醇)重整反应用于二苯并噻吩的原位催化加氢脱硫
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃油中的硫及其衍生物是空气污染的主要来源之一。随着燃油的燃烧,其中的硫会以其氧化物的形式排放到大气中,它们对大气会有严重的危害,因此需要对这类氧化物进行控制。近二十年来,环保法规定的燃料中硫含量的允许限度一直在降低。为此,人们研究和开发了许多燃料油的脱硫技术和方法,例如氧化脱硫、生物脱硫和催化加氢脱硫(HDS)等。在这些技术中,催化加氢脱硫因为具有高效、工艺成熟的特点而占据主导地位。本工作中,我们开发了一种催化加氢脱硫的新方法,即采用Ru和Pd作为助催化剂(Co/Ni) MO-Al2O3催化剂,通过乙醇或甲醇重整产生的原位氢来实现二苯并噻吩(DBT)的催化加氢脱硫。
     本工作主要包括催化剂的制备及其对模型油中DBT的催化加氢性能评价。催化剂的载体选用高比表面积的三氧化二铝。在制备催化剂时,将A1203浸泡在含有Mo、Co(或Ni)、Ru(或Pd)的水溶性盐溶液中。为了减小因活性相含量变化对催化活性的影响,在整个过程中要保持金属负载量不变。由于Ru和Pd非常昂贵,其含量控制在较低水平,实验过程中其质量分数分别为1%和0.5%。本实验在体积为250m1的高压反应釜中进行,反应所需要的氢气通过甲醇重整(以Pd为助催化)或乙醇重整(以Ru和Pd为助催化剂)反应提供,而无需外界提供氢气源。实验采用含有900 ppm DBT的正辛烷溶液作为模型燃料油,反应时间为1-13h,反应温度范围为320-400℃。此外,还考察了八种有机添加物(即十氢萘、四氢萘、萘、蒽、二甘醇、苯酚、邻二甲苯和吡啶)对反应体系中DBT加氢脱硫性能的影响。结果表明,这些添加剂由于其物理和化学性质的差异,有的会抑制DBT的加氢脱硫效率,而有些则会促进DBT的催化加氢效率(如十氢萘、四氢萘、二甘醇和苯酚)。
     通过考察乙醇(或甲醇)重整反应和DBT的加氢脱硫反应,测试了催化剂的活性。反应产物分别采用高性能液体色谱(HPLC)和气质联用仪(GS-MS)进行了定量和定性分析,催化剂样品(新制备和用过的)通过SBET表面积性质测试进行表征。结果表明,基于原位产氢对DBT进行加氢脱硫的方法是非常有效的。无论是对于乙醇(或甲醇)的重整产氢反应还是对于DBT的催化加氢反应,镍基催化剂的活性总是高于钴基催化剂。而且,当在上述催化剂中掺入贵金属(如Ru或Pd)时,催化活性明显增加。对于钌系催化剂,其加氢脱硫活性遵循如下顺序:Ru-Ni-Mo/Al2O3> Ni-Mo/Al2O3> Ru-Co-Mo/Al203> CO-MO/Al2O3;对于钯系催化剂,其活性次序类似,即Pd-Ni-Mo/ Al2O3> Ni-Mo/Al2O3> Pd-Co-Mo/Al2O3> Co-Mo/Al2O3。重整反应产物的GC分析表明(以Pd系催化剂为例),无论在乙醇还是甲醇的重整反应过程中,都会伴随乙醇(或甲醇)脱水副反应,生成相应的醚(乙醚或二甲醚)。对于Pd助催化的甲醇或乙醇的重整反应,催化剂的活性顺序与前面的HDS反应中相同。此外,值得注意的是,Pd的加入会显著提高催化剂的活性,使用Pd负载量为0.5%的催化剂,在380℃反应13hDBT的转化率可达到97%。这些在以前的文献中没有报道。由GC-MS分析可知,DBT催化加氢的主要产物为联苯,而未发现二环己烷和苯基环己烷峰,表明本文提出的原位加氢脱硫反应遵循直接脱硫途径,这也是加氢脱硫在380℃的高温时的特征。而且,原位加氢的机理与在高温条件下采用外部氢气的催化加氢机理相同,均为直接脱硫途径。
     与传统的催化加氢脱硫过程相比,本文提出的基于原位产氢的催化加氢技术无需提供外部氢气,具有反应条件温和,成本低,效率高,贵金属负载量低,催化活性高等优点。因此,基于甲醇(或乙醇)重整反应的原位催化加氢技术可望作为一种替代方法,用于工业上DBT的加氢脱硫工艺过程。
Sulfur (S) and its derivatives present in fuel oils are considered as the major air pollutants producers. With the combustion of fuel oils, it comes out in exhaust gases in the form of sulfur oxides and goes to the atmosphere. Being seriously dangerous to the atmosphere, special attention is needed for the control of these oxides. As a result, environmental regulating authorities are consistently making the permissible limits of S in fuel oils narrower since last two decades. In order to cope with these stringent regulations, several techniques and methods have been attempted for the desulfurization of fuel oils, for example oxidative desulfurization, biodesulfurization and catalytic hydrodesulfurization (HDS). Among these techniques, HDS has earned its position over the years based on its efficiency, diverse nature and flexibility in the process mechanization. In the present work, a novel catalytic HDS process was developed for dibenzothiophene (DBT) through in situ hydrogen production via ethanol and methanol reforming reaction over Ru and Pd promoted (Co/Ni) Mo supported Al2O3 based catalysts.
     There were two major steps involved in this project. The first step was the preparation of the HDS catalysts while the second was the practical experimental procedure for analyzing their HDS activity toward DBT (as model fuel). High surface area containing Al2O3 was selected as catalytic support, which was successively impregnated with water soluble salts of Mo, Co, Ni, Ru or Pd in the mentioned order. The metal loadings were kept constant throughout the process in order to minimize the effect of change in catalytic activity due to the extent of active phase formation. Ru and Pd being very expensive, were used in very low quantity i.e. 1 wt.% and 0.5 wt.% respectively as compared to those reported earlier. Catalytic activity was evaluated in a 250 ml batch autoclave reactor in the complete absence of external hydrogen supply. The hydrogen needed for the HDS reaction was supplied through the reforming reaction of ethanol (in case of Ru and Pd based catalysts) and methanol (in case of Pd promoted catalyst) separately. The in situ generated hydrogen utilization mechanism contributed the most toward the novelty in the current project. A 900 ppm DBT solution in n-octane was used as model fuel. Experiments were carried out in a temperature range of 320-400℃while reaction time was varied from 1-13 h. Apart from this, the effect of eight selected organic additives namely, decalin, tetralin, naphthalene, anthracene, diethylene glycol (DEG), phenol, o-xylene and pyridine was also studied. Each additive based on its chemical nature and structure, presented different effect on activity of the catalysts toward HDS of DBT i.e. some inhibited while some enhanced it. Decalin, tetralin, DEG and phenol type additives were found to be quite effective toward HDS reaction over all types of catalysts. Catalytic activity was measured in terms of reforming reaction of ethanol/methanol and HDS reaction of DBT separately. Reaction products were analyzed using HPLC and GC-MS techniques while catalytic samples (fresh and used) were characterized in terms of SBET surface area properties. The results showed that our process based on in situ generated hydrogen for the HDS of DBT is quite promising. It was found that in case of both ethanol and methanol reforming reactions, Ni based catalysts were more active than Co ones. Similar was the case with HDS reaction, whereas the incorporation of a noble metal i.e. Ru or Pd notably increased the catalytic activity. In all sets of experiments performed, for Ru based catalysts, HDS activity followed the order:Ru-Ni-MO/Al2O3> Ni-Mo/Al2O3> Ru-Co-Mo/Al2O3> Co-Mo/Al2O3 and for Pd promoted catalysts the order was: Pd-Ni-Mo/Al2O3> Ni-Mo/Al2O3> Pd-Co-Mo/Al2O3> Co-Mo/Al2O3. In case of Pd promoted catalyst, ethanol reforming activity was calculated; while a side reaction i.e. dehydration of ethanol, leading to the production of diethyl ether (DEE), was also confirmed by GC analyses. Similar was the case of methanol reforming, where dimethyl ether (DME) was confirmed as the dehydration product. In case of both the ethanol and methanol reforming reactions, Pd promoted catalysts followed the same order mentioned above. In this series, the increased HDS activity due to the incorporation of Pd was noteworthy, as 0.5 wt.% Pd loading showing 97% DBT conversion at 13 h reaction time and 380℃temperature has not been yet reported elsewhere. The GC-MS analyses indicated that biphenyl (BP) was the major product while bicyclohexane (BCH) or cyclohexylbenzene (CHB) were completely absent, revealing that direct desulfurization (DDS) pathway was followed, which is a trademark of HDS reaction at as high temperature as 380℃. Moreover, it was confirmed that the in situ HDS process is similar in its approach with the ex situ hydrogen utilization based process.
     Mild operating conditions, cost effectiveness, low metal loadings, reasonably high catalytic activity and utilization of in situ generated hydrogen proved the present process quite fruitful and superior to the currently in service conventional catalytic HDS process. Based on these results, the current process might be applied as an alternative approach toward HDS of DBT on industrial scale.
引文
[1]Zeuthen P, Kg Knudsen, Dd Whitehurst. Organic nitrogen compounds in gas oil blends, their hydrotreated products and the importance to hydrotreatment [J]. Catalysis Today,2001,65(2-4):307-314.
    [2]Mey D, S Brunet, C Canaff, F Mauge, C Bouchy, F Diehl. HDS of a model FCC gasoline over a sulfided COMO/Al2O3 catalyst:Effect of the addition of potassium [J]. Journal of Catalysis,2004,227(2):436-447.
    [3]Egorova M, R Prins. Competitive hydrodesulfurization of 4, 6-dimethyldibenzothiophene, hydrodenitrogenation of 2-methylpyridine, and hydrogenation of naphthalene over sulfided NiMo/[gamma]-Al2O3 [J]. Journal of Catalysis,2004,224(2):278-287.
    [4]Mochizuki T, H Itou, M Toba, Y Miki, Y Yoshimura. Effects of acidic properties on the catalytic performance of CoMo sulfide catalysts in selective hydrodesulfurization of gasoline fractions [J]. Energy & Fuels,2008, 22(3):1456-1462.
    [5]Irving Pm, Je Miller. Productivity of field-grown soybeans exposed to acid rain and sulfur dioxide alone and in combination [J]. J. Environ. Qual.;(United States),1981, 10(4).
    [6]Postel S. Air pollution, acid rain, and the future of forests [J]. Am. For.;(United States),1984,90(10).
    [7]Calvert Jg, Wr Stockwell. Mechanism and rates of the gas phase oxidations of sulfur dioxide and the nitrogen oxides in the atmosphere [R]. Ohio State Univ., Columbus (USA). Dept. of Chemistry,1983.
    [8]Satterfield Cn, M Modell, Ra Hites, Cj Declerck. Intermediate reactions in the catalytic hydrodenitrogenation of quinoline [J]. Industrial & Engineering Chemistry Process Design and Development,1978,17(2):141-148.
    [9]Olalde A. Selectivity of hydrodenitrogenation catalysts [J]. Applied Catalysis,1985, 13(2):373-384.
    [10]Weigel Hj, G Adaros, Hj Jager. An open-top chamber study with filtered and non-filtered air to evaluate the effects of air pollutants on crops [J]. Environmental Pollution,1987,47(3):231-244.
    [11]Adaros G, Hj Weigel, Hj Jager. Concurrent exposure to SO2 and/or NO2 alters growth and yield responses of wheat and barley to low concentrations of O3 [J]. New phytologist,1991,118(4):581-591.
    [12]Baker Ck, Jj Colls, Ae Fullwood, Ggr Seaton. Depression of growth and yield in winter barley exposed to sulphur dioxide in the field [J]. New phytologist,1986, 104(2):233-241.
    [13]Jez Jm, Nk Fukagawa, J Jez. Plant sulfur compounds and human health [J]. Sulfur:a missing link between soils, crops and nutrition,2008:281-292.
    [14]Brook Rd, B Franklin, W Cascio, Y Hong, G Howard, M Lipsett, R Luepker, M Mittleman, J Samet, Sc Smith Jr. Air pollution and cardiovascular disease:a statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association [J]. Circulation,2004, 109(21):2655.
    [15]Song C. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel [J]. Catalysis Today,2003,86(1-4):211-263.
    [16]Choi Kh, Y Sano, Y Korai, I Mochida. An approach to the deep hydrodesulfurization of light cycle oil [J]. Applied Catalysis B:Environmental,2004,53(4):275-283.
    [17]Ho Tc. Hydrodenitrogenation catalysis [J]. Catalysis Reviews,1988,30(1):117-160.
    [18]Kim Sc, Fe Massoth. Kinetics of the hydrodenitrogenation of indole [J]. Ind. Eng. Chem. Res,2000,39(6):1705-1712.
    [19]Toba M, Y Miki, Y Kanda, T Matsui, M Harada, Y Yoshimura. Selective hydrodesulfurization of FCC gasoline over CoMo/Al2O3 sulfide catalyst [J]. Catalysis Today,2005,104(1):64-69.
    [20]Egorova M, R Prins. Mutual influence of the HDS of dibenzothiophene and HDN of 2-methylpyridine [J]. Journal of Catalysis,2004,221(1):11-19.
    [21]Ali Mf, A Al-Malki, B El-Ali, G Martinie, Mn Siddiqui. Deep desulphurization of gasoline and diesel fuels using non-hydrogen consuming techniques [J]. Fuel,2006, 85(10-11):1354-1363.
    [22]Wang D, Ew Qian, H Amano, K Okata, A Ishihara, T Kabe. Oxidative desulfurization of fuel oil:Part I. Oxidation of dibenzothiophenes using tert-butyl hydroperoxide [J]. Applied Catalysis A:General,2003,253(1):91-99.
    [23]Otsuki S, T Nonaka, N Takashima, W Qian, A Ishihara, T Imai, T Kabe. Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction [J]. Energy Fuels,2000,14(6):1232-1239.
    [24]Liu S, B Wang, B Cui, L Sun. Deep desulfurization of diesel oil oxidized by Fe (VI) systems [J]. Fuel,2008,87(3):422-428.
    [25]Tam Ps, Jr Kittrell, Jw Eldridge. Desulfurization of fuel oil by oxidation and extraction.1. Enhancement of extraction oil yield [J]. Industrial & Engineering Chemistry Research,1990,29(3):321-324.
    [26]Yang L, J Li, X Yuan, J Shen, Y Qi. One step non-hydrodesulfurization of fuel oil: Catalyzed oxidation adsorption desulfurization over HPWA-SBA-15 [J]. Journal of Molecular Catalysis A:Chemical,2007,262(1-2):114-118.
    [27]Gao J, S Wang, Z Jiang, H Lu, Y Yang, F Jing, C Li. Deep desulfurization from fuel oil via selective oxidation using an amphiphilic peroxotungsten catalyst assembled in emulsion droplets [J]. Journal of Molecular Catalysis A:Chemical,2006, 258(1-2):261-266.
    [28]Mei H, Bw Mei, Tf Yen. A new method for obtaining ultra-low sulfur diesel fuel via ultrasound assisted oxidative desulfurization [J]. Fuel,2003,82(4):405-414.
    [29]Guichard B, M Roy-Auberger, E Devers, C Pichon, C Legens, P Lecour. Influence of the promoter's nature (nickel or cobalt) on the active phases [Ni (Co) MoS]'modifications during deactivation in HDS of diesel fuel [J]. Catalysis Today, 2010,149(1-2):2-10.
    [30]Takatsuka T, S Inoue, Y Wada. Deep hydrodesulfurization process for diesel oil [J]. Catalysis Today,1997,39(1-2):69-75.
    [31]Farag H, K Sakanishi, T Sakae, M Kishida. Autocatalysis-like behavior of hydrogen sulfide on hydrodesulfurization of polyaromatic thiophenes over a synthesized molybdenum sulfide catalyst [J]. Applied Catalysis A:General,2006, 314(1):114-122.
    [32]Farag H, K Sakanishi. Investigation of 4,6-dimethyldibenzothiophene hydrodesulfurization over a highly active bulk MoS2 catalyst [J]. Journal of Catalysis,2004,225(2):531-535.
    [33]Farag H, K Sakanishi, M Kouzu, A Matsumura, Y Sugimoto, I Saito. Dual character of H2S as promoter and inhibitor for hydrodesulfurization of dibenzothiophene [J]. Catalysis Communications,2003,4(7):321-326.
    [34]Moon Yh, Sk Ihm. Characteristics of intermetallic NdNis as an unsupported catalyst in thiophene hydrodesulfurization [J]. Catalysis Letters,1996,42(1):73-80.
    [35]Spojakina A, S Damyanova, D Shopov, Tk Shokhireva, Tm Yurieva. Thiophene hydrodesulfurization on P- Mo, Si- Mo and Ti-Mo catalysts [J]. Reaction Kinetics and Catalysis Letters,1985,27(2):333-336.
    [36]Qian W, Y Yoda, Y Hirai, A Ishihara, T Kabe. Hydrodesulfurization of dibenzothiophene and hydrogenation of phenanthrene on alumina-supported Pt and Pd catalysts [J]. Applied Catalysis A:General,1999,184(1):81-88.
    [37]Gutierrez Oy, D Valencia, Ga Fuentes, T Klimova. Mo and NiMo catalysts supported on SBA-15 modified by grafted ZrO2 species:Synthesis, characterization and evaluation in 4,6-dimethyldibenzothiophene hydrodesulfurization [J]. Journal of Catalysis,2007,249(2):140-153.
    [38]Song C, X Ma. New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization [J]. Applied Catalysis B:Environmental, 2003,41(1-2):207-238.
    [39]Dos Santos N, H Dulot, N Marchal, M Vrinat. New insight on competitive reactions during deep HDS of FCC gasoline [J]. Applied Catalysis A:General,2009, 352(1-2):114-123.
    [40]Montesinos-Castellanos A, Ta Zepeda, B Pawelec, E Lima, J1g Fierro, A Olivas, H De Los Reyes. Influence of reduction temperature and metal loading on the performance of molybdenum phosphide catalysts for dibenzothiophene hydrodesulfurization [J]. Applied Catalysis A:General,2008,334(1-2):330-338.
    [41]Bussel Me, Aj Gellman, Ga Somorjai. The role of adsorbate overlayers in thiophene hydrodesulfurization over molybdenum and rhenium single crystals [J]. Catalysis Letters,1988, 1(6):195-201.
    [42]Wang H, R Prins. HDS of benzothiophene and dihydrobenzothiophene over sulfided Mo/[gamma]-Al2O3 [J]. Applied Catalysis A:General,2008,350(2):191-196.
    [43]Costa Pd, C Potvin, Jm Manoli, B Genin, G Djega-Mariadassou. Deep hydrodesulphurization and hydrogenation of diesel fuels on alumina-supported and bulk molybdenum carbide catalysts [J]. Fuel,2004,83(13):1717-1726.
    [44]Muhammad Yaseen, Yingzhou Lu, Chong Shen, Chunxi Li. Dibenzothiophene hydrodesulfurization over Ru promoted alumina based catalysts using in situ generated hydrogen [J]. Energy Conversion and Management,2011, 52(2):1364-1370.
    [45]Magyar S, J Hancsok, D Kallo. Hydrodesulfurization and hydroconversion of heavy FCC gasoline on PtPd/H-USY zeolite [J]. Fuel Processing Technology,2005, 86(11):1151-1164.
    [46]Chang Jh, Sk Rhee, Yk Chang, Hn Chang. Desulfurization of diesel oils by a newly isolated dibenzothiophene-degrading Nocardia sp. strain CYKS2 [J]. Biotechnology progress,1998,14(6):851-855.
    [47]Li Yg, J Ma, Qq Zhang, Cs Wang, Q Chen. Sulfur-Selective Desulfurization of Dibenzothiophene and Diesel Oil by Newly Isolated Rhodococcus erythropolisNCC-1 [J]. Chinese Journal of Chemistry,2007,25(3):400-405.
    [48]Furuya T, K Kirimura, K Kino, S Usami. Thermophilic biodesulfurization of dibenzothiophene and its derivatives by Mycobacterium phlei WU F1 [J]. FEMS Microbiology Letters,2001,204(1):129-133.
    [49]Reichmuth Ds, J1 Hittle, Hw Blanch, Jd Keasling. Biodesulfurization of dibenzothiophene in Escherichia coli is enhanced by expression of a Vibrio harveyi oxidoreductase gene [J]. Biotechnology and bioengineering,2000,67(1):72-79.
    [50]Chang Jh, Yk Chang, Hw Ryu, Hn Chang. Desulfurization of light gas oil in immobilized cell systems of Gordona sp. CYKS1 and Nocardia sp. CYKS2 [J]. FEMS Microbiology letters,2000,182(2):309-312.
    [51]Patel Sb, Jj Kilbane Ii, Da Webster. Biodesulphurisation of dibenzothiophene in hydrophobic media by Rhodococcus sp. strain IGTS8 [J]. Journal of Chemical Technology & Biotechnology,1997,69(1):100-106.
    [52]Torkamani S, J Shayegan, S Yaghmaei, I Alemzadeh. Study of a newly isolated thermophilic bacterium capable of Kuhemond heavy crude oil and dibenzothiophene biodesulfurization following 4 S pathway at 60 DGC [J]. Journal of Chemical Technology and Biotechnology,2008,83(12):1689-1693.
    [53]Meesala L, C Balomajumder, S Chatterjee, P Roy. Biodesulfurization of dibenzothiophene using recombinant Pseudomonas strain [J]. Journal of Chemical Technology & Biotechnology,2008,83(3):294-298.
    [54]Guobin S, X Jianmin, Z Huaiying, L Huizhou. Deep desulfurization of hydrodesulfurized diesel oil by Pseudomonas delafieldii R 8 [J]. Journal of Chemical Technology & Biotechnology,2005,80(4):420-424.
    [55]Maghsoudi S, M Vossoughi, A Kheirolomoom, E Tanaka, S Katoh. Biodesulfurization of hydrocarbons and diesel fuels by Rhodococcus sp. strain P32C1 [J]. Biochemical Engineering Journal,2001,8(2):151-156.
    [56]Tangaromsuk J, Ap Borole, M Kruatrachue, P Pokethitiyook. An integrated biodesulfurization process, including inoculum preparation, desulfurization and sulfate removal in a single step, for removing sulfur from oils [J]. Journal of Chemical Technology & Biotechnology,2008,83(10):1375-1380.
    [57]Furuya T, Y Ishii, K Noda, K Kino, K Kirimura. Thermophilic biodesulfurization of hydrodesulfurized light gas oils by Mycobacterium phlei WU F1 [J]. FEMS Microbiology letters,2003,221(1):137-142.
    [58]Li W, J Xing, Y Li, X Xiong, X Li, H Liu. Desulfurization and bio-regeneration of adsorbents with Magnetic P. delafieldii R-8 Cells [J]. Catalysis Communications, 2008,9(3):376-380.
    [59]Velu S, X Ma, C Song. Selective adsorption for removing sulfur from jet fuel over zeolite-based adsorbents [J]. Ind. Eng. Chem. Res,2003,42(21):5293-5304.
    [60]Bhandari Vm, C Hyun Ko, J Geun Park, Ss Han, Sh Cho, Jn Kim. Desulfurization of diesel using ion-exchanged zeolites [J]. Chemical Engineering Science,2006, 61(8):2599-2608.
    [61]Zhang S, Q Zhang, Zc Zhang. Extractive desulfurization and denitrogenation of fuels using ionic liquids [J]. Ind. Eng. Chem. Res,2004,43(2):614-622.
    [62]Nie Y, Cx Li, Zh Wang. Extractive desulfurization of fuel oil using alkylimidazole and its mixture with dialkylphosphate ionic liquids [J]. Ind. Eng. Chem. Res,2007, 46(15):5108-5112.
    [63]Wang X, M Han, H Wan, C Yang, G Guan. Study on extraction of thiophene from model gasoline with brφnsted acidic ionic liquids [J]. Frontiers of Chemical Engineering in China:1-6.
    [64]Asumana Charles, Guangren Yu, Xi Li, Jingjing Zhao, Ge Liu, Xiaochun Chen. Extractive desulfurization of fuel oils with low-viscosity dicyanamide-based ionic liquids [J]. Green Chemistry,2010,12(11):2030-2037.
    [65]Zhang G, F Yu, R Wang. Research advances in oxidative desulfurization technologies for the production of low sulfur fuel oils [J]. Petroleum and Coal,2009, 51(93):196-07.
    [66]Yi C, L Jinlong, H Xinlong. Study on Diesel Desulfurization by Selective Oxidation/Extraction [J]. Petroleum processing and petrochemicals,2002, 33(4):17-20.
    [67]Zannikos F, E Lois, S Stournas. Desulfurization of petroleum fractions by oxidation and solvent extraction [J]. Fuel Processing Technology,1995,42(1):35-45.
    [68]Otsuki S, T Nonaka, N Takashima, W Qian, A Ishihara, T Imai, T Kabe. Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction [J]. Energy and Fuels,2000,14(6):1232-1239.
    [69]Xiu-Qing Yao, W Shao-Jun, L Feng-Xiang, Li Fei-Fei, Z Jie, Ma Bo. Oxidative desulfurization of simulated light oil [J]. Journal of Fuel Chemistry and Technology, 2004,32(3):3318-322.
    [70]He L, H Li, W Zhu, J Guo, X Jiang, J Lu, Y Yan. Deep oxidative desulfurization of fuels using peroxophosphomolybdate catalysts in ionic liquids [J]. Industrial & Engineering Chemistry Research,2008,47(18):6890-6895.
    [71]Otsuki S Nonaka T, Qian W, Ishihara a, Kabe T. Oxidative desulfurization of middle distillate:Oxidation of dibenzothiophene using t-butyl hypochlorite [J]. Sekiyu Gakkai Shi,2001,44(1):18-24.
    [72]Ishihara A, D Wang, F Dumeignil, H Amano, Ew Qian, T Kabe. Oxidative desulfurization and denitrogenation of a light gas oil using an oxidation/adsorption continuous flow process [J]. Applied Catalysis A:General,2005,279(1-2):279-287.
    [73]Jian-Yuan Li, Z Xin-Rui, Z De-Feng, Z Cai-Xia, J Hai-Ou. Oxidative desulfurization of dibenzothiophene using cyclohexanone peroxide [J]. Journal of Fuel Chemistry and Technology,2006,2(34):249-251.
    [74]Hirai T, K Ogawa, I Komasawa. Desulfurization Process for Dibenzothiophenes from Light Oil by Photochemical Reaction and Liquid-Liquid Extraction [J]. Ind. Eng. Chem. Res,1996,35(2):586-589.
    [75]Di-Shun Z, Li Fa-Tang, Sun Zhi-Min. Photosensitized oxidative desulfurization of thiophene by riboflavin [J]. Journal of Fuel Chemistry and Technology,2008, 2(36):166-169.
    [76]Ohshiro T, Y Izumi. Microbial desulfurization of organic sulfur compounds in petroleum [J]. Bioscience, biotechnology, and biochemistry,1999,63(1):1-9.
    [77]Suzuki M. Enzymology and molecular genetics biodesulfurization. Recent Res. Devel [J]. Microbiology,1999,3:515-534.
    [78]Okada H, N Nomura, T Nakahara, K Saitoh, H Uchiyama, K Maruhashi. Analyses of microbial desulfurization reaction of alkylated dibenzothiophenes dissolved in oil phase [J]. Biotechnology and Bioengineering,2003,83(4):489-497.
    [79]Mingfang L, G Zhongxuan, X Jianmin, L Huizhou, C Jiayong. Microbial desulfurization of modeland straight run diesel oils [J]. Journal of Chemical Technology & Biotechnology,2003,78(8):873-876.
    [80]Kodama K, S Nakatani, K Umehara, K Shimizu, Y Minoda, K Yamada. Microbial Conversion of Petro-sulfur Compounds [J]. Agricultural and Biological Chemistry, 1970,34(9):1320-1324.
    [81]Afferden M, S Schacht, J Klein, Hg Truper. Degradation of dibenzothiophene by Brevibacterium sp. DO [J]. Archives of Microbiology,1990,153(4):324-328.
    [82]Isbister Jd, Ea Kobylinski. Microbial desulfurization of coal [J]. Coal science and technology,1985,9:627-641.
    [83]Kilbane Jj. Desulfurization of coal:the microbial solution [J]. Trends in Biotechnology,1989,7(4):97-101.
    [84]Omori T, L Monna, Y Saiki, T Kodama. Desulfurization of dibenzothiophene by Corynebacterium sp. strain SY1 [J]. Applied and environmental microbiology,1992, 58(3):911-15.
    [85]Salem Absh. Naphtha desulfurization by adsorption [J]. Industrial & Engineering Chemistry Research,1994,33(2):336-340.
    [86]Sano Y, K Sugahara, Kh Choi, Y Korai, I Mochida. Two-step adsorption process for deep desulfurization of diesel oil [J]. Fuel,2005,84(7-8):903-910.
    [87]Sano Y, Kh Choi, Y Korai, I Mochida. Adsorptive removal of sulfur and nitrogen species from a straight run gas oil over activated carbons for its deep hydrodesulfurization [J]. Applied Catalysis B:Environmental,2004,49(4):219-225.
    [88]Shirahama N, Sh Moon, Kh Choi, T Enjoji, S Kawano, Y Korai, M Tanoura, I Mochida. Mechanistic study on adsorption and reduction of NO2 over activated carbon fibers [J]. Carbon,2002,40(14):2605-2611.
    [89]Leboda R, J Skubiszewska-Zieba, W Tomaszewski, Vm Gun'ko. Structural and adsorptive properties of activated carbons prepared by carbonization and activation of resins [J]. Journal of Colloid and Interface Science,2003,263(2):533-541.
    [90]Kim Jh, X Ma, A Zhou, C Song. Ultra-deep desulfurization and denitrogenation of diesel fuel by selective adsorption over three different adsorbents:A study on adsorptive selectivity and mechanism [J]. Catalysis Today,2006, 111(1-2):74-83.
    [91]Ma X, M Sprague, C Song. Deep desulfurization of gasoline by selective adsorption over nickel-based adsorbent for fuel cell applications [J]. Ind. Eng. Chem. Res,2005, 44(15):5768-5775.
    [92]Velu S, X Ma, C Song, M Namazian, S Sethuraman, G Venkataraman. Desulfurization of JP-8 jet fuel by selective adsorption over a Ni-based adsorbent for micro solid oxide fuel cells [J]. Energy and Fuels,2005,19(3):1116-1125.
    [93]Ma X, S Velu, Jh Kim, C Song. Deep desulfurization of gasoline by selective adsorption over solid adsorbents and impact of analytical methods on ppm-level sulfur quantification for fuel cell applications [J]. Applied Catalysis B: Environmental,2005,56(1-2):137-147.
    [94]Tang K, L Song, L Duan, X Li, J Gui, Z Sun. Deep desulfurization by selective adsorption on a heteroatoms zeolite prepared by secondary synthesis [J]. Fuel Processing Technology,2008,89(1):1-6.
    [95]Yang Rt, Aj Hernandez-Maldonado, Fh Yang. Desulfurization of transportation fuels with zeolites under ambient conditions [J]. Science,2003,301(5629):79.
    [96]Horii Y, H Onuki, S Doi, T Mori, T Takatori, H Sato, T Ookuro, T Sugawara, Desulfurization and denitration of light oil by extraction.1996, US Patents.
    [97]Paulino F, Ny Yonkers, Process for the removal of sulfur from petroleum fractions: US,5582714.1996.
    [98]Na C, Z Wenlin, Mi Guanjie, Hou Kaihu. Evaluation of extraction performance of the solvents for FCC gasoline deep desulfurization [J]. Chemical Industry and Engineering Progress,2006,11.
    [99]Fengtao Z, L Zhifeng, D Xiaofang, X Yongqiang. Deep Desulfurization of Hydrogenated LCO by Hydrogen-Peroxide/Formic-Acid Oxidation and Solvent Extraction [J]. Petroleum processing and petrochemicals,2003,34(11):22-26.
    [100]Ma X, K Sakanishi, I Mochida. Hydrodesulfurization reactivities of various sulfur compounds in diesel fuel [J]. Industrial & Engineering Chemistry Research,1994, 33(2):218-222.
    [101]Whitehurst Dd, T Isoda, I Mochida. Present state of the art and future challenges in the hydrodesulfurization of polyaromatic sulfur compounds [J]. Advances in catalysis,1998,42:345-471.
    [102]Houalla M, Dh Broderick, Av Sapre, Nk Nag, Vhj Beer, Bc Gates, H Kwart. Hydrodesulfurization of methyl-substituted dibenzothiophenes catalyzed by Co-Mo/gamma-Al2O3 [J]. Journal of Catalysis,1980,61(2):523.
    [103]Shafi R, Gj Hutchings. Hydrodesulfurization of hindered dibenzothiophenes:An overview [J]. Catalysis Today,2000,59(3-4):423-442.
    [104]Gates Bc, H Tops E. Reactivities in deep catalytic hydrodesulfurization:challenges, opportunities, and the importance of 4-methyldibenzothiophene and 4, 6-dimethyldibenzothiophene [J]. Polyhedron,1997,16(18):3213-3217.
    [105]Houalla M, Nk Nag, Av Sapre, Dh Broderick, Bc Gates. Hydrodesulfurization of dibenzothiophene catalyzed by sulfided CoO MoO3 Al2O3:The reaction network [J]. AIChE Journal,1978,24(6):1015-1021.
    [106]Schuit Gca, Bc Gates. Chemistry and engineering of catalytic hydrodesulfurization [J]. AIChE Journal,1973,19(3):417-438.
    [107]Okamoto Y, A Maezawa, T Imanaka. Active sites of molybdenum sulfide catalysts supported on Al2O3 and TiO2 for hydrodesulfurization and hydrogenation [J]. Journal of Catalysis,1989,120(1):29-45.
    [108]Singhal Gh, R1 Espino, Je Sobel. Hydrodesulfurization of sulfur heterocyclic compounds::Reaction mechanisms [J]. Journal of Catalysis,1981,67(2):446-456.
    [109]Nagai M, T Miyao, T Tuboi. Hydrodesulfurization of dibenzothiophene on alumina-supported molybdenum nitride [J]. Catalysis Letters,1993,18(1):9-14.
    [110]Lauritsen Jv, S Helveg, E Laegsgaard, I Stensgaard, Bs Clausen, H Topsφe, F Besenbacher. Atomic-scale structure of Co-Mo-S nanoclusters in hydrotreating catalysts [J]. Journal of Catalysis,2001,197(1):1-5.
    [111]Kishan G, Jar Van Veen, Jw Niemantsverdriet. Realistic Surface Science Models of Hydrodesulfurization Catalysts on Planar Thin-Film Supports:The Role of Chelating Agents in the Preparation of CoW/SiO2 catalysts [J]. Topics in Catalysis, 2004,29(3):103-110.
    [112]Knudsen Kg, Bh Cooper, H Tops E. Catalyst and process technologies for ultra low sulfur diesel [J]. Applied Catalysis A:General,1999,189(2):205-215.
    [113]Kouzu M, K Uchida, Y Kuriki, F Ikazaki. Micro-crystalline molybdenum sulfide prepared by mechanical milling as an unsupported model catalyst for the hydrodesulfurization of diesel fuel [J]. Applied Catalysis A:General,2004, 276(1-2):241-249.
    [114]Okuhara T, K Tanaka. Anisotropic properties of molybdenum disulfide single crystals in catalysis [J]. The Journal of Physical Chemistry,1978,82(17):1953-1954.
    [115]Ratnasamy P, S Sivasanker. Structural Chemistry of Co-Mo-Alumnina Catalysts [J]. Catalysis Reviews,1980,22(3):401-429.
    [116]Chianelli Rr. Fundamental studies of transition metal sulfide hydrodesulfurization catalysts [J]. Catalysis Reviews,1984,26(3):361-393.
    [117]Rodriguez-Castellon E, A Jimenez-Lopez, D Eliche-Quesada. Nickel and cobalt promoted tungsten and molybdenum sulfide mesoporous catalysts for hydrodesulfurization [J]. Fuel,2008,87(7):1195-1206.
    [118]Ishihara A, F Dumeignil, J Lee, K Mitsuhashi, Ew Qian, T Kabe. Hydrodesulfurization of sulfur-containing polyaromatic compounds in light gas oil using noble metal catalysts [J]. Applied Catalysis A:General,2005,289(2):163-173.
    [119]Wada T, K Kaneda, S Murata, M Nomura. Effect of modifier Pd metal on hydrocracking of polyaromatic compounds over Ni-loaded Y-type zeolite and its application as hydrodesulfurization catalyst [J]. Catalysis Today,1996, 31(1-2):113-120.
    [120]Baldovino-Medrano Vg, P Eloy, Em Gaigneaux, Sa Giraldo, A Centeno. Development of the HYD route of hydrodesulfurization of dibenzothiophenes over Pd-Pt/[gamma]-Al2O3 catalysts [J]. Journal of Catalysis,2009,267(2):129-139.
    [121]Barrio VI, P1 Arias, Jf Cambra, Mb Guemez, B Pawelec, J1g Fierro. Hydrodesulfurization and hydrogenation of model compounds on silica-alumina supported bimetallic systems [J]. Fuel,2003,82(5):501-509.
    [122]Kanda Yasuharu, Chisato Temma, Keisuke Nakata, Takao Kobayashi, Masatoshi Sugioka, Yoshio Uemichi. Preparation and performance of noble metal phosphides supported on silica as new hydrodesulfurization catalysts [J]. Applied Catalysis A: General,2010,386(1-2):171-178.
    [123]Aegerter Pa, Wwc Quigley, Gj Simpson, Dd Ziegler, Jw Logan, Kr Mccrea, S Glazier, Me Bussell. Thiophene hydrodesulfurization over alumina-supported molybdenum carbide and nitride catalysts:adsorption sites, catalytic activities, and nature of the active surface [J]. Journal of Catalysis,1996,164(1):109-121.
    [124]Dhandapani B, T St Clair, St Oyama. Simultaneous hydrodesulfurization, hydrodeoxygenation, and hydrogenation with molybdenum carbide [J]. Applied Catalysis A:General,1998,168(2):219-228.
    [125]Kadono T, T Kubota, Y Okamoto. Hydrodesulfurization over intrazeolite molybdenum nitride clusters prepared by using hexacarbonyl molybdenum as a precursor [J]. Catalysis Today,2003,87(1-4):107-115.
    [126]Nagai M. Transition-metal nitrides for hydrotreating catalyst--Synthesis, surface properties, and reactivities [J]. Applied Catalysis A:General,2007,322:178-190.
    [127]Oyama St. Novel catalysts for advanced hydroprocessing:transition metal phosphides [J]. Journal of Catalysis,2003,216(1-2):343-352.
    [128]Vit Z, J Cinibulk, D Gulkova. Promotion of Mo/Al2O3 sulfide catalyst by noble metals in simultaneous hydrodesulfurization of thiophene and hydrodenitrogenation of pyridine:a comparative study [J]. Applied Catalysis A:General,2004, 272(1-2):99-107.
    [129]Wojciechowska M, M Pietrowski, B Czajka. New supported ruthenium catalyst for hydrodesulfurization reaction [J]. Catalysis Today,2001,65(2-4):349-353.
    [130]Farag H, Dd Whitehurst, K Sakanishi, I Mochida. Carbon versus alumina as a support for Co-Mo catalysts reactivity towards HDS of dibenzothiophenes and diesel fuel [J]. Catalysis Today,1999,50(1):9-17.
    [131]Egorova M, R Prins. The role of Ni and Co promoters in the simultaneous HDS of dibenzothiophene and HDN of amines over Mo/[gamma]-Al2O3 catalysts [J]. Journal of Catalysis,2006,241(1):162-172.
    [132]Escobar J, Ja Toledo, Ma Cortes, Ml Mosqueira, V Perez, G Ferrat, E Lopez-Salinas, E Torres-Garcia. Highly active sulfided CoMo catalyst on nano-structured TiO2 [J]. Catalysis Today,2005,106(1-4):222-226.
    [133]Pawelec B, Jig Fierro, A Montesinos, Ta Zepeda. Influence of the acidity of nanostructured CoMo/P/Ti-HMS catalysts on the HDS of 4,6-DMDBT reaction pathways [J]. Applied Catalysis B:Environmental,2008,80(1-2):1-14.
    [134]Guichard B, M Roy-Auberger, E Devers, C Pichon, C Legens, P Lecour. Influence of the promoter's nature (nickel or cobalt) on the active phases "Ni(Co)MoS" modifications during deactivation in HDS of diesel fuel [J]. Catalysis Today,2010, 149(1-2):2-10.
    [135]Ge H. Study on hydrodesulfurization of thiophene over Mo/Al2O3 catalyst presulfided by thiosulfate ammonium [J]. Journal of Fuel Chemistry and Technology, 2009,37(2):199-204.
    [136]Zhao R, C Yin, H Zhao, C Liu. Synthesis, characterization, and application of hydotalcites in hydrodesulfurization of FCC gasoline [J]. Fuel Processing Technology,2003,81(3):201-209.
    [137]Xu Y, H Shang, R Zhao, C Liu. The studies of hydrodesulfurization of 4, 6-dimethyldibenzothiophene on sulfided Mo/Al2O3:the effects of reactive temperature and pressure [J]. Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem,2004, 49(1):343-45.
    [138]Ojeda J, N Escalona, Jm Palacios, M Yates, J1g Fierro, Al Agudo, Fj Gil-Llambias. Promoter effect of Co on the catalytic activity of Re/[gamma]-Al2O3 catalysts for the HDS and HDN of gas oil [J]. Applied Catalysis A:General,2008,350(1):6-15.
    [139]Okamoto Yasuaki, Hiroyuki Tomioka, Yukihiro Katoh, Toshinobu Imanaka, Shiichiro Teranishi. Surface structure and catalytic activity of molybdenum(VI) oxide/aluminum oxide catalysts in the hydrodesulfurization of thiophene studied by x-ray photoelectron spectroscopy [J]. The Journal of Physical Chemistry,1980, 84(14):1833-1840.
    [140]Takahashi T, H Higashi, T Kai. Development of a new hydrodemetallization catalyst for deep desulfurization of atmospheric residue and the effect of reaction temperature on catalyst deactivation [J]. Catalysis Today,2005,104(1):76-85.
    [141]Mccrea Kr, Jw Logan, T1 Tarbuck, J1 Heiser, Me Bussell. Thiophene Hydrodesulfurization over Alumina-Supported Molybdenum Carbide and Nitride Catalysts:Effect of Mo Loading and Phase [J]. Journal of Catalysis,1997, 171(1):255-267.
    [142]Scheffer B, P Arnoldy, Ja Moulijn. Sulfidability and hydrodesulfurization activity of Mo catalysts supported on alumina, silica, and carbon [J]. Journal of Catalysis,1988, 112(2):516-527.
    [143]Vissers Jpr, B Scheffer, Vhj De Beer, Ja Moulijn, R Prins. Effect of the support on the structure of Mo-based hydrodesulfurization catalysts:Activated carbon versus alumina [J]. Journal of Catalysis,1987,105(2):277-284.
    [144]Altamirano E, Ja De Los Reyes, F Murrieta, M Vrinat. Hydrodesulfurization of 4, 6-dimethyldibenzothiophene over Co (Ni) MoS2 catalysts supported on alumina: Effect of gallium as an additive [J]. Catalysis Today,2008,133:292-298.
    [145]Kanda Y, H Iwamoto, T Kobayashi, Y Uemichi, M Sugioka. Preparation of Highly Active Alumina-Pillared Clay Montmorillonite-Supported Platinum Catalyst for Hydrodesulfurization [J]. Topics in Catalysis,2009,52(6):765-771.
    [146]Ali Ma, S Asaoka. Ni-Mo-Titania-Alumina Catalysts with USY Zeolite for Low Pressure Hydrodesulfurization and Hydrocracking [J]. Petroleum Science and Technology,2009,27(10):984-997.
    [147]Huang W, A Duan, Z Zhao, G Wan, G Jiang, T Dou, Kh Chung, J Liu. Ti-modified alumina supports prepared by sol-gel method used for deep HDS catalysts [J]. Catalysis Today,2008,131(1-4):314-321.
    [148]Weissman Jg, Ei Ko, S Kaytal. Titania-zirconia mixed oxide aerogels as supports for hydrotreating catalysts [J]. Applied Catalysis A:General,1993,94(1):45-59.
    [149]Vrinat M, D Hamon, M Breysse, B Durand, T Des Courieres. Zirconia-and alumina-supported molybdenum-based catalysts:a comparative study in hydrodesulfurization and hydrogenation reactions [J]. Catalysis Today,1994, 20(2):273-282.
    [150]Afanasiev P, C Geantet, M Breysse. Preparation of High-Surface-Area Mo/ZrO2 Catalysts by a Molten Salt Method:Application to Hydrodesulfurization [J]. Journal of Catalysis,1995,153(1):17-24.
    [151]Olguin Orozco E, M Vrinat. Kinetics of dibenzothiophene hydrodesulfurization over MoS2 supported catalysts:modelization of the H2S partial pressure effect [J]. Applied Catalysis A:General,1998,170(2):195-206.
    [152]Arias M, D Laurenti, C Geantet, M Vrinat, I Hideyuki, Y Yoshimura. Gasoline desulfurization by catalytic alkylation over silica-supported heteropolyacids:from model reaction to real feed conversion [J]. Catalysis Today,2008,130(1):190-194.
    [153]Okamoto Y, H Katsuyama, K Yoshida, K Nakai, M Matsuo, Y Sakamoto, J Yu, O Terasaki. Dispersion and location of molybdenum sulfides supported on zeolite for hydrodesulfurization [J]. Journal of the Chemical Society, Faraday Transactions, 1996,92(22):4647-4656.
    [154]Sugioka M, F Sado, T Kurosaka, X Wang. Hydrodesulfurization over noble metals supported on ZSM-5 zeolites [J]. Catalysis Today,1998,45(1-4):327-334.
    [155]Tatsumi T, M Taniguchi, S Yasuda, Y Ishii, T Murata, M Hidai. Zeolite-supported hydrodesulfurization catalysts prepared by ion exchange with Mo and MoNi sulfide clusters [J]. Applied Catalysis A:General,1996,139(1-2):L5-L10.
    [156]Li X, F Zhou, A Wang, L Wang, Y Hu. Influence of Templates on the Overgrowth of MCM-41 over HY and the Hydrodesulfurization Performances of the Supported Ni-Mo Catalysts [J]. Industrial & Engineering Chemistry Research,2009, 48(6):2870-2877.
    [157]Isoda T, S Nagao, X Ma, Y Korai, I Mochida. Hydrodesulfurization Pathway of 4, 6-Dimethyldibenzothiophene through Isomerization over Y-Zeolite Containing CoMo/Al2O3 Catalyst [J]. Energy and Fuels,1996,10(5):1078-1082.
    [158]Bouwens Smam, Jpr Vissers, Vhj De Beer, R Prins. Phosphorus poisoning of molybdenum sulfide hydrodesulfurization catalysts supported on carbon and alumina [J]. Journal of Catalysis,1988,112(2):401-410.
    [159]Granados-Aguilar As, T Viveros-Garcia, Es Perez-Cisneros. Thermodynamic analysis of a reactive distillation process for deep hydrodesulfurization of diesel: Effect of the solvent and operating conditions [J]. Chemical Engineering Journal, 2008,143(1-3):210-219.
    [160]Harrison Rh, Se Scheppele, Gp Sturm Jr, PI Grizzle. Solubility of hydrogen in well-defined coal liquids [J]. Journal of Chemical and Engineering Data,1985, 30(2):183-189.
    [161]Ishihara A, T Kabe. Deep desulfurization of light oil.3. Effects of solvents on hydrodesulfurization of dibenzothiophene [J]. Industrial & Engineering Chemistry Research,1993,32(4):753-755.
    [162]Gill O, Om Atanur, L Artok, O Erbatur. The effect of additives on hydrodesulfurization of dibenzothiophene over bulk molybdenum sulfide:Increased catalytic activity in the presence of phenol [J]. Fuel Processing Technology,2008, 89(4):419-423.
    [163]Farag H. Synthesis of CoMo-based carbon hydrodesulfurization catalysts:Influence of the order of metal impregnations on the activity [J]. Applied Catalysis B: Environmental,2008,84(1-2):1-8.
    [164]Solis D, Al Agudo, J Ramirez, T Klimova. Hydrodesulfurization of hindered dibenzothiophenes on bifunctional NiMo catalysts supported on zeolite-alumina composites [J]. Catalysis Today,2006,116(4):469-477.
    [165]Magyar S, J Hancsok, D Kallo. Reactivity of several olefins in the HDS of full boiling range FCC gasoline over PtPd/USY [J]. Fuel Processing Technology,2008, 89(8):736-739.
    [166]Niquille-Rothlisberger A, R Prins. Hydrodesulfurization of 4, 6-dimethyldibenzothiophene and dibenzothiophene over alumina-supported Pt, Pd, and Pt-Pd catalysts [J]. Journal of Catalysis,2006,242(1):207-216.
    [167]Haji S, Y Zhang, C Erkey. Atmospheric hydrodesulfurization of diesel fuel using Pt/Al2O3 catalysts prepared by supercritical deposition for fuel cell applications [J]. Applied Catalysis A:General,2010,374(1-2):1-10.
    [168]Chenguang L, Tt Flora. HDS of DBT Using in situ Generated Hydrogen in the Presence of Dispersed Mo Catalysts III. Effects of Catalyst Precursors, H2S, CO and H2O [J]. Chinese Journal of Catalysis,1999,20(6):591-596.
    [169]Shakirullah M, I Ahmad, M Ishaq, W Ahmad. Catalytic hydro desulphurization study of heavy petroleum residue through in situ generated hydrogen [J]. Energy Conversion and Management,2010,51(5):998-1003.
    [170]Lee Rz, Ftt Ng. Effect of water on HDS of DBT over a dispersed Mo catalyst using in situ generated hydrogen [J]. Catalysis Today,2006,116(4):505-511.
    [171]Muhammad Yaseen, Chunxi Li. Dibenzothiophene hydrodesulfurization using in situ generated hydrogen over Pd promoted alumina-based catalysts [J]. Fuel Processing Technology,2011,92:(3):624-630.
    [172]Lecrenay E, K Sakanishi, T Nagamatsu, I Mochida, T Suzuka. Hydrodesulfurization activity of CoMo and NiMo supported on Al2O3-TiO2 for some model compounds and gas oils [J]. Applied Catalysis B:Environmental,1998,18(3-4):325-330.
    [173]Kwak C, M Young Kim, Cj Song, Sh Moon. Enhanced Performance of Fluorinated Co-Mo-S/Al2O3 and Ni-WS/AlO3 Catalysts in Hydrodesulfurization [J]. Studies in Surface Science and Catalysis,1999,121:283-288.
    [174]Leyva C, J Ancheyta, Ms Rana, G Marroquin. A comparative study on the effect of promoter content of hydrodesulfurization catalysts at different evaluation scales [J]. Fuel,2007,86(9):1232-1239.
    [175]Klouz V, V Fierro, P Denton, H Katz, Jp Lisse, S Bouvot-Mauduit, C Mirodatos. Ethanol reforming for hydrogen production in a hybrid electric vehicle:process optimisation [J]. Journal of Power Sources,2002,105(1):26-34.
    [176]Nedyalkova Radka, Carles Torras, Joan Salvado, Daniel Montane. Electrophoretic deposition of ethanol steam-reforming catalysts on metal plates for the development of catalytic-wall reactors [J]. Fuel Processing Technology,2010,91(9):1040-1048.
    [177]Freni S, S Cavallaro, N Mondello, L Spadaro, F Frusteri. Production of hydrogen for MC fuel cell by steam reforming of ethanol over MgO supported Ni and Co catalysts [J]. Catalysis Communications,2003,4(6):259-268.
    [178]Chen J, Z Ring. HDS reactivities of dibenzothiophenic compounds in a LC-finer LGO and H2S/NH3 inhibition effect [J]. Fuel,2004,83(3):305-313.
    [179]Al-Zeghayer Ys, P Sunderland, W Al-Masry, F Al-Mubaddel, Aa Ibrahim, Bk Bhartiya, By Jibril. Activity of CoMo/[gamma]-Al2O3 as a catalyst in hydrodesulfurization:effects of Co/Mo ratio and drying condition [J]. Applied Catalysis A:General,2005,282(1-2):163-171.
    [180]Deng X, J Sun, S Yu, J Xi, W Zhu, X Qiu. Steam reforming of ethanol for hydrogen production over NiO/ZnO/ZrO2 catalysts [J]. International Journal of Hydrogen Energy,2008,33(3):1008-1013.
    [181]Zhang L, W Li, J Liu, C Guo, Y Wang, J Zhang. Ethanol steam reforming reactions over Al2O3-SiO2-supported Ni-La catalysts [J]. Fuel,2009,88(3):511-518.
    [182]Navarro Rm, P Castano, Mc Alvarez-Galvan, B Pawelec. Hydrodesulfurization of dibenzothiophene and a SRGO on sulfide Ni (Co) MO/Al2O3 catalysts. Effect of Ru and Pd promotion [J]. Catalysis Today,2009,143(1-2):108-114.
    [183]Isoda T, S Nagao, X Ma, Y Korai, I Mochida. Hydrodesulfurization of Refractory Sulfur Species.2. Selective Hydrodesulfurization of 4,6-Dimethyldibenzothiophene in the Dominant Presence of Naphthalene over Ternary Sulfides Catalyst [J]. Energy and Fuels,1996,10(2):487-492.
    [184]Dhainaut E, H Charcosset, C Cachet, L De Mourgues. Dibenzothiophene hydrodesulfurization by noble metal supported catalysts [J]. Applied Catalysis,1982, 2(1-2):75-86.
    [185]Navarro R, B Pawelec, J1g Fierro, Pt Vasudevan, Jf Cambra, Mb Guemez, PI Arias. Dibenzothiophene hydrodesulfurization on HY-zeolite-supported transition metal sulfide catalysts [J]. Fuel Processing Technology,1999,61(1-2):73-88.
    [186]Venezia A. M., V. La Parola, G. Deganello, B. Pawelec, J. L. G Fierro. Synergetic effect of gold in Au/Pd catalysts during hydrodesulfurization reactions of model compounds [J]. Journal of Catalysis,2003,215(2):317-325.
    [187]Yoshimura Y, M Toba, H Farag, K Sakanishi. Ultra Deep Hydrodesulfurization of Gas Oils Over Sulfide and/or Noble Metal Catalysts [J]. Catalysis Surveys from Asia,2004,8(1):47-60.
    [188]Lu X, L Luo, X Chen. Influence of Pd-Ce interaction and chlorine ion on hydrodesulfurization reaction:The activity and sulfur tolerance of the Pd-Ceo 2/Al 2 O 3 catalyst [J]. Reaction Kinetics and Catalysis Letters,2008,94(1):35-46.
    [189]Pawelec B, R Navarro, Jel Fierro. Hydrodesulfurization over PdMo/HY zeolite catalysts [J]. Fuel,1997,76(1):61-71.
    [190]Cavallaro S, V Chiodo, S Freni, N Mondello, F Frusteri. Performance of Rh/Al2O3 catalyst in the steam reforming of ethanol:H2 production for MCFC [J]. Applied Catalysis A:General,2003,249(1):119-128.
    [191]Batista Ms, Rks Santos, Em Assaf, Jm Assaf, Ea Ticianelli. Characterization of the activity and stability of supported cobalt catalysts for the steam reforming of ethanol [J]. Journal of Power Sources,2003,124(1):99-103.
    [192]Umegaki T, K Kuratani, Y Yamada, A Ueda, N Kuriyama, T Kobayashi, Q Xu. Hydrogen production via steam reforming of ethyl alcohol over nano-structured indium oxide catalysts [J]. Journal of Power Sources,2008,179(2):566-570.
    [193]Ni M, Dyc Leung, Mkh Leung. A review on reforming bio-ethanol for hydrogen production [J]. International Journal of Hydrogen Energy,2007,32(15):3238-3247.
    [194]Chua Yt, Pc Stair. An ultraviolet Raman spectroscopic study of coke formation in methanol to hydrocarbons conversion over zeolite H-MFI [J]. Journal of Catalysis, 2003,213(1):39-46.
    [195]Takahashi T, M Inoue, T Kai. Effect of metal composition on hydrogen selectivity in steam reforming of methanol over catalysts prepared from amorphous alloys [J]. Applied Catalysis A:General,2001,218(1-2):189-195.
    [196]Iwasa N, N Takezawa. New supported Pd and Pt alloy catalysts for steam reforming and dehydrogenation of methanol [J]. Topics in Catalysis,2003,22(3):215-224.
    [197]Lwin Y, Wrw Daud, Ab Mohamad, Z Yaakob. Hydrogen production from steam-methanol reforming:thermodynamic analysis [J]. International Journal of Hydrogen Energy,2000,25(1):47-53.
    [198]Chin Yh, R Dagle, J Hu, Ac Dohnalkova, Y Wang. Steam reforming of methanol over highly active Pd/ZnO catalyst [J]. Catalysis Today,2002,77(1-2):79-88.
    [199]Boukis N, V Diem, W Habicht, E Dinjus. Methanol reforming in supercritical water [J]. Ind. Eng. Chem. Res,2003,42(4):728-735.
    [200]Gadhe Jb, Rb Gupta. Hydrogen production by methanol reforming in supercritical water:suppression of methane formation [J]. Ind. Eng. Chem. Res,2005, 44(13):4577-4585.
    [201]Niquille-Rothlisberger A, R Prins. Influence of nitrogen-containing components on the hydrodesulfurization of 4,6-dimethyldibenzothiophene over Pt, Pd, and Pt-Pd on alumina catalysts [J]. Topics in Catalysis,2007,46(1):65-78.
    [202]Scir S, S Minic, C Crisafulli. Selective hydrogenation of phenol to cyclohexanone over supported Pd and Pd-Ca catalysts:an investigation on the influence of different supports and Pd precursors [J]. Applied Catalysis A:General,2002,235(1-2):21-31.
    [203]Chen Yz, Cw Liaw, Li Lee. Selective hydrogenation of phenol to cyclohexanone over palladium supported on calcined Mg/Al hydrotalcite [J]. Applied Catalysis A: General,1999,177(1):1-8.
    [204]Laosiripojana N., S. Assabumrungrat. Catalytic steam reforming of methane, methanol, and ethanol over Ni/YSZ:The possible use of these fuels in internal reforming SOFC [J]. Journal of Power Sources,2007,163 (2):943-951.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.