镁热剂反应自蔓延高温合成TiB_2和ZrB_2陶瓷及其结构宏观动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自蔓延高温合成(Self-propagating High-temperature Synthesis,SHS)因其反应迅速、工艺简单、节约能源等优点成为制备陶瓷、金属间化合物、高性能涂层以及复合材料等的新技术。镁热剂反应自蔓延高温还原合成陶瓷,采用天然氧化物为原料,与普通的元素自蔓延高温合成工艺相比,具有成本低廉、产品性能优异等显著特点,近年来受到国内外研究人员的普遍关注。然而,镁热剂反应由于放热量大、反应温度高、反应过程迅速及反应难以控制等特殊性,迄今为止,对其反应过程及产物结构形成机理等的研究不够深入。因此,研究镁热剂反应自蔓延高温合成TiB2和ZrB_2的反应过程及产物结构形成机理,无论从自蔓延高温合成方法本身的完善还是从促进TiB_2和ZrB_2陶瓷材料的广泛应用来讲都具有重要意义。
     本文以B_2O_3、TiO_2、ZrO_2和还原性金属Mg为主要原料,采用自蔓延高温合成法成功制备了TiB_2和ZrB_2陶瓷,研究了Mg-TiO_2-B_2O_3和Mg-ZrO_2-B_2O_3两个三元体系的自蔓延过程及其化学反应特点,并从热力学及结构动力学两方面进行了系统研究。
     基于热力学理论,对Mg-TiO_2-B_2O_3和Mg-ZrO_2-B_2O_3体系的绝热温度及反应自由能进行了理论计算和分析。计算结果表明:两个体系的绝热温度都超过3000K,远远大1800K(反应能够自维持的温度),并且随着稀释剂含量的增加绝热温度呈现逐渐降低的趋势;两个体系在所研究的温度范围(400-2000K)可能发生的反应的生成自由能均小于零,存在发生反应的可能性。
     探讨了工艺参数如原料配比、稀释剂等对镁热剂反应自蔓延高温合成TiB_2和ZrB_2陶瓷的合成过程、产物相组成及组织形貌的影响。研究结果表明,原料中Mg和B_2O_3的挥发对产物粉末纯度具有重要影响。随着Mg和B_2O_3含量的增加,产物纯度提高。在反应原料中加入适量的稀释剂MgO(0-5mol),可调节燃烧温度,改善产物粉末的形貌和粒度,随稀释剂MgO含量的增加,产物粉末平均粒度降低。
     采用三种不同方法成功淬熄了镁热剂自蔓延高温合成TiB_2和ZrB_2陶瓷时的燃烧波,得到了不同反应程度的产物微区形貌。通过对不同的淬熄区XRD测试分析和扫描电镜观察,结合反应体系DSC分析,系统研究了Mg-TiO_2-B_2O_3和Mg-ZrO_2-B_2O_3体系自蔓延高温合成过程。结果表明:在Mg-ZrO_2-B_2O_3体系中,反应过程经由多个中间反应直至最后完成,B_2O_3在623K熔化,Mg在922K熔化,三相反应的发生始于1043K。首先发生的反应是ZrO_2和Mg的还原反应生成金属Zr,其次是B_2O_3和Mg的还原反应生成B,最后是Zr和B反应合成ZrB_2。Mg-ZrO_2-B_2O_3体系燃烧反应可划分为如下几个阶段:①预热阶段,B_2O_3、Mg熔化,在“毛细管”作用下,液态Mg渗透到熔融的B_2O_3和固态的ZrO_2颗粒间隙,形成空心熔体球。液态Mg、B_2O_3和固态ZrO_2颗粒混合物在熔体球表面形成薄壳,反应在此薄壳上发生;②反应初段,ZrO_2颗粒与Mg熔体以溶解-析出机制生成Zr和MgO,释放大量的反应热;③反应中段,反应初段放出的强热诱发了Mg-B_2O_3之间的反应,生成B和MgO;④反应末段,Zr和B结合生成ZrB_2。ZrO_2-B_2O_3-Mg之间的反应为复杂的固-液-液反应。Mg-TiO_2-B_2O_3体系的反应过程及产物结构转变与ZrO_2-B_2O_3-Mg体系具有相似性。
     最后,提出了Mg-TiO_2-B_2O_3和Mg-ZrO_2-B_2O_3体系自蔓延高温合成TiB_2/ZrB_2陶瓷的固相扩散-溶解-析出机制,并建立了相应的物理模型来进行描述。通过物理模型,最后得到了Mg-TiO_2-B_2O_3/Mg-ZrO_2-B_2O_3体系反应生成TiB_2/ZrB_2动力学本征方程。
For its advantages of rapid synthesis, simple process, energy saving, etc., SHS (Self-Propagating High-Temperature Synthesis) is a novel technology for preparing the advanced materials, such as ceramics, intermetallic compounds, high performance coatings and composite materials. Synthesizing ceramics by SHS with Magnesiothermit reactions uses natural oxides as the raw material, so the cost is low and the property of the product is good. Compared with SHS with common element, this technique offers obvious advantages and has been given more and more attention by researchers at home and abroad recently. However, due to some particularities of Magnesiothermit reactions, such as the quantity of releasing heat is large, the reaction process is difficult to control, the reaction temperature is high, etc., the studies on its reaction process and the formation mechanism of structure of the products are far from systematical. Therefore, the studies on the mechanism of synthesizing TiB_2 and ZrB_2 by SHS with Magnesiothermit reactions are of significance to improve SHS itself and promote the wide application of TiB_2 and ZrB_2.
     In this paper, B_2O_3, TiO_2, ZrO_2 and Mg are used as the main raw material, the research on the characteristics of SHS process and chemical reaction process of Mg-TiO_2-B_2O_3 and Mg-ZrO_2-B_2O_3 system has been made from the perspective of thermodynamics and Structural Macro Kinetics/structure dynamics.
     According to the thermodynamics theory, the free energy of reaction and the adiabatic temperature of Mg-TiO_2-B_2O_3 and Mg-ZrO_2-B_2O_3 system have been theoretically calculated and analyzed. The calculation of the adiabatic temperature shows that the adiabatic temperatures of the two reaction systems are both higher than3000K, which are far higher than 1800K (the temperature meets the need of reaction itself). And the adiabatic temperatures of the reaction are falling with the increasing amount of diluents. The calculation of the free energy of reaction shows that the free energy is below than zero reaction can take place.
     The technological parameters, that is, the join effect of material proportion, the pressure of green compact and the green compact diameter and the diluents upon the process of synthesizing TiB_2 and ZrB_2 by SHS with Magnesiothermit reactions are also studied in this thesis. The research on technological rules shows that the volatilization of Mg and B_2O_3 in raw material has a great effect on the purity of product. When the amount of Mg and B_2O_3 is increased, the purity of product becomes higher. In order to adjust the combustion temperature and change the morphology and particle size of product, appropriate amount of diluents MgO (0-5mol) can be added into the raw material. With the increasing amount of diluents MgO, the average particle size of product becomes smaller.
     The combustion wave of green compact in synthesizing TiB_2 and ZrB_2 by SHS with Magnesiothermit reactions can be successfully gained by means of combustion front quenching (CFQ) in cylindrical steel mould. And the microstructure of every region of the different reaction extent was observed. According to the relevant test and analysis on different product of different combustion front quenching areas combined with differential scanning calorimetry (DSC), the physical and chemical changes of all regions in the quenched samples during the combustion synthesis were followed by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) and x-ray diffraction (XRD). The systematic research on SHS of Mg-TiO_2-B_2O_3 and Mg-ZrO_2-B_2O_3 system has been carried out. Studies shows that B_2O_3 is melting at623K, Mg at 923K, the reaction among them takes place from 1003K. The reaction between ZrO_2 and Mg to produce Zr happens first, and then B is gained from the reaction between B_2O_3 and Mg. At last, ZrB_2 is synthesized from the reaction between Zr and B. The results show that the reaction process of combustion synthesis ZrO_2-B_2O_3-Mg can be expressed as: (1) the preheat phase: B_2O_3 and Mg are melting, liquid Mg is permeable into molten B_2O_3 and solid ZrO_2 forming a hollow-cylinder molten ball, where the reaction takes place; (2) the early stage of reaction: the reaction between ZrO_2 particle and molten Mg occurs in the mechanism of dissolution and precipitation to produce Zr and MgO, releasing a great amount of reaction heat; (3) the middle stage of reaction: the great amount of reaction heat releasing in the early period leads to the reaction between B_2O_3 and Mg, which can form B and MgO; (4) the later stage of reaction: the reaction between Zr and B takes place and the ZrB_2 grain is formed. The reaction among ZrO_2, B_2O_3 and Mg is a complicated reaction of solid-liquid-liquid. The reaction process and structural change of the products of Mg-TiO_2-B_2O_3 system has the similarity with Mg-ZrO_2-B_2O_3 system.
     Thus, the diffusion-dissolution-precipitation mechanism of synthesizing TiB_2 and ZrB_2 by SHS with Magnesiothermit reactions is put forward and the relevant physics modeling is set. According to the physics modeling, we can finally get the original formula of kinetics in TiB_2 and ZrB_2 which is reacted and generated by the system of Mg-TiO_2-B_2O_3 and Mg-ZrO_2-B_2O_3.
引文
[1] 宋晓岚,黄学辉.材料科学基础[M].北京,化学工业出版社,2006.
    [2] 王零森.特种陶瓷[M].长沙,中南工业大学出版社,1991.
    [3] Matkovich V I. Boron and Refractory Borides. Matkovich V I, ed. New York: Springer, 1977.
    [4] Nowacki J. Polyphase sintering and properties of metal matrix composites[J]. Journal of Materials Processing Technology, 2006, 175(1-3): 316-323.
    [5] Monteverde F, Bellosi A. Processing and Properties of Zirconium Diboride-based Composites[J]. Journal of the European Ceramic Society, 2002, 22( 3): 279-288.
    [6] Basu B, Vlegugels J, Van Der Biest O. Development of ZrB_ZrO_2 Composites[J]. Alloys and Composites, 2002, 334 (1-2): 200-204.
    [7] Munir Z A, Anselmi-Tamburini U, Self-propagating exothermic reactions: the synthesis of high-temperature materials by combustion[J]. Materials Science Reports. 1989, 3: 277-365.
    [8] Varma A, Lebrat J P, Combustion Synthesis of Advanced Materials[J]. Chemical Engineering Science, 1992, 47(9-11):2179-2194.
    [9] Merzhanov A G. Solid flames: discoveries, concepts and horizons of cognition[J]. Combustion Science Technology, 1994, 98: 307-336.
    [10] Moore J J, Feng H J. Combustion synthesis of advanced materials: part Ⅰ reaction parameters [J]. Progress in Materials Science, 1995, 39(4-5): 243-273.
    [11] Mossino P. Some aspects in Self-propagating high-temperature synthesis[J].Ceramics International, 2004, 30: 311-332.
    [12] 顾立德.特种耐火材料[M].北京:冶金工业出版社,2000.
    [13] 莫畏.钛冶金(第2版)[M].北京:冶金工业出版社,1998.
    [14] Phase Equilibria Diagrams. Phase diagrams for ceramists(borides, carbides and nitrides). Vol Ⅹ, Edited and published by the American Ceramic Society, 1994.
    [15] 王维邦.耐火材料工艺学[M].北京:冶金工业出版社,2001.
    [16] 纪嘉明,周飞,李忠华,等.TiB_2和ZrB_2晶体结构与性能的电子理论研究[J].中国有色金属学报,2000,10(3):358-360.
    [17] 辜萍.助燃剂对二硼化锆陶瓷烧结行为、结构与性能的影响[武汉工业大学硕士论文].武汉:武汉工业大学,1999.
    [18] 张长瑞,郝元恺.陶瓷基复合材料-原理、工艺、性能与设计[M].长沙:国防科技大学出版社,2001.
    [19] 张田梅.自蔓延镁热还原法制备高纯度二硼化锆微粉[哈尔滨工业大学硕士论文].哈尔滨:哈尔滨工业大学,2006.
    [20]Radev D D, Klissurski D. Mechanochemical and SHS of diboride of titanium and zirconium[J]. Journal of Material synthesis and processing, 2001, 9(3): 131-134.
    [21]Hong Zhao, Yu He, Zongzhe Jin. Preparation of zirconium boride powder[J]. Journal of American Ceramic Society, 1999, 78(9): 2534-2539.
    [22]刘希诚,孙阳,冯乃祥.电弧炉炭热还原制取二硼化钛[J].广东有色金属学报,1999,9(1):30-34.
    [23]Koc R, Hodge D B. Production of TiB_2 from a precursor containing carbon coated TiO_2 and B_4C[J ]. Journal of Materials Science, 2000, 19: 667-669.
    [24]Welham N J. Formation of TiB_2 from rutile by room temperature ball milling[J]. Minerals Engineering, 1999, 12(10): 1213-1224.
    [25]Takeyasu Saito, Tomoyuki Fukuda, Hideaki Maeda, et al. Synthesis of ultrafine titanium diboride particles by rapid carbothermal reduction in a particulate transport reactor[J]. Journal of materials Science, 1997, 32(8): 3933-3938.
    [26]刘国齐,李红霞,杨彬,等.铝碳材料中ZrB2的原位合成[J].见:洛阳耐火材料研究院建院四十周年院庆科技文集,洛阳,2003,12:110-113.
    [27]罗学涛,谢小林,邓克明.TiB_2粉料的合成与纯化研究[J].南昌航空工业学院学报,2001,15(1):6-10.
    [28]Radev D D, Marinov M. Properties of titanium and zirconium diborides obtained by self-propagated high-temperature synthesis [J]. Journal of Alloys and Compounds, 1996, 244(1-2): 48-51.
    [29]方舟,王皓,傅正义,等.Zr-B体系自蔓延高温合成ZrB_2陶瓷粉末[J].硅酸盐学报,2004,32(8):1016-1018.
    [30]方舟,王皓,傅正义,等.Zr-B_2O_3-Mg体系自蔓延高温合成ZrB2陶瓷粉末[J].2004,32(6):755-758.
    [31]于志强,杨振国.ZrB_2-Al2O_3复合粉体的自蔓延高温还原合成与表征[J]。硅酸盐学报,2005,33(4):407-410.
    [32]赵昆渝,朱心昆,苏云生,等.自蔓延高温合成制备TiB_2[J].粉末冶金技术,1997,15(1):26-29.
    [33]王为民,傅正义,金明姬,等。蔓延高温还原合成法制备TiB_2陶瓷粉末[J].硅酸盐学报,1996,24(1):53-57.
    [34]傅正义,王为民,王皓,等.TiB_2系金属陶瓷的SHS-QP制备[J].硅酸盐学报,1996,24(12):654-659.
    [35]Vadchenko S G, Filimonov I A. Combustion modes of a strongly diluted Ti+2B system[J]. Combustion, Explosion and Shock Waves, 2003, 39(3): 159-166.
    [36]Radev D D, Marinov M. Properties of titanium and zirconium diborides obtained by self-propagated high-temperature synthesis [J]. Journal of Alloys and Compounds. 1996, 244(1-2): 48-51.
    [37]Kudaka K, Iizumi K, Iizumi H, et al. Synthesis of titanium carbide and titanium diboride by mechanochemical displacement reaction[J]. Journal of materials science letters, 2001, 20(17): 1619-1622.
    [38]Welham N J. Formation of TiB_2 from rutile by room temperature ball milling[J]. Minerals Engineering, 1999, 12(10): 1213-1224.
    [39]王化章,汤啸,杨建红,等.氯化物熔体中电化学合成硼化钛[J].中国有色金属学报,1997,7(2):34-38.
    [40]Monteverde F, Bellosi A, Guicciardi S. Processing and properties of zirconium diboride-based composites[J]. Journal of the European Ceramic Society, 2002, 22,(3): 279-288.
    [41]B Basu, J Vlegugels, O Van Der Biest. Development of ZrB_2-ZrO_2 Composites[J]. Journal of Alloys and Composites, 2002, 334(1-2): 200-204.
    [42]Stefan P, Jurgen P. Pressureless Sintering of Al_2O_3 Containing up to 20vol% Zirconium Diboride[J]. Journal of European Ceramic Society, 2000, 20(10): 1459-1468.
    [43]殷明,赵海雷,成丽丽,等.刚玉/莫来石-硼化锆陶瓷复合材料的烧结工艺及显微结构[J].钢铁研究学报,1998,10(5):53-56.
    [44]赵海雷,王俭,李文超.ZrB_2-刚玉/莫来石复合材料氧化动力学的研究[J].耐火材料,1998,32(6):322-325.
    [45]于志强,杨振国.ZrB_2-Al_2O_3复合粉体的自蔓延高温还原合成与表征[J].硅酸盐学报,2005,4(4):406-410.
    [46]陈德平,赵海雷,钟香崇,等.CaZrO_3/ZrB复合材料的无压烧结实验研究[J].中国陶瓷,2000,36(5):6-9.
    [47]高瑞兰,于化顺,韩建德,等.ZrB_2含量对LaB_6-ZrB_2复合材料性能的影响[J].硅酸盐学报,2004,32(4):507-511.
    [48]王皓,王为民,辜萍,等.热压烧结TiB_2-ZrB_2固溶复合陶瓷的结构研究[J].硅酸盐学报,2002,30(4):486-490.
    [49]Takeshi, Tsuchida. MA-SHS and SPS of ZrB_2-ZrC Composites[J]. Solid State Ionics, 2004, 172(1-4): 215-216.
    [50]A Yamaguchi, H Tanaka. Behaviour and effects of ZrB_2 added to C-containing refractories[J].TaikabutsuOver-seas, 1995, 47(3):116-123.
    [51]冯大淦.非金属热电偶及热电性能[J].自动化仪表,1994,15(7):8-12.
    [52]S Norasetthekul. Use of ZrB_2-Cu as an Electrode in Plasma Applications[J]. Journal of Materials Science, 1994, 24: 1261-1270.
    [53]贾云萍,刘文言,马向东.添加镍粉和二硼化锆防静电涂层的对比研究[J].宇航材料工艺,2004, (1):47-50.
    [56]逄婷婷,付正义,张东名.放电等离子(SPS)快速烧结TiB_2陶瓷[J].陶瓷学报,2001,22(3):129-132.
    [54]张东明,逄婷婷,付正义,等.用放电等离子技术烧结TiB_2陶瓷[J].材料研究学报,2001,5(4):484-486.
    [55]徐强,张幸红,曲伟,等.SHS/PHIP法合成TiB_2陶瓷的研究[J].高技术通讯,2002, 8: 71-74.
    [56]章桥新,毛天尔,汪声瑞.TiB_2基烧结材料的研究现状与进展[J].材料科学与工程,1993,11(4)':43-47.
    [57]Yufiditsky B.TiB_2基硬质合金[J].国外难熔金属与硬质合金,1990,12(1):45-52.
    [58]孙景,魏庆丰,刘俊朋,等.添加VC的TiB_2-Fe-Mo硬质合金[J].天津大学学报.2004,37(4):349-352.
    [59]Th Jungling, L.S Sigl, R Oberacker et al. New hardmetals based on TiB_2[J]. International Journal of Refractory Metals and Hard Materials, 1994, 12(2): 71-88.
    [60]Ryuichi Tomoshige, Youjiro Kakoki, Kihachiro Imamura, et al. Effect on addition of titanium diboride to titanium carbide produced by the SHS/shock consolidation method[J]. Journal of Materials Processing Technology, 1999, 85(3): 105-108.
    [61]Zhou Songqing, Xiao Hanning, Li Guiyu. Research on wear fracture characteristics of TiB2-SiC matrix composites by in-suit synthesis at elevated temperature[J]. Lubrication engineering, 2007, 32(7): 59-65.
    [62]Zeng Zhaoqinag, Chen Yingjie Wu Chongjun et al. Reactive hot-pressing TiB2/AlN ceramic composites[J]. ACTA METALLURGICA SINICA, 1999, 35(6): 659-662.
    [63]Wang Hao, WangWeimin, Gu Ping , et al. Study on the structure of TiB2-ZrB2 omposites prepared by hot pressing[J]. Journal of the Chinese ceramics socity, 2002, 30(4): 486-490
    [64]殷声.自蔓延高温合成.北京:冶金工业出版社,1999.
    [65]Merzhanov A G. Self-propagating high-temperature synthesis: twenty years of search and findings. In: Munir Z A, Holt J B. Combustion and Plasma Synthesis of High-Temperature Materials[C]. New York: VCH publisher, 1990.
    [66]J. J. Moore, H J. Feng. Combustion synthesis of advanced materials: Part Ⅱ classification, applications and modelling[J]. Progress in Materials Science. 1995, 39(4-5): 275-316.
    [67]R.Tomasi, Z.A. Munir. Effect of particle size on the reaction wave propagation in the combustion synthesis of Al_2O_3-ZrO_2-Nb composites [J]. Journal of the American Ceramic Society, 1999, 82(8): 1985-1992.
    [68] A. P. Hardt, P. V. Phung. Propagation of gasless reactions in solid- I . Analytical study of exothermic intermetallic reaction rates[J]. Combustion and Flame, 1973, 21(1): 77-89.
    [69] A. G. Merzhanov. History and recent development in SHS[J]. Ceramics international, 1995, 21(5): 371-379.
    [70] K. A. Philpot, Z. A, Munir, J. B. Holt. An investigation of the synthesis of nickel aluminides through gasless combustion[J]. Journal of Materials Science, 1987, 22(1):159-169.
    [71] L. L. Wang, Z.A. Munir, J.B. Holt. The combustion synthesis of copper aluminides[J]. Metallurgical and Materials Transaction B, 1990, 21(3): 567-577.
    [72] 韩杰才,王华彬,杜善义.自蔓延高温合成的理论与研究方法[J].材料科学与工程.1997,15:20-25.
    [73] 欧阳世翕,傅正义,袁润章.自蔓延高温合成技术研究动向[J].材料导报,1993.3:45-48.
    [74] S.M. Gruner. Time-resolved x-ray diffraction of biological materials[J]. Science, 1987,238:305-312.
    [75] J.R. Schoonover, S. H. Lin. Time resolved x-ray diffraction of the thermal decomposition of CdCO_3 powders using synchrotronr adiation[J]. Journal of Solid State Chemistry. 1988, 76(1): 143-159.
    [76] M. Sutton, Y. S. Yang, J. Mainvilie, et al. Observation of a precursor during the crystallization of amorphous NiZr_2[J]. Physical Review. Letters, 1989, 62(3): 288-291.
    [77] R. Larke, P. ernandez. Time-resolved x-ray studies of quenching and annealing in a glass-forming intercalate HNO_3-Graphite[J], Physical Review. Letters, 1989, 62(15): 1768-1771.
    [78] J. Wong, E. M. Larson, J. B. Holt, et al. Time-resolved x-ray diffraction study of solid combustion reactions[J]. Science, 1990, 249(9): 1406-1409.
    [79] E.M. Larson, P.A. Waide, J. Wong. High-speed diffractometer-reaction chamber using synchrotronr adiation[J]. Review Science instrument, 1991, 62(1): 53-57.
    [80] A.S. Rogachev, A.S. Mukas'yan, A.G. Merzhanov. Structural transitions in the gasles combustion of titanium-carbon, and titanium-boron systems[J]. Dokl. Akad. Nauk SSSR, 1987, 297:1425-1428.
    [81] 范群成.用燃烧波淬熄法研究SHS反应的机理[西安交通大学博士学位论文].西安:西安交通大学,2000.
    [82] Liquan Li, Tomohiro Akiyam, Jun-ichiro Yagi. Reaction 'mechanism of hydriding combustion synthesis of Mg_2NiH_4[J]. Imtermetallics, 1999, 7(6): 671-677.
    [83] Tian D. Xia, et al, Structure formation in the combustion synthesis composites[J]. Journal of the American Ceramic Society, 2000, 83(3): 507-512.
    [84] Guoqing Xiao, Quncheng Fan, Meizhuan Gua, et al. Dissolution-precipitation mechanism of self-propagating high-temperature synthesis of TiC-Ni cermet[J]. Materials Science and Engineering A, 2004, 382(1-2): 132-140.
    [85] L.L. Wang, Z.A. Munir, Y.M. Maximov. Thermite reactions: their utilization in The synthesis and processing of materials[J]. Journal of Materials Science, 1993,28(14): 3693-3708
    [86] R. A. Cutler, A.V.Virkar, J.B.Holt. Synthesis and Densification of Oxide-Carbide Composites[J]. Ceramic Engineering and Science Proceedings, 1985, 6(7-8): 715-718.
    [87] A. G. Merzhanov. History and recent developments in SHS [J]. Ceramics International, 1990, 21(5):371-379.
    [88] I.G.Sharma, S.P.Chakraborty, S.Majumdar, et al. A study on preparation of copper-niobium composite by aluminothermic reduction of mixed oxides[J]. Alloys and Compounds, 2002, 336(1-2): 247-252.
    [89] S.Majumdar, G.B.Kale, I.G.Sharma. A study on preparation of Mo-30W alloy by aluminothermic co-reduction of mixed oxides[J]. Alloys and Compounds, 2005,394:168-175.
    [90] I.G.Sharma, S.P.Chakraborty, A.K.Suri. Preparation of TZM alloy by aluminothermic smelting and its characterization[J]. Alloys and Compounds, 2005, 393: 122-127.
    [91] I. G. Sharma, S. Majumdar, S. P. Chakraborty, et al. Aluminothermic preparation of Hf-Ta and Nb-10Hf-ITi alloys and their characterization[J]. Alloys and Compounds, 2003, 350:184-190.
    [92] 梁叔全,郑子樵,谭澄宇,等.Al-TiO_2自蔓延高温合成反应机理[J].中国有色金属学报,1993,3(3):43-47.
    [93] Duangduen Atong, David E. Clark. Ignition behavior and characteristics of microwave-combustion synthesized Al_2O_3-TiC powders[J]. Ceramics International, 2004, 30 (7) : 1909-1912.
    [94] S. C. Tjong, G. S. Wang, Y-.W. Mai. High cycle fatigue response of in-situ Al-based composites containing TiB2 and Al_2O_3 submicron particles[J]. Composites Science and Technology, 2005, 65 (10) : 1537-1546.
    [95] S.K. Mishra, S.K. Das, L.C. Pathak. Sintering behaviour of self-propagating high temperature synthesised ZrB2-Al_2O_3 composite powder [J]. Materials Science and Engineering A, 2006,426(1-2): 229-234.
    [96] Eliria M.J.A. Pallone, Diego R. Martin, Roberto Tomasi, et al. Al_2O_3-WC synthesis by high-energy reactive milling[J]. Materials Science and Engineering A, 2007, 464(1-2): 47-51.
    [97] Liu Yonghe, Yin Sheng, Zhang Weijing, et al. Thermodynamic analysis of the self-propagation high-temperature synthesis Al_2O_3/B4C composite[J]. Scripta Materialia, 1998, 39(9): 1237-1242.
    [98] J.H. Lee, C.Y. An, C.W. Won, et al. Characteristics of Al_2O_3-SiC composite powder prepared by the self-propagating high-temperature synthesis process and its sintering behavior [J]. Materials Research Bulletin, 2000, 35(6): 945-954.
    [99] 刘永合,殷声,赖和怡.燃烧条件对自蔓延高温合成Al_2O_3/AlB_(12)复相陶瓷粉体特性的影响[J].无机材料学报,2000,15(30):473-479.
    [100] 王业亮,傅正义,王皓,等.B_2O_3-TiO_2-Mg-C体系燃烧反应热力学与产物结构变化过程研究[J].硅酸盐学报,2002,30(3):340-346.
    [101] Xiaochun Zeng, Guoxiong Sun, Shuge Zhang. Combustion synthesis of Al_2O_3(-Cr_2O_3)-Cr cermets[J]. Scripta mater, 2000, 42(12): 1167-1172.
    [102] A. K. Deb, P. Chatterjee, S. P. Sen Gupta. Synthesis and microstructural characterization of α-Al_2O_3-t-ZrO_2 composite powders prepared by combustion technique[J]. Materials Science and Engineering A, 2007, 459(1-2): 124-131.
    [103] E. OPILA, S. LEVINE, J. LORINCZ. Oxidation of ZrB_2 and HfB_2 based ultra-high temperature ceramics:effect of Ta additions[J]. Journal of Materials Science, 2004, 39: 5969-5977.
    [104] 蒋久信,陈卫武,王佩玲,等.炉渣α-Sialon粉的高温自蔓延燃烧合成及炉渣α-Sialon陶瓷性能研究[J].无机材料学报,2004,19(4):953-957.
    [105] S. Bhaduri and S. B. Bhaduri. Enhanced low temperature toughness of Al_2O_3-ZrO_2 nano/nano composites[J]. Nanostructured Materials, 1997, 8(6): 755-763.
    [106] Tian D. Xia, Zuhair A. Munir, Yan L. Tang, et al. Structure Formation in the Combustion Synthesis of Al_2O_3-TiC Composites[J]. Journal of the American Ceramic Society, 2000, 83(3):507-512.
    [107] Xia Tiandong, Wang Tianming, Zhao Wemjun, et al. Microstructure Change in the Radial Direction of the Cylindrical Products of the Al_2O_3-TiC Ceramics Combustion-Synthesized by Aluminothermic Reactions[J]. Rare Metal Materials and Engineering, 1999, 28 (6) : 363-367.
    [108] T. D. Xia, T. M. Wang, B. Y. Ma, et, al. Photo-and Cathodoluminescence of the Combustion-Synthesized Al_2O_3-TiC Composites [J]. physica status solidi (a), 1999, 174(1): 291-299.
    [109] E.J. Juganson, I.Y.Chernyavsky, V.Y. Ivantsov, et al. United States Patent, No.4005741.1977-02-01
    [110]A.J. Pignocco, R.H. Kachik. United States Patent, No.4142556.1979-05-06
    [111]Merzhanov A G, Kachon A R, Jukhvid V I, et, al. United States Patent, No.4217948.1980-08-19.
    [112]O. Odawara. United States Patent, No. 4363832.1982-12-14.
    [113]李冬黎,夏天东.Na_2B_4O_7对离心SHS陶瓷内衬复合钢管结构及性能的影响[J].热加工工艺,2000,6:18-20.
    [114]杨友,赵洪云,吴化,等.SHS-离心法陶瓷衬管致密性的提高[J].焊接学报,2003,24(2):75-80.
    [115]王宇飞,杨振国,郭宝山.SHS-离心法制备陶瓷复合管道热应力的有限元分析[J].材料工程,2005,2:6-9.
    [116]段辉平,殷声,柳牧,等.一种制备不锈钢内衬复合钢管的新工艺[J].北京科技大学学报,1996,18(4):334-337.
    [117]王晓军,夏天东,刘天佐,等.重力分离自蔓延高温合成法制备陶瓷内衬复合弯管的热力学计算[J].热加工工艺,2002,5:26-28.
    [118]闫红彦,潘希德,薛锦,等.低频机械振动对自蔓延陶瓷内衬复合管衬层性能影响研究[J].粉末冶金技术,2005,23(6):440-444.
    [119]杜忠泽,符寒光.陶瓷内衬复合铜管的自蔓延高温合成[J].热加工工艺,2002,5:28-30.
    [120]赵忠民,王建江,张龙,等.纳米/微米Al_2O_3-ZrO_2内衬复相陶瓷的自蔓延高温合成[J].粉末冶金技术,2004,22(4):218-222.
    [121]Nersisyan H H, Lee J H, Won C W. Combustion of TiO_2-Mg and TiO_2-Mg-C systems in the presence of NaCl to synthesize nanocrystalline Ti and TiC powders [J]. Materials Research Bulletin, 2003, 38:1135-1146.
    [122]豆志河,张廷安.自蔓延冶金法制备硼粉[J].中国有色金属,2004,14(12):2137-2143.
    [123]豆志河,张廷安,王艳利.自蔓延冶金法制备硼粉的基础研究[J].东北大学学报,2005,26(1):267-270.
    [124]王延玲,张廷安,杨欢.自蔓延高温还原法制备钨粉的研究[J].稀有金属材料与工程,2001,30(4):310-313.
    [125]Riccardo Ricceri, Paolo Matteazzi. A study of formation of nanometric W by room temperature mechanosynthesis[J]. Alloys and Compounds, 2003, 358: 71-75.
    [126]张廷安,豆志河.自蔓延冶金法制备TiB_2微粉的生长机理研究[J].无机材料学报,2006,21(3):583-590.
    [127]Wang Weimin, Fu Zhengyi, Wang Hao, et, al. Chemistry reaction processes during combustion synthesis of B_2O_3-TiO_2-Mg system[J]. Journal of Materials Processing Technology,2002,128:162-168.
    [128]王业亮,傅正义,王皓,等.TiB_2-TiC复合粉的自蔓延高温还原合成[J].复合材料学报,2003,20(1):16-21.
    [129]张化宇,韩才杰,赫晓东,等.自蔓延高温合成MgO-B_4C的影响[J].宇航材料工艺,2000,2:25-28.
    [130]张廷安,豆志河,杨欢.镁热自蔓延法制备B_4C微粉[J].东北大学学报,2003,24(10):935-938.
    [131]Riccardo Ricceri,Paolo Matteazzi. A fast and low-cost room temperature process for TiB_2 formation by mechanosynthesis[J]. Materials Science and Engineering, 2004, A379: 341-346.
    [132]Khanraa A K,.Pathakb L C, Mishrab S K, et, al. Effect of NaCl on the synthesis of TiB_2 powder by a self-propagatinghigh-temperature synthesis technique[J]. Materials Letters, 2004, 58: 733-738.
    [133]豆志河,张廷安,侯闯.自蔓延高温合成CaB_6的基础研究[J].中国有色金属,2004,14(2):322-326.
    [134]张廷安,豆志河,杨欢.自蔓延高温合成LaB_6微粉的制备及表征[J].东北大学学报,2005,26(1):271-273.
    [135]方舟,王皓,傅正义.Zr-B_2O_3-Mg体系自蔓延高温合成ZrB_2陶瓷粉末[J].硅酸盐学报,2004,32(6):755-758.
    [136]Smith N E. Fabrication of titanium cabide-alumina composites by combustion synthesis and subsequent dynamic consolidation[J]. Refract Metal & Hard Mater, 1989, 8: 204-206.
    [137]Ksandopolu A. Surface and inter-face ceramic materials by SHS[J]. Inter J SHS, 1992, 1(2): 126-130.
    [138]Yamada O, Miyamoto Y. SHS and dynamic compaction of multiphase ceramics[J]. Inter J SHS, 1992, 1(2): 275-279.
    [139]Kecskes L J, Kottke T, Niller A. Microstructural properties of combustion-synthesized and dynamically consolidated titanium boride and bitanium carbide[J]. Journal of the American Ceramic Society,1990, 73(5): 1274-1278.
    [140]金云学,张二林.自蔓延合成技术及原位自生复合材料[M].哈尔滨:哈尔滨工业出版社,2002.
    [141]叶大伦,胡建华.实用无机物热力学数据手册[M].北京:冶金工业出版社,2002.
    [142]Satterfield C N. Heterogeneous Catalysis in Industrial Practice[M]. McGraw-Hill, New York, 1991.
    [143]Odawara O. Long ceramic-lined pipes produced by a(?)centrifugal-thermit process[J]. J Am Ceram Soc, 1990, 73(3): 629-633.
    [144] Merzhanov A G, Borovinskaya I P, Dokl Akad auk. Self-propagating high-temperature synthesis of ingorganic compounds[J]. SSSR, 1972, 204(2): 429-431.
    [145] Frankhourser W L, Brendley K W, Kieszek M C, et al. Gasless combustion synthesis of refractory compounds[M], Park Ridge, New York, Noyes Publications, 1985: 152-156.
    [146] 邹正光.TiC/Fe复合材料的自蔓延高温合成工艺及应用[M].北京:冶金工业出版社.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.