蛭石—水溶液体系中锌、镉离子吸附特性与离子吸附理论
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用人工湿地处理含重金属离子废水是一种新兴工艺,其低能耗、低运行成本的优点吸引着众多研究者的关注。然而,与传统处理方法相比,人工湿地的缺点是处理能力及效率较低、占地面积较大、抗有机、重金属污染物负荷与水力负荷能力有限并受季节、气候的影响。至今为止,人工湿地技术的应用尚无统一的工程规范指南。在人工湿地中引入一个吸附单元、添加具有高效吸附性能的填料是解决上述问题的有效方法之一。吸附单元的设计与填料的选择需要知道污水处理量、起始污质浓度与填料吸附能力及用量的基本关系,其涉及液/固体系吸附机理问题。
     经典等温吸附理论都将平衡离子吸附密度qe定义为平衡液相离子浓度Ce的一元函数,而所有经典动力学方程也只给出了吸附密度q与吸附接触时间t的关系。后人用热力学原理来解释qe-Ce关系时,认为离子吸附反应存在吸附与解吸的动态平衡,在平衡点上液相离子的化学势μL与固相离子的化学势μs相等,因此qe与Ce应具有一一对应的值,与离子的起始浓度、吸附剂浓度以及吸附过程无关。经典等温吸附与动力学方程在应用中的主要问题是方程参数不稳定。在许多情况下,吸附剂浓度效应(经典等温曲线随吸附剂浓度增大而降低的现象)是导致经典方程参数不稳定的主要原因。受基本函数关系的限制,经典方程也不能直接用于计算已知起始离子浓度C0和吸附剂浓度W0体系的吸附量。因此,改进和完善液/固体系吸附理论、建立科学实用的吸附定量模型,不仅能为人工湿地的工程设计提供基础数据与参数,同时在环境界面化学研究中也具有一定理论意义。
     针对上述问题,本研究选用天然矿物材料蛭石作为吸附剂,在起始离子浓度20-500 mg/L和吸附剂浓度10-150g/L范围内,布置了蛭石—水溶液体系中Zn~(2+)、Cd~(2+)吸附的试验。其目的是检测吸附剂浓度效应、分析吸附体系组分因子以及组分因子化学势在平衡点上的基本关系,并在此基础上建立适用的预测模型。试验结果表明:
     1.蛭石对环境无毒害,廉价易得,阳离子吸附容量大,能迅速、有效地去除水溶液中的Zn~(2+)、Cd~(2+),适合作为人工湿地的填料;蛭石—水溶液体系离子吸附的主要机制为交换性吸附;由于存在吸附点竞争效应,共存阳离子能抑制Zn~(2+)、Cd~(2+)的吸附;在溶液pH 1-3.5区间Zn~(2+)、Cd~(2+)吸附量随pH值降低显著减小,但在pH 3.5-7区间,溶液pH对Zn~(2+)、Cd~(2+)的吸附没有显著影响;在15-45℃范围内,升高温度对Zn~(2+)、Cd~(2+)的吸附有利,但温度影响所导致的差异不显著。
     2.经典等温吸附曲线存在明显的吸附剂浓度效应,随吸附剂浓度W0增大,传统定义的qe-Ce等温线降低,经典方程的参数也呈现显著差异,说明与经典模型定义的关系不同,平衡吸附密度qe不唯一由液相平衡浓度e所决定,而是Ce和W0两个变量的函数。由于样本系列吸附剂浓度具有显著差异,Langmuir与Freundlich方程均不能用来描述综合样本试验数据。
     3.平衡离子吸附密度qe为C0/W0(起始点液相离子浓度C0与吸附剂浓度W0的比值)与Ce/W0(平衡液相离子浓度C0与W0的比值)两者之差。重复测试证实qe、Ce/W0与C0/W0三者具有一一对应的关系。观察到的现象表明液/固相离子吸附体系中的强度因子不是qe和Ce而是固相的qe与液相的Ce/W0。支持这一强度因子观点的依据是离子吸附反应的方向与速率取决于系统中离子量与吸附剂量的相对水平。
     4.提出了液/固离子吸附体系四组分模型理论,该模型认为吸附系统由四个必要并密切相关的因子组成,其分别为:液相离子A、固相离子B、未被占据的吸附点Wu、以及被离子占据的吸附点Wc,离子吸附基本反应式为:A+Wu======B+Wc因此对于理想的单离子吸附系统,吸附反应的平衡常数为:而离子吸附反应达到平衡的条件是离子与吸附剂化学势之和在液固相之间的差异为零,即
     5.基于四组分模型推导出平衡吸附预测模型:该模型的参数(吸附容量qm与吸附平衡常数k)物理意义明确,试验结果表明新模型在较大检测范围内与实测数据拟合良好。重现性检验证实平衡吸附预测模型具有较高的预测精确度。
     6.基于四组分离子吸附模型进一步提出了新的动力学方程:试验检测结果表明新方程的参数与起始离子浓度C0和吸附剂浓度W0具有相对稳定的函数关系,可作为给定C0、W0条件下蛭石—水溶液体系中Zn~(2+)、Cd~(2+)吸附动力学过程的预测模型。
     本研究提出的平衡体系离子吸附预测模型与离子吸附动态方程在应用吸附技术处理污水的工艺设计中具有一定的理论与实用价值。
As a new technology developed in recent years with characters of low energy consumption and low operation and maintenance cost, constructed wetlands (CW) used for treatment of wastewaters containing heavy metal pollutants have received great attention in fields of environmental science and ecology. Compared with that of conventional treatment processes, however, the application of CW techniques has been limited to certain areas mainly due to their relatively low treatment efficiency, large land use area, low capacity to resist hydraulic, organic and heavy metal pollutant loads and particularly instability to seasonal changes. There are thus so far no standardized guidelines and handbooks for design of CW processes that can be used for treatment of different types of wastewaters. As an effective solution to above mentioned problems, introduction of an adsorption buffer unit using materials with high adsorption capacity into a CW system can improve its treatment efficiency as well as enhance its sustainability. For selection of proper adsorbents and design of the buffer unit for removal of metal ions it needs to know the quantitative relationship between the amount of wastewater to be treated, the metal ion concentration in the wastewater, the adsorption capacity of the adsorbent and the adsorbent quantity to be used for reducing the metal ion concentration to a stipulated discharge standard. This involves mechanisms of ion adsorption in liquid/solid systems.
     All traditional adsorption isotherms, when being applied to describe the ion adsorption in liquid/solid systems, define the equilibrium ion adsorption density qe as a single function of the ion concentration in bulk solution Ce while all classical kinetic adsorption models deal with only the relationship between adsorption density q and contacting time t. The fundamental ground of classical models is that it implies a "dynamic equilibrium" between liquid and solid phases and therefore the equilibrium adsorption density qe only depends on the equilibrium concentration in bulk solution Ce, irrespective of the adsorption process history. The theory of thermodynamics applied to support the qe-Ce relation is that at the equilibrium state the chemical potential of the ions in the solid phase should be equal to that in the liquid phase. The main problem associated with classical adsorption isotherms and kinetic models is the instability of their constant parameters. The adsorbent concentration effect (a phenomenon of decline of traditionally defined adsorption isotherms with increasing adsorbent concentration) has been found to be in most cases responsible for the parameter inconstancy problem. Limited by their defined functions, classical models cannot be directly used for prediction of ion adsorption for a given adsorption system with known initial ion concentration Co and adsorbent concentration Wo. Improvement of existing liquid/solid adsorption theories and establishment of quantitative relationships with adsorption as functions of Co and W0 are therefore of both theoretical and practical significances not only for scientific research in the field of environmental interface chemistry but also for use of CW technology in wastewater treatment engineering practices.
     Designed experiments were thus carried out to investigate the adsorption characteristic of Zn~(2+)and Cd~(2+)in vermiculite-aqueous solution systems in the range of initial ion concentration 25-500 mg/L and adsorbent concentration 10-150 g/L under different conditions. The main objective was to test the adsorbent effect, analyze the basic relationship among adsorption components as well as their chemical potentials, and establish proper prediction models for practical use. Main results obtained from this study are summarized as follows:
     1. Accounted for by its nontoxic nature, low cost and high cation adsorption capacity, the natural vermiculite was proved to be a fine wetland filler for removal of Zn~(2+)and Cd~(2+)from wastewaters. Ion exchange was found to be the main mechanism for Zn~(2+)and Cd~(2+)adsorption in the tested system. Adsorption competition between K+ Zn~(2+)and Cd~(2+)was observed in mixed metal adsorption systems. The negative effect of decrease in solution pH on Zn~(2+)and Cd~(2+)adsorptions was found to be significant only in the pH range below 3.5, showing that Zn~(2+)and Cd~(2+)adsorption could be significantly depressed when high amounts of H+ ions were present in the sample solution. Temperature had a positive effect on Zn~(2+)and Cd~(2+)adsorption but its influence was statistically insignificant in the tested range between 15 and 45℃.
     2. There were obviously effects of adsorbent concentration (Wo) on the traditional adsorption isotherms (i. e., qe-Ce curves). In both Zn~(2+)and Cd~(2+)sample series the qe-Ce curves declined apparently with increasing Wo and the traditionally defined equilibrium constants also varied significantly at different W0 levels, showing clearly that, unlike that defined by classical models, qe is not a single function of Ce but a function of Ce and Wo. Due to presence of significant variation in adsorbent concentrations in tested samples, both Langmuir and Freundlich equations cannot be used to describe the combined data obtained from the present sample series.
     3. The equilibrium adsorption density qe is the difference between C0/W0 (the ratio of initial ion concentration Co to adsorbent concentration W0) and Ce/W0 (the ratio of equilibrium ion concentration in liquid phase to adsorbent concentration). Repeated tests indicate that these three ion/adsorbent ratios are closely related with unique values in the tested range. The observed phenomenon indicates that the intensity factor in liquid/solid ion adsorption systems is not Ce but Ce/W0 in the liquid phase and Q/Wo in the solid phase. The argument to support this intensity factor concept is that it is the relative level of ion quantity to adsorbent quantity that determines the direction and the rate of ion adsorption reactions.
     4. Based on an assumption that the equilibrium state of a liquid/solid ion adsorption system is determined by four mutually related essential components:ions in liquid phase A, ions in solid phase B, uncovered adsorption sites Wu and covered adsorption sites Wc, an ion adsorption reaction model for an ideal system containing a single ionic species was proposed as: A+Wu======B+Wc which defines a new equilibrium coefficient as In accordance with the reaction model, the condition for ion adsorption to reach its equilibrium defined by the chemical potentials of the components will be
     5. Based on the four adsorption components model, the following model is established for prediction of equilibrium adsorption, The proposed model fit well the experimental data obtained from the examined samples with satisfactory prediction accuracy.
     6. Based on the four adsorption components model, a new kinetic equation is further presented as Results from the kinetic experiment indicate that the above defined parameters remain nearly constant in the tested range, showing that given Co and Wo, the presented equation can be used to describe the kinetic ion adsorption process for Zn~(2+)and Cd~(2+)adsorptions in vermiculite-aqueous solutions.
     The proposed equilibrium and kinetic adsorption models are of high values both in theory and practice for design of wastewater treatment processes using adsorption techniques.
引文
[1]国家环境保护总局.全国环境统计公报(2005年).www.sepa.gov.cn, 2006-06-12.
    [2]王吉中,李胜荣,刘宝林等.国内矿物治理重金属废水研究进展与展望[J].矿物岩石地球化学通报,2005,24(2):159-164.
    [3]顾继光,周启星,王新.土壤重金属污染的治理途径及其研究进展[J].应用基础j与工程学报,2003,11(2):143—151.
    [4]陈怀满.土壤-植物系统中的重金属污染[M].北京:北京出版社,1996.
    [5]国家环保总局《水和废水监测分析方法》编委会编.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [6]奚旦立.环境监测[M].北京:高等教育出版社,1998:59.
    [7]《食品卫生学》编写组编,食品卫生学[M].北京:中国轻工业出版社.1993:213.
    [8]刘有才,钟宏,刘洪萍.重金属废水处理技术研究现状与发展趋势[J].广东化工,2005,4:36-39.
    [9]杨莉丽,康海彦,李娜,等.离子交换树脂吸附镉的动力学研究[J].离子交换与吸附, 2004,20(2):138-143.
    [10]Maliou E, Malamis M, Sakellarides PO. Lead and cadmium removal by ion exchange[J]. Water Sci,1992,25:133-138.
    [11]Sengupta M, Paul TB. Multicomponent ion exchange equilibria. I. Zn2+-Cd2+-H+ and Cu2+-Ag+-H+on Amberlite IR 120[J]. React. Pol.,1985,3:217-229.
    [12]Huang CP, Ostovic FB. Removal of cadmium (Ⅱ) by activated carbon adsorption[J]. J. Environ Eng.,1978,104:863-878.
    [13]木冠南,杨春芬.活性炭自溶液吸附锌(Ⅱ)离子及其配合物[J].物理化学学报,1995,11(、2):157-161.
    [14]张永锋,许振良.重金属废水处理最新进展[J].工业水处理,2003,23(6):1-5
    [15]蒋引珊,董振亮,张雨力.膨润土对干电池溶液中重金属离子的吸附作用[J].应用化学,1995,12(6):101.
    [16]Sameer Al-Asheh, Fawzi Banat. Adsorption of copper and zinc by oil shale[J]. Environmental Geology,2001,40 (6):693-698.
    [17]W. Y. Wan Zuhairi. Sorption capacity on lead, copper and zinc by clay soils from South Wales, United Kingdom[J]. Environmental Geology.2003,45:236-242.
    [18]K. M. Ibrahim, T. Akashah. Lead removal from wastewater using faujasite tuff[J]. Environmental Geology,2004,46:865-870.
    [19]单宝田,张爱滨,胡立阁,等.沸石对重金属废水中Cu(NH3)2+的吸附性能研究[J].水处理技术,2002,28(4):207-209.
    [20]罗道成,易平贵,陈安国.改性沸石对电镀废水中Pb2+、Zn2+、Ni2+的吸附[J].材料保护,2002,35(7):41-43.
    [21]胡忠于,罗道成,易平贵,等.改性海泡石对电镀废水中Pb2+、Cu2+、Cd2+的吸附[J].材料保护,2002,35(5):45-53.
    [22]高效江,戎秋涛.麦饭石对重金属离子的吸附作用研究[J].环境污染与防治,1997,19(4):4-7.
    [23]宋金如,罗明标,王黎.凹凸棒石吸附铅的性能及含铅废水处理研究[J].东华理工学院学报,2006,29(1):74-79.
    [24]杨越.从国内外专利看我国蛭石开发利用与世界的差距[J].矿产保护与利用,1997,5:48-50.
    [25]刘福生,彭同江,张宝述.膨胀蛭石的利用及其新进展[J].非金属矿,2001,24(4):5-7.
    [26]郭继香,袁存光,郑参军,等.用蛭石吸附法脱除污水中的重金属[J].石油大学学报,1998,22(2):60-63.
    [27]刘福生,彭同江,张建洪.蛭石改性处理研究现状评述[J].矿产综合利用,2002,(2):24-27.
    [28]郭继香,袁存光.吸附法处理石油污水中COD的实验研究(Ⅰ)——吸附剂及吸附条件的选择[J].精细化工,2000,17(9):522-525.
    [29]聂发辉,吴晓芙,胡曰利.人工湿地中蛭石填料净化污水中氨氮能力[J].城市环境与城市生态,2003,16(6):280-282.
    [30]胡曰利,吴晓芙,聂发辉.天然蛭石对污水中氨氮吸附去除率的影响[J].中南林学院学报,2004,24(1):30-33.
    [31]李晖,谭光群,李瑞.蛭石对汞的吸附性能研究[J].重庆环境科学,2001,23(2):65-67.
    [32]谭光群,李晖,彭同江.蛭石对重金属离子吸附作用的研究[J].四川大学学报(工程科学版),2001,33(3):58-61.
    [33]赵勇,魏国良,魏晓慧.多种材料对重金属Cr(Ⅵ)的吸附性能研究[J].安全与环境学报,2003,3(1):25-29.
    [34]谭光群,丁利华,李晖.蛭石对镉吸附作用的研究[J].广西化工,2000年中南、西南分析化学学术会议论文专集:45-48.
    [35]李晖,谭光群,彭同江.蛭石对Cd(Ⅱ)的动态吸附研究[J].化学研究与应用,2000,12(6):661-663.
    [36]刘勇,肖丹,杨文树,等.蛭石吸附Pb2+的动力学和热力学机理研究[J].四川大学学报(工程科学版),2005,37(5):62-67.
    [37]吴平霄,廖宗文,毛小云.高表面活性矿物对Zn2+的吸附机理及其环境意义[J].矿物学报,2001年21(3):335-340.
    [38]吴晓磊.人工湿地废水处理机理[J].环境科学,1995,16(3):83-86.
    [39]朱彤,许振成.酬康萍等.人工湿地污水处理系统应用研究[J].环境科学研究,1991,4(5):17-22.
    [40]Craig S Campbell, Michael H Ogden. Constructed wetlands in the sustainable landscape[M].New York:John Wiley & Sons Inc,1999:237-257.
    [41]陈长太,王雪,祁继英.国外人工湿地技术的应用及研究进展[J].中国给水排水,2003,19(12):105-106.
    [42]白晓慧,王宝贞,余敏等.人工湿地污水处理技术及其发展应用[J].哈尔滨建筑大学学报.1999,32(6):88-92.
    [43]吴亚英.人工湿地在新西兰的应用[J].江苏环境科技,2000,13(3):32-33.
    [44]US EPA. Guiding principles for constructed treatment wetlands:providing for water quality and wildlife habit[M]. Washington DC:US EPA, Office of Wetlands, Oceans and Watershed,2000.
    [45]徐琦。人工湿地:污水处理新出路[J].环境经济,2005,1:78-80.
    [46]岳春雷,常杰,葛滢等.利用复合垂直流人工湿地处理生活污水[J].中国给水排水,2003,19(7):84-85.
    [47]何成达, 季俊杰, 葛丽英等.厌氧悬浮床/潜流湿地处理生活污水[J].中国给水排水,2004,20(7):11-15.
    [48]张军,周琪,何蓉.表面流人工湿地中氮磷的去除机理[J].生态环境,2004,13(1):98-101.
    [49]宋志文,王仁卿,席俊秀等.人工湿地对氮、磷的去除效率与动态特征[J].生态学杂志,2005,24(6):648-651.
    [50]刘超翔,董春宏,李峰民等.潜流式人工湿地污水处理系统硝化能力研究[J].环境科学,2003,24(1):80-83.
    [51]Lakatos, G., Kiss, M.K., Kiss, M., Juhasz, P. Application of constructed wetlands for wastewater treatment in Hungary[J]. Water Science and Technology,1997,35 (5):331-336.
    [52]Sharma, S.S., Gaur, J.P. Potential of Lemna polyrhiza for removal of heavy metals[J]. Ecological Engineering,1995,4(1):37-45.
    [53]籍国东,孙铁珩,李顺.人工湿地及其在工业废水处理中的应用[J].应用生态学报,2002,13(2):224-228.
    [54]Wieder, R.K., GE.Lang. Modification of acid mine drainage in a freshwater wetland. In:B.R.McDonald(Ed.), Symposium on Wetlands of the Unglaciated Appalachian Region. West Virginia University, Morgantown, WV,1982,43-52.
    [55]Kleinmann, R.L.P. and R.S. Hedin. Treat mine water using passive methods[J]. Pollut.Eng.,1993,93:1005.
    [56]Lloyd R. Stark, Frederick M. Williams. Assessing the performance indices and design parameters of treatment wetlands for H+, Fe, and Mn retention[J]. Ecological Engineering,1995,5:433-444.
    [57]A.S.Mungur, R.B.E.Shutes, D.M.Revitt, et al. An Assessment of metal removal by a laboratory scale wetland[J]. Wat. Sci. Tech.,1997,35(5):125-133.
    [58]Shuiping Cheng, Wolfgang Grosse, Friedhelm Karrenbrock, et al. Efficiency of constructed wetlands in decontamination of water polluted by heavy metals[J]. Ecological Engineering,2002,18:317-325.
    [59]Richard R.Goulet, Frances R.Pick. Changes in dissolved and total Fe and Mn in a young constructed wetland:Implications for retention performance[J]. Ecological Engineering,2001,17:373-384.
    [60]W. Bradley Hawkins, John H. Rodgers, W. B. Gillespie, et al. Design and Construction of Wetlands for Aqueous Transfers and Transformations of Selected Metals[J]. Ecotoxicology and Environmental Safety.,1997,36:238-248.
    [61]唐述虞,宋正达,史建文等.金属矿酸性废水的湿地生态工程处理研究[J].中国环境科学,1993,13(5):356-360.
    [62]Tang, S., Experimental study of a constructed wetland for treatment of acidic wastewater from an iron mine in China[J]. Ecological Engineering,1993,2: 253-259.
    [63]唐述虞.铁矿酸性排水的人工湿地处理[J].环境工程,1996,14(4):3-7.
    [64]叶志鸿,陈桂珠,蓝崇钰等.宽叶香蒲净化塘系统净化铅/锌矿废水效应的研究[J].应用生态学报,1992,3(2):190-194.
    [65]阳承胜,蓝崇钰,束文圣.重金属在宽叶香蒲人工湿地系统中的分布与积累[J].水处理技术,2002,28(2):101-104.
    [66]黄淦泉,杨昌凤,靳立军等.人工湿地处理重金属Pb、Cd污水的机理探讨[J].应用生态学报,1993,4(4):456-459.
    [67]Moffat A.S.. Plants proving their worth in toxic metal cleanup. Science,1995, 269:302-303.
    [68]钱海燕,王兴祥,蒋佩兰,等.黑麦草连茬对铜、锌污染土壤的耐性及其修复作用[J].江西农业大学学报,2004,26(5):801-804.
    [69]简敏菲,弓晓峰,游海,等.水生植物对铜、铅、锌等重金属元素富集作用的评价研究[J].南昌大学学报·工科版,2004,26(1):85-88.
    [70]黄亮,李伟,吴莹,等.长江中游若干湖泊中水生植物体内重金属分布[J].环境科学研究,2002,15(6):1-4。
    [71]Unbabin J S, Bowmer K H. Potential Use of Constructed Wetlands for Treatment of Industrial Wastewater Containing Metals[J]. The Science of the Total Environment,1992,111:151-168.
    [72]Jean I, De Maeseneer. Constructed Wetlands for Sludge De watering [J]. Wat. Sci. Tech.,1997,35(5):279-285.
    [73]戴晶平,胡岳华.香蒲植物生理特性及其对矿山尾矿的环保作用[J].矿冶工程,2003,23(6):32-34.
    [74]蔡成翔,王华敏,张宗明.水葫芦对五种重金属离子的去除速率与富集机制研究[J].广西右江民族师专学报,2002,15(6):48-51.
    [75]李华,程芳琴,王爱英,等.三种水生植物对Cd污染水体的修复研究[J].山西大学学报(自然科学版),2005,28(3):325-327.
    [76]宋关玲,侯文华,汪群慧.水体中镉对紫萍修复富营养化水体影响的研究[J].四川大学学报(工程科学版),2005,37(3):56-60.
    [77]叶志鸿.锌污染对植物的毒害及植物的忍耐性[J].生态学杂志,1992,11(5):42-45.
    [78]王正秋,江行玉,王长海.铅、镉和锌污染对芦苇幼苗氧化胁迫和抗氧化能力的影响[J].过程工程学报,2002,2(6):558-563.
    [79]李大辉,施国新.Cd2+或Hg2+水污染对菱体细胞的细胞核及叶绿体超微结构的影响[J].植物资源与环境,1999,8(2):43-48.
    [80]陶明煊,吴国荣,顾龚平,等.Cd对荇菜光合、呼吸速率和ATPase活性的毒害影响[J].南京师大学报学报(自然科学版),2002,25(3):94-98.
    [81]Mays P A, Edwards G S. Comparison of heavy metal accumulation in a natural wetland and constructed wetlands receiving acid mine drainage [J]. Ecological Engineering,2001,16:487-500.
    [82]Mitsch W J, Wise K M. Water quality fate of metals and predictive model validation of a constructed wetland treating acid mine drainage [J]. Wat Res,1998, 32(6):1888-1900.
    [83]Marc A.Anderson, Alan J.Rubin,水溶液吸附化学——无机物在固—液界面上的吸附作用[M].刘莲生,张正斌,刘国盛译.北京:科学出版社,1989.
    [84]Langmuir I. The adsorption of gases on plane surfaces of glass, mica, and platinum [J]. J. Am. Chem. Soc.,1918,40:1361-1403.
    [85]湖南大学化学化工学院组编,蔡炳新主编.基础物理化学[M](第二版).北京:科学出版社,2006.
    [86]吴香梅,熊春华,舒增年.巯基树脂吸附银的行为及机理[J].化工学报,2003,54(10):1466-1469.
    [87]Ahmet Demir, Ahmet Gunay, Eyyup Debik. Ammonium removal from aqueous solution by ion-exchange using packed bed natural zeolite[J]. Water SA,2002,28 (3):329-335.
    [88]Sameer Al-Asheh, Fawzi Banat, Asmahan Masad. Physical and chemical activation of pyrolyzed oil shale residue for the adsorption of phenol from aqueous solutions[J]. Environmental Geology,2003,44:333-342.
    [89]邱学青,杨东杰,欧阳新平.木素磺酸盐在固体颗粒表面的吸附性能[J].化工学报,2003,54(8):1155-1159.
    [90]曾阿妍,颜昌宙,金相灿,等.金鱼藻对Cu2+的生物吸附特征[J].中国环境科学,2005,25(6):691-694.
    [91]K. Singh, S. Mohan. Adsorption behavior of selected monosaccharides onto an alumina interface [J]. Journal of Colloid and interface Science,2004,270:21-28.
    [92]B. B. Sahu, H. K. Mishra, K. Parida. Cation exchange and sorption properties of TIN(IV) phosphate [J]. Journal of Colloid and interface Science,2000,225: 511-519.
    [93]王兆同,王郁,胥峥,等.黄浦江底泥对多环芳烃(菲)的吸附过程模拟[J].华东理工大学学报,1999,25(2):156-159.
    [94]彭书传,李辉夫,陈天虎,等.纯凹凸棒石吸附Cu2+的实验研究[J].安徽农业大学学报,2005,32(2):212-215.
    [95]高艳秋.低温氮吸附容量法测催化剂比表面积[J].化学工程师,2004,10:35-36.
    [96]吴永文,李忠,奚红霞,等.高聚物吸附剂的孔隙结构和表面特性对苯酚吸附容量的影响[J].化工学报,2003,54(11):1642-1645.
    [97]周炜,须沁华,董家騄,等.新型两亲性含钛β沸石的制备与表征[J].化学学报,2003,61(10):1533-1536.
    [98]王榕,魏可镁,林建新,等.用水合肼还原的Ru/Ac氨合成催化剂的制备[J].催化学报,2003,24(12):929-932.
    [99]M. Barboza, C. O. Hokka, F. Maugeri. Continuous cephalosporin C purification dynamic modeling and parameter validation [J]. Bioprocess Biosyst Eng.,2002, 25:193-203.
    [100]M. Ozacar, I. A. Sengil. Equilibrium data and process design for adsorption of disperse dyes onto Alunite [J]. Environmental Geology,2004,45:762-768.
    [101]P. Lavi, A. Marmur. Adsorption isotherms for concentrated aqueous-organic solutions [J]. Journal of Colloid and Interface Science,2000,230:107-113.
    [102]S. V. Mohan, J. Karthkeyan. Adsorptive removal of reactive azo dye from an aqueous phase onto charfines and activated carbon[J]. Clean Techn. Environ. Policy,2004,6:196-200.
    [103]张爱茜,刘伟,吴海锁等,酿酒酵母对Cu2+生物吸附机制的研究[J].环境化学,2005,24(6):675-677.
    [104]何建玲.新型吸附树脂对苯乙酸的吸附热力学研究[J].离子交换与吸附,2004,20(2):131—137.
    [105]魏瑞霞,陈金龙,陈连龙,等.2-噻吩乙酸在三种不同树脂上的吸附热力学和动力学研究[J].高等学校化学学报,2004,25(11):2095-2098.
    [106]M. R. Taha, T. O. Leng, A. B. Mohamad, et al. Batch adsorption tests of phenol in soils [J]. Bull Eng Geol Env,2003,62:251-257.
    [107]G. Ozdemir, S. H. Baysal. Chromium and aluminum biosorption on Chryseomonas luteola TEM05[J]. Appl Microbiol Biotechnology,2004,64: 599-603.
    [108]邹卫华,陈宗璋,韩润平,等.锰氧化物/石英砂(MOCS)对铜和铅离子的吸附研究[J].环境科学学报,2005,25(6):779-784.
    [109]余纯丽,任建敏,吴四维.壳聚糖/PVA微粒上Cu2+的吸附平衡与动力学[J].中国环境科学,2006,26(4):449-453.
    [110]北川浩,铃木廉一郎.吸附的基础与设计[M].鹿政理译.北京:化学工业出版社,1983,33.
    [111]相波,李义久,倪亚明.螯合淀粉衍生物对铜离子吸附性能的研究[J].环境化学,2004,23(2):193-197.
    [112]曹煊,金春姬,刘兴超,等.碱渣对铜(Ⅱ)离子吸附特征的研究[J].环境化学,2006,25(4):414-419.
    [113]M. J. Mura-Galelli, J. C. Voegel, S. Behr. Adsorption/desorption of human serum albumin on hydroxyapatite:A critical analysis of the Langmuir model[J]. Pro. Natl. Acad. Sci. USA Biochemistry,1991,88:5557-5561.
    [114]C. N. Cordeiro, M. S. da Rocha, A. C. Faleiros. Analysis of application of Langmuir isotherm to heterogeneous systems:High-pressure conditions [J]. Journal of Colloid and interface Science,2005,286:459-461.
    [115]G. Pan, P. S. Liss. Metastable-equilibrium adsorption theory Ⅰ. Theoretical [J]. Journal of Colloid and interface Science,1998,201:71-76.
    [116]孙卫玲,倪晋仁.兰格缪尔等温式的适用性分析——以黄土吸持铜离子为例[J].环境化学,2002,21(1):37—44.
    [117]Tao Zuyi, Chu Taiwei. On the applicability of the Langmuir Equation to estimation of adsorption equilibrium constants on a powdered solid from aqueous solution[J]. Journal of Colloid and Interface Science,2000,231:8-12.
    [118]M. Luisa Cervera, M. Carmen Arnal. Removal of heavy metals by using adsorption on alumina or chitosan[J]. Anal. Bioanal. Chem.,2003,375:820-825.
    [119]O'Connor D J, Connolly J P. The effect of concentration of adsorbing solids on the partition coefficient [J]. Wat. Res.,1980,14:1517-1523.
    [120]Voice T C, Rice C P, Weber W J. Effect of Solids Concentration on the Sorptive Partitioning of Hydrophobic Pollutants in Aquatic Systems [J]. Environ. Sci. Technol.,1983,17:513-518.
    [121]Cox L, Hermosin M C, Celis R. Sorption of two polar herbicides in soils and soil clay suspensions [J]. Wat. Res.,1997,31:1309-1316.
    [122]Sanudo Wilhelmy S A, Rivera Duarte I, Flegal A R. Distribution of colloidal trace metals in the San Francisco Bay estuary [J]. Geochim. Cosmochim. Acta,1996, 60(24):4933-4944.
    [123]Voice T C, Weber W J. Sorbent concentration effects in liquid/solid partitioning [J]. Environ. Sci. Technol.,1985,19:789-796.
    [124]Pan G, Liss P S, Krom M D. Particle concentration effect and adsorption reversibility [J]. Colloids and Surface A,1999,151:127-133.
    [125]G. Benoit. The influence of size distribution on the particles concentration effect and trace metal partitioning in rivers [J]. Geochim Cosmochim Acta,1995,59: 2677-2687.
    [126]D. Grolimund, M. Borkovec, P. Federer. Measurement of sorption isotherms with flow-through reactors [J]. Environ. Sci. Technol.,1995,29:2317-2321.
    [127]U. P. Nyffeler, Y. Li, P. H. Santschi. A kinetic approach to describe traceelement distribution between particles and solution in natural aquatic systems [J]. Geochim Cosmochim Acta,1984,48:1513-1522.
    [128]R. L. Curl, G. A. Keioleian. Implicit-adsorbate model for apparent anomalies with organic adsorption on natural adsorbents [J]. Environ Sci Technol,1984,18: 916-922.
    [129]J. J. W. Higgo, L. V. C. Reos. Adsorption of actinides by inarine sediments: effect of the sediment/sea water ratio on the measured distribution ratio [J]. Environ. Sci. Technol.,1986,20:483-490.
    [130]T. Nagayasu, K. Imamura, K. Nakanishi. Adsorption characteristics of various organic substances on the surfaces of tantalum, titanium, and zirconium [J]. Journal of Colloid and interface Science,2005,286:462-470.
    [131]Pan G, Liss, P S. Metastable-equilibrium adsorption theory Ⅱ. Experimental [J]. Journal of Colloid and interface Science,1998,201:77-85.
    [132]J. A. Greathouse, R. T. Cygan. Molecular dynamics simulation of uranyl (Ⅵ) adsorption equilibria onto an external montmorillonite surface [J]. Physical Chemistry Chemical Physics,2005,7:3580-3586.
    [133]X. Hao, W. A. Spieker, J. R. Regalbuto. A further simplification of the revised physical adsorption (RPA) model [J]. Journal of Colloid and interface Science, 2003,267:259-264.
    [134]R. Cseh, R. Benz. The adsorption of phloretin to lipid monolayers and bilayers cannot be explained by Langmuir adsorption isotherms alone [J]. Biophysical Journal,1998,74:1399-1408.
    [135]R. Bai, R. T. Yang. Heterogeous extended Langmuir model with multiregion surfaces for adsorption of mixtures [J]. Journal of Colloid and interface Science, 2002,253:16-22.
    [136]L. Regdon, I. Dekany, G. Lagaly. A new way for calculation the adsorption capacity from surface excess isotherm [J]. Colloid Polym. Sci.,1998,276: 511-517.
    [137]G. Pan, M. D. Krom, B. Herut. Adsorption-desorption of phosphate on airborne dust and riverborne particulates in east mediterranean seawater [J]. Environ. Sci. Technol.,2002,36:3519-3524.
    [138]Y. Qin, G. Pan, M. Zhang. Adsorption of zinc on manganite (7-MnOOH):particle concentration effect and adsorption reversibility [J]. Journal of Environmental Sciences,2004,16:627-630.
    [139]吴晓芙,胡曰利,聂发辉,等.蛭石的NH4+吸附与Langmuir方程[J].湘潭大学自然科学学报,2004,26(3):66-71.
    [140]吴晓芙,胡曰利,聂发辉.蛭石氨氮吸附量与起始溶液浓度和介质用量的函数关系[J].环境科学研究,2005,18(1):64-66.
    [141]吴晓芙,胡曰利,雷电,等.蛭石与人造沸石氨氮平衡吸附:基本关系式与二次方程的解[J].中南林学院学报,2005,25(5):1-4.
    [142]黄岁梁,万兆惠,泥沙浓度和水相初始浓度对泥沙吸附重金属影响的研究[J].环境科学学报,1995,15(1):67-77.
    [143]Antonio R. Cestari, Eunice F.S. Vieira, Joana D.S. Matos, et al. Determination of kinetic parameters of Cu(II) interaction with chemically modified thin chitosan membranes[J]. Journal of Colloid and Interface Science,2005,285:288-295.
    [144]Juang R S, Chen M L. Competitive sorption of metal ions from binary sulfate solutions with solvent-impregnated resins[J]. Reactive and Functional Polymers, 1997,4(1):93-102.
    [145]Nathalie C, Richard G, Eric D. Adsorption of Cu(Ⅱ) and Pb(Ⅱ) onto a grafted silica:isotherms and kinetic models[J]. Water Research,2003,37:3079-3086.
    [146]武振华,孙津生,宋慧平,等.趋磁细菌(MTB)吸附Pd2+的实验研究[J].离子交换与吸附,2006,22(5):385-391.
    [147]Panday K K, Prasad G, Singh V N. Copper (Ⅱ) removal from aqueous solutions by fly ash [J]. Water Research,1985,19:869-873.
    [148]Selvaraj R, Younghun K, Cheol K J. Removal of copper from aqueous solution by aminated and protonated mesoporous aluminas:kinetics and equilibrium [J]. Journal of Colloid and interface Science,2004,273:14-21.
    [149]Li Y, Di Z, Luan Z, et al. Removal of heavy metals from aqueous solution by carbon nanotubes:adsorption equilibrium and kinetics[J]. Journal of Environmental Sciences,2004,16(2):208-211.
    [150]芦鹏,吴晓芙,于旭彪,等.固液体系中Cr(Ⅵ)吸附的动态模拟[J].中南林业科技大学学报(自然科学版),2007,27(1):118-123.
    [151]Sarkar D, Essington M E, Misra K C. Adsorption of mercury (Ⅱ) by variable charge surfaces of quartz and gibbsite [J]. Soil Sci. Soc. Am. J.,1999, 63:1626-1636.
    [152]Saha U K, Taniguchi S,Sakurai K. Adsorption behavior of cadmium, zinc, and lead on hydroxyaluminum- and hydroxyaluminosilicate-montmorillonite complexes[J]. Soil Sci. Soc. Am. J.,2001,65:694-703.
    [153]Jiang K, Sun T, Sun L, et al. Adsorption characteristics of copper, lead, zinc and cadmium ions by tourmaline [J]. Journal of Environmental Sciences,2006, 18(6):1221-1225.
    [154]Burgess R M, Perron M M, Gantwell M G, et al. Use of zeolite for removing ammonia and ammonia-caused toxicity in marine toxicity identification evaluations [J]. Arch. Environ. Contam. Toxical.,2004,47:440-447.
    [155]Wang Y, Zhou D, Luo X, et al. Cadmium adsorption in montmorillonite as afected by glyphosate [J]. Journal of Environmental Sciences,2004,6(6): 881-884.
    [156]Harter R D, Naidu R. An assessment of environmental and solution parameter impact on trace-metal sorption by soils[J]. Soil Sci. Soc. Am. J.,2001,65: 597-612.
    [157]Sastre de Vicente M E. The concept of ionic strength eighty years after its introduction in Chemistry[J]. Journal of Chemical Education,2004,81(5): 750-753.
    [158]Curkovic L, Cerjan-Stefanovic S, Filipan T. Metal ion exchange by natural and modified zeolite[J]. Water Res,1997,31(6):1379-1382.
    [159]Evangelou V P, Lumbanraja J. Ammonium-potassium-calcium exchange on vermiculite and hydroxyl-aluminum vermiculite[J]. Soil Sci. Soc. Am. J.,2002, 66:445-455.
    [160]陶祖贻,张保林,盛芬玲.低浓度下离子交换树脂吸附氨基酸的机理[J].物理化学学报,1992,8(4):464-469.
    [161]张受谦主编.化工手册[M].济南:山东科学技术出版社,1987,574,569.
    [162]于旭彪.蛭石—水溶液体系中Cu(Ⅱ)的吸附特性研究[D].株洲:中南林业科技大学研究生部,2007.
    [163]芦鹏.红壤—水溶液体系中Cr(Ⅵ)的吸附特性研究[D].株洲:中南林业科技大学研究生部,2007.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.