蛭石—水溶液混合离子体系中锌、镉离子的吸附特性与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业化进程的加快,大量的重金属废水被直接排入到江河湖泊造成水体重金属含量急剧升高,导致我国各大水系受到了不同程度的重金属污染,水体重金属污染不仅加剧了可用水资源的短缺,而且也直接影响到饮水安全、粮食生产和农作物安全,最终危害人类健康。采用人工湿地处理含重金属离子废水是一种新兴工艺,其低能耗、低运行成本的优点吸引着众多研究者的关注。然而,与传统处理方法相比,人工湿地的缺点是处理能力及效率较低、占地面积较大、抗有机、重金属污染负荷与水力负荷能力有限并受季节气候的影响。在人工湿地中引入一个吸附单元添加具有高效吸附性能的填料是解决上述问题的有效方法之一。
     经典吸附方程都将等温条件下平衡吸附密度qe表达为平衡液相离子浓度e的一元函数,大量的实验结果证明经典等温曲线存在明显的吸附剂浓度效应(随着吸附剂浓度增大,传统意义上的吸附等温线下降的现象),前人认为吸附剂浓度效应是溶液离子强度和pH值引起的,为了消除吸附剂对离子吸附的影响,往往采取引入缓冲溶液来控制系统的pH值和离子强度的办法;而后人则认为离子吸附反应的方向与速率取决于系统中离子量与吸附剂量的相对水平,产生吸附剂浓度效应的根本原因是由于液/固相离子吸附体系中的强度因子不是qe和Ce而是固相qe和液相的Ce/W0,因此,在做qe-Ce曲线图中必然存在吸附剂浓度效应。依据吸附系统中四个必要吸附组成成分(液相离子Ce、固相离子Qe、未被占据的吸附点wc、被离子占据的吸附点wc)提出了一个新的平衡离子吸附密度预测方程,但此方程基于单一离子吸附系统提出,其是否可用于混合离子体系有待于进一步的研究。因此,研究吸附剂浓度效应产生的真正原因、验证新的吸附定量模型在混合离子体系中的应用对于改进和完善液/固吸附理论具有重要意义。
     针对上述问题,本研究选用蒸馏水反复洗涤后烘干的蛭石作为吸附剂和蒸馏水作为溶剂,在起始浓度0.2mmol/L-2.0mmol/L和吸附剂浓度50-150g/L范围内,布置了一系列蛭石——水溶液混合离子体系和蛭石——缓冲溶液体系中对锌、镉、氨等的吸附试验以研究其吸附特征和吸附机理。主要研究结果如下:
     (1)天然蛭石具有储量丰富、价格低廉、吸附容量大、对环境无毒无害且容易再生等优点,能迅速、有效地去除水溶液中的Zn2_、Cd2+、NH4+,适合作为人工湿地的填料;蛭石——水溶液体系中离子吸附的主要机制为交换性吸附;由于存在吸附点竞争效应,共存阳离子能抑制Zn2+、Cd2+的吸附。
     (2)缓冲实验结果表明:离子强度和pH值不是产生Wo应的根本原因,缓冲溶液的引入不仅没有消除吸附剂浓度,还增大了实验误差;缓冲系统存在着强烈的离子吸附竞争,大量其它阳离子的存在极大地抑制了Zn2+、Cd2+的吸附,致使缓冲系统的吸附量远远低于非缓冲系统。
     (3)在混合离子体系中,重复测试证实平衡离子吸附密度qe与C0/W0(起始点液相离子浓度C0与吸附剂浓度Wo的比值)与Ce/W0(平衡液相离子浓度Ce与Wo的比值)三者之间仍具有一一对应关系,观察到的现象再次表明液/固相混合离子吸附体系中的强度因子也不是qe和Ce而是固相的qe和液相Ce/W0。
     (4)在单一离子吸附系统中基于四组分模型推导出的平衡吸附预测模型:qe={co+qm-[(co+qm)2-4coqm(1-k)]1/2}/[2(1-k] co=C0/W0可进一步用来预测液/固混合离子体系的平衡吸附密度qe,qe-Co方程对混合离子体系的平衡吸附密度qe的预测证明:在混合离子系统中所有离子的吸附竞争能力遵循等当量浓度定律,即系统吸附的总当量为系统被吸附离子种类的当量和:qeT=∑qei,而离子A的吸附当量qeA为系统离子吸附总当量qeT与系统A离子浓度当量CoA与系统总离子浓度当量的比值的乘积,即qeA=(A离子的当量/总离子的当量)*qeT。
     (5)新模型对混合离子吸附系统中吸附密度qe的预测实验结果表明在较大检测范围内与实测数据拟合较好;新模型也可用来预测缓冲体系的平衡液相离子浓度Ce,但其预测的精确度比非缓冲系统差。
Along with the accelerated industrialization course, a mass of heavy metal containing waste waters was discharged into rivers and lakes, resulting in sever pollutions of heavy metals. Not only was the shortage of useable water resource directly affected by heavy metal pollution, but also the security of drinking water, food and crop production, and the health of human being were endangered. As a new technology developed in recent years with characters of low energy consumption and operation and maintenance cost, constructed wetlands (CW) used for treatment of wastewaters containing heavy metal pollutants have received great attention in fields of environmental science and ecology. Compared with that of conventional treatment processes, however, the application of CW techniques has been limited to certain areas mainly due to their relatively low treatment efficiency, large land use area,low capacity to resist hydraulic, organic and heavy metal pollutant loads and particularly instability to seasonal changes. As an effective solution to above mentioned problems, introduction of an adsorption buffer unit using materials with high adsorption capacity into a CW system can improve its treatment efficiency as well as enhance its sustainability.
     All traditional adsorption isotherms, when being applied to describe the ion adsorption in liquid/soild systems, define the equilibrium ion adsorption density qe as a single function of the ion concentration in bulk solution Ce.Results from a large number of studies,however, show that there were obviously effects of adsorbent concentration on the traditional adsorption isotherms(i.e.,a phenomenon of decline of the traditionally defined adsorption isotherms with increasing adsorbent concentration).Many scholars think that changes in system ionic strength and pH value are the main factors responsible for the adsorbent effect and thus in order to eliminate this impact they usually adopt a buffer system for control of solution pH value and ionic strength when conducting their adsorption tests. Later studies, however, have demonstrated that the direction and the rate of ion adsorption reactions is dependent on the relative level of ion quantity to adsorbent quantity, which suggests that the intensity factor in liquid/solid ion adsorption systems is not Ce but Ce/Wo in liquid phase and Qe/W0 in the solid phase, and therefore there will be an adsorbent effect when qe is plottedto against Ce.Based on presence of four essential adsorption components(ion in liquid phase Ce,ion on solid surface Qe,covered adsorption site wc and uncovered adsorption site wu) in the adsorption system, a qe-Ce/W0 adsorption isotherm model has been established. The new model, however,has been tested so far only for single ionic species systems and whether or not it can be used for mixed ion system needs further investigations.Therefore, it is of great significance to test the basic relationship among ion adsorption components in mixed ionic species systems so as to improve the liquid/soild ion adsorption theory.
     Using vermiculite(0.2-0.4mm, dried after rinsed with distrilled water) as the adsorbent and distrilled water as the solvent, designed experiments were carried out to investigate the adsorption characteristic and mechanisms of Zn2+、Cd2+ and NH4+ in both buffer solutions and mixed ion species systems in the range of initial ion concentration 0.2-2.0 mmol/L and adsorbent concentration 50~150 g/L.The results obtained from the tests are summarized as follows:
     (1) Accounted for by its nontoxic nature, low cost renewable and high cation adsorption capacity, the natural vermiculite was proved to be a fine wetland filler wetland for removal of Zn2+、Cd2+ and NH4+ from wastewaters. Ion exchange was found to be the main mechanism for Zn2+ and Cd2+ adsorption in the tested system.Because of adsorption competition, coexisting cation can inhibit the adsorption of Zn2+ and Cd2+.
     (2) Results from buffer experiments show that ionic strength and pH are not the fundamental cause of W0 effect; introduction of buffer solution has not eliminated the adsorbent effect, but instead, increased the experimental error. Strong adsorption competition exists in buffer system and the existence of large number of other cationic spcies has greatly inhibited adsorption of Zn2+ and Cd2+.Due to adsorption of other types of ions,the potential adsorption capacity available for Zn2+ and Cd2+ in buffer system is below that in the non-buffer system.
     (3) In the mixed system, repeated tests indicated that the three ion/adsorbent ratios (the adsorption density qe, the ratio of initial ion concentration to adsorbent concentrationC0/W0 and the ratio of equilibrium ion concentration in liquid phase to adsorbent concentration Ce/Wo)are closely related with unique values in the tested ranges. The observed phenomenon indicates that the proposed intensity factor theory holds basically in mixed ionic species adsorption systems.
     (4) Based on the four adsorption components model proposed for single ionic species adsorption systems, qe={co+qm-[(co+qm) 2-4coqm (1-k)]1/2}/[2(1-k)]co=C0/W0
     a new model extend for mix ionic species systems has been developed by assuming that in the mixed system adsorption competence of all ions abide by the rule of equivalent concentration,i.e.,the total equivalent adsorption of the system equals to the sum of equivalent amount of different ionic species adsorbed by the system:qeT=∑qei, and thus the equivalent adsorption density of ion A(qeA) equals to the sumof equivalent adsorption density of all ions presence in the system(qeT) multiplying the ratio initial equivalent concentration of ion A(CoA) to the sum of initial equivalent concentration of ionic species present in the system (C0T), i.e.,qeA=(C0A/C0A)*qeT.
     (5) The model extended for mixed ionic spscies systems fit well the experimental data obtained from the examined sample in the tested rangle with satisfactory prediction accurary.The model can also be used to predict equilibrium liquid ion concentration Ce in buffer systems though its accurary level is lower than that in non-buffer systems.
引文
[1]刘昌明.宗旨与设想[R].中国水资源论坛.2002.9.
    [2]刘有才,钟宏,刘洪萍.重金属废水处理技术研究现状与发展趋势[J].广东化工,2005,4(1):36-39.
    [3]张志,赵永斌.微电解—中和沉淀法处理酸性重金属矿山地下水的试验研究[J].有色金属:选矿部分,2002(4),12:45—47.
    [4]来风习,王九思,杨玉华.铁氧体法处理重金属废水研究[J].甘肃联合大学学报(自然科学版),2006,20(3):64—66.
    [5]郭小华,葛红光,李江.铁屑内电解法处理含铬电镀废水研究[J].化学工程师,2006,5(1):39—40.
    [6]詹燕,熊忠.铁屑内电解法对苎麻废水的预处理研究[J].工业水处理,2003,23(2):28—31.
    [7]何宏平,郭九皋.粘土矿物对重金属离子吸附选择性的实验研究[J].矿物学报,1999,19(2):231—235.
    [8]Leonard A.Oste, Theo M.Lexmond, Willem H.Van Riemsdijk. Metal immobilization in soils using synthetic zeolites[J]. Environ.Qual,2002,31 (2): 813-821.
    [9]罗道成,易平贵,陈安国.改性沸石对电镀废水中Pb2+、Zn2+、Ni2+的吸附[J].材料保护,2002,35(7):41—43.
    [10]相波,刘亚菲,李义久,等.壳聚糖及其衍生物对重金属吸附性能的研究[J].工业水处理,2004,24(5):10—12.
    [11]李光林,魏世强.腐殖酸对铜的吸附与解吸特征[J].生态环境,2003,12(1):4—7.
    [12]骆巧琦,陈长平,梁君荣,等.利用藻类去除电镀废水中重金属的实验研究[J].厦门大学学报(自然科学版),2006,45(B05):277—280.
    [13]杨维,王立东,林森,等.新型改性膨润土制备及其对Cr(Ⅵ)的吸附性能[J].沈阳建筑大学学报,2007,23(6):1004-1008.
    [14]彭清涛.植物在环境污染治理中的应用[J].环境保护,1998,12(2):24—27.
    [15]Brown G A, Elliott H A. Influence of electrolytes on EDTA exraction of Pb from polluted soil[J]. Water Air Soil Poll,1992,62 (3):157-168.
    [16]韦朝阳,陈同斌.重金属污染植物修复技术的研究与应用现状[J].地球科学进展,2002,17(6):833—839.
    [17]胡曰利,吴晓芙,聂发辉.天然蛭石对污水中氨氮吸附去除率的影响[J].中南林学院学报,2004,24(1):30-33.
    [18]吴平霄,廖宗文,毛小云.高表面活性矿物对Zn2+的吸附机理及其环境意义[J].矿物学报,2001,21(3):335-340.
    [19]郭继香,袁存光,郑参军,等.用蛭石吸附法脱除污水中的重金属[J].石油大学学报,1998,22(2):60-63.
    [20]李晖,谭光群,彭同江.蛭石对Cd(Ⅱ)的动态吸附研究[J].化学研究与应用,2000,12(6):661-663.
    [21]谭光群,丁利华,李晖.蛭石对镉吸附作用的研究[J].广西化工,2000,23(7):45-48.
    [22]邓雁希,许虹,黄玲.蛭石去除废水中磷酸盐的研究[J],中国非金属矿工业导刊,2003,9(6),42—44.
    [23]聂发辉.人工湿地中新型填料净化污水能力的研究[D],株洲:中南林业科技大学研究生部,2003
    [24]周平,刘东.利用天然蛭石处理造纸黑液[J],环境科学研究,2001,14(3):37—39.
    [25]郭继香,袁存光.吸附法处理石油污水中COD的实验研究(Ⅰ)——吸附剂及吸附条件的选择[J].精细化工,2000,17(9):522-525.
    [26]吴晓磊.人工湿地废水处理机理[J].环境科学,1995,16(3):83—86.
    [27]朱彤,许振成,酬康萍,等.人工湿地污水处理系统应用研究[J].环境科学研究,1991,4(5):17—22.
    [28]Craig S Campbell, Michael H Ogden. Constructed wetlands in the sustainable landscape[M]. New York:John Wiley & Sons Inc,1999.237-257.
    [29]陈长太,王雪,祁继英.国外人工湿地技术的应用及研究进展[J].中国给水排水,2003,19(12):105-106.
    [30]白晓慧,王宝贞,余敏,等.人工湿地污水处理技术及其发展应用[J].哈尔滨建筑大学学报.1999,32(6):88-92.
    [31]吴亚英.人工湿地在新西兰的应用[J].江苏环境科技,2000,13(3):32-33.
    [32]US EPA. Guiding principles for constructed treatment wetlands:providing for water quality and wildlife habit[M]. Washington DC:US EPA, Office of Wetlands, Oceans and Watershed,2000.56-65.
    [33]徐琦.人工湿地:污水处理新出路[J].环境经济,2005,10(1):78-80.
    [34]岳春雷,常杰,葛滢,等.利用复合垂直流人工湿地处理生活污水[J].中国给水排水,2003,19(7):84-85.
    [35]何成达,季俊杰,葛丽英等.厌氧悬浮床/潜流湿地处理生活污水[J].中国给水排水,2004,20(7):11-15.
    [36]张军,周琪,何蓉.表面流人工湿地中氮磷的去除机理[J].生态环境,2004,13(1):98-101.
    [37]宋志文,王仁卿,席俊秀等.人工湿地对氮、磷的去除效率与动态特征[J].生态学杂志,2005,24(6):648-651.
    [38]刘超翔,董春宏,李峰民等.潜流式人工湿地污水处理系统硝化能力研究[J].环境科学,2003,24(1):80-83.
    [39]Lakatos, G.Kiss, M.K., Kiss, M., et al. Application of constructed wetlands for wastewater treatment in Hungary[J]. Water Science and Technology,1997,35 (5):331-336.
    [40]Sharma, S.S., Gaur, J.P., Potential of Lemna polyrhiza for removal of heavy metals[J]. Ecological Engineering,1995,4 (1):37-45.
    [41]籍国东,孙铁珩,李顺.人工湿地及其在工业废水处理中的应用[J].应用生态学报,2002,13(2):224-228.
    [42]Ahmadi S, Tseng L K, Bactehelor B. Micellar—enhanced uhrafiltrtion of heavy metal using lecithin[J]. Sep. Sci. and Tech.,1994,29(18):435-450.
    [43]Masri M S, lteuter F W, Friedman M. Binding of metal cations by natural ubstanees[J]. J. Appl. Polymer Sci.,1974,18(3):675-679.
    [44]Srivastava S K, Singh A K, Sharma A. Studies on the uptake of lead and zinc by lignin obtained from black liquor—a paper industry waste material [J]. Environ. Teehnol.,1994,15(4):353-361.
    [45]Roy D, Greenlaw P N, Shanc B S. Adsorption of heavy metals by green algae and ground rice hulls[J]. J. Environ.Sei. Health.A,1993,28(1):37-50.
    [46]Niu H, Xu X S, Wang JH. Remove of lead from aqueous solutions by penicillium biomass[J]. Biotechnol.Bioeng,1993,42:785-787.
    [47]Leppert D. Heavy metal sorption with elinoptilolite zeolite:alternatives for treating contaminated soil and water [J]. Mining Eng.,1990,42(6):604-608.
    [48]Shukh S R, Jawed M. Column studies on metal ion removal by dyed celluloic materials[J]. J. Appl. Polymer Sci.,1992,44(5):903-910.
    [49]Freeland G N, Hoskinson R M, Mayfield R J. Adsorption of heavy metal aqueous solutions by polyethylenimine—modified wool fibers[J]. Environ. Sci. Technol,1974,8(10):943-944.
    [50]张永锋,许振良.重金属废水处理最新进展[J].工业水处理.2003—06,23(6):1-3.
    [51]韩志萍,张建梅等.植物整治技术在重金属废水处理中的应用[J].环境科学与技术2002,25(3):46-48.
    [52]颜素珠,梁东,彭秀娟.8种水生植物对污水中重金属:铜的抗性及净化能力的探讨[J].中国环境科学,1990,10(3):166-170.
    [53]L. Scholesa, U, R.B.E. Shutesa, et al. The treatment of metals in urban runoff by constructed wetlands [J]. The Science of the Total Environment,1998,3(5): 211-219.
    [54]Green way M. Constructed wetlands in Queens land:Performance efficiency and nutrient bioaccumulation. Ecol Eng,1999,12:39-55.
    [55]A.S.Mungur, R.B.E.Shutes, D.M.Revitt, et al. An Assessment of metal removal by a laboratory scale wetland[J]. Wat. Sci. Tech.,1997,35 (5):125-133.
    [56]Balicka N. Interrelationships Between Microoganisms and Plants in Soil Elsevier Sci Publ,1988,343-349.
    [57]Shuiping Cheng, Wolfgang Grosse, Friedhelm Karrenbrock, et al. Efficiency of constructed wetlands in decontamination of water polluted by heavy metals [J]. Ecological Engineering,2002,18:317-325.
    [58]Miklas Scholz*. Performance predictions of mature experimental constructed wetlands which treat urban water receiving high loads of lead and copper[J]. Water Research,2003,10(37):1270-1277.
    [59]Hanna, Obarska, Pempkowiak, et al. Distribution of nutrients and heavy metals in a constructed wetland system[J]. PII:S0045-6535 (99) 00111-3.
    [60]阳承胜,蓝崇钰,束文圣.重金属在宽叶香蒲人工湿地系统中的分布与积累[J].水处理技术,2002,28(2):101-104.
    [61]黄淦泉,杨昌凤,靳立军等.人工湿地处理重金属Pb、Cd污水的机理探讨[J].应用生态学报,1993,4(4):456-459
    [62]M.A.安德森,A.J.鲁宾主编.刘莲生,张正斌,刘国盛译.水溶液吸附化学[M].北京:科学出版社,1989.
    [63][日]北川浩,铃木谦一郎著.吸附的基础与设计[M].化学工业出版社,1983.31.
    [64]朱步瑶,赵振国编著.界面化学基础[M].北京:化学工业出版社,1996.327.
    [65]余纯丽,任建敏,吴四维.壳聚糖/PVA微粒上Cu2+的吸附平衡与动力学[J].中国环境科学,2006,26(4):449-453.
    [66]赵丹,王曙光,栾兆坤,等.改性斜发沸石吸附水中氨氮的研究[J].环境化学,2003,22(1):59-63.
    [67]Sameer Al-Asheh, Fawzi Banat. Adsorption of copper and zinc by oil shale[J]. Environmental Geology,2001,40 (6):693-698.
    [68]Voice T C, Weber W J.Adsorbent Concentration Effects in Liquid/solid Partitioning[J]. Environ.Sci.Technol.,1985,19:789-796.
    [69]G. Pan, P. S. Liss, M. D. Krom. Particle concentration effect and adsorption reversibility [J]. Colloids and Surface A,1999,151:127-133.
    [70]G. Benoit. The influence of size distribution on the particles concentration effect and trace metal partitioning in rivers [J]. Geochim Cosmochim Acta,1995,59: 2677-2687.
    [71]D. Grolimund, M. Borkovec, P. Federer. Measurement of sorption isotherms with flow-through reactors [J]. Environ.Sci.Technol.,1995,29:2317-2321.
    [72]U.P.Nyffeler, Y.Li, P.H.Santschi. A Kinetic approach to describe traceelement distribution between particles and solution in natural aquatic systems [J]. Geochim Acta,1984,48:1513-1522.
    [73]R. L. Curl, G. A. Keioleian. Implicit-adsorbate model for apparent anomalies with organic adsorption on natural adsorbents [J]. Environ Sci Technol,1984,18: 916-922.
    [74]J.J.W.Higgo, L.V.C.Reos. Adsorption of actinides by inarine sediments:effect of the sediment/sea water ratio on the measured distribution ratio[J]. Environ.Sci. Technol.,1986,20:483-490.
    [75]T. Nagayasu, K. Imamura, K. Nakanishi. Adsorption characteristics of various organic substances on the surfaces of tantalum, titanium, and zirconium [J]. J. Colloid Interface Sci.2005,286:462-470.
    [76]M. J. Mura-Galelli, J. C. Voegel, S. Behr. Adsorption/desorption of human serum albumin on hydroxyapatite:A critical analysis of the Langmuir model [J]. Pro. Natl. Acad. Sci. USA Biochemistry,1991,88:5557-5561.
    [77]J. A. Greathouse, R. T. Cygan. Molecular dynamics simulation of uranyl (VI) adsorption equilibria onto an external montmorillonite surface [J]. Physical Chemistry Chemical Physics,2005,7:3580-3586.
    [78]X. Hao, W. A. Spieker, J. R. Regalbuto. A further simplification of the revised physical adsorption (RPA) model [J]. J. Colloid Interf. Sci.,2003,267: 259-264.
    [79]R.Cseh, R. Benz. The adsorption of phloretin to lipid monolayers and bilayers cannot be explained by Langmuir adsorption isotherms alone [J]. Biophysical Journal,1998,74:1399-1408.
    [80]K. Singh, S. Mohan. Adsorption behavior of selected monosaccharides onto an alumina interface [J]. J. Colloid Interf. Sci.2004,270:21-28.
    [81]刘福生,彭同江,张建洪.蛭石改性处理研究现状评述[J].矿产综合利用,2002,5(2):24-27.
    [82]M.Luisa Cervera, M.Carmer Arnal. Removal of heavy metals by using adsorption on alumina or chitosan[J]. Anal.Bioanal.Chem.,2003,375:820-825.
    [83]O'Connor D J, Connolly J P. The effect of concentration of adsorbing solids on the partition coefficient[J]. Wat.Res.,1980,14:1517-1523.
    [84]Voice T C, Rice C P, Weber W J. Effect of Solids Concentration on the Sorptive Partitioning of Hydrophobic Pollutants in Aquatic Systems[J]. Environ.Sci. Technol,1983,17:513-518.
    [85]Cox L, Hermosin M C, Celis R. Sorption of two polar Herbicides in solids and soil clay suspensions [J]. Wat.Res.,1997,31:1309-1316.
    [86]Sanudo wilhelmy S A, Rivera Duarte I, FLegal A R. Distribution of colloidal trace in the San Francisco Bay estuary [J]. Geochim. Cosmochim. Acta,1996, 60(24):4933-4944.
    [87]赵芳,吴晓芙,张艳丽,等.固液相离子吸附体系中的吸附剂浓度效应与Langmuir方程的适用性[J].环境化学,2007,26(3):335-338.
    [88]Richard Cseh, Roland Benz. The adsorption of phloretin to lipid monolayers and bilayers cannot be explained by Langmuir adsorption isotherms alone. Biophysical Journal,1998,74:1399-1408.
    [89]Y.Qin, GPan, M.Zhang. Adsorption of zinc on manganite(7-MnOOH):Particle concentration effect and adsorption reversibility [J]. Journal of Environmental Sciences,2004,16:627-630.
    [90]G Pan, P.S.Liss. Metastable-equilibrium adsorption theory Ⅱ. Experimental [J]. J.Colloid Interface Sci.1998b,201:77-85.
    [91]Antonio R. Cestari, Eunice F.S.Vieira, et al. Determination of kinetic parameters of Cu(Ⅱ) interaction with chemically modified thin chitosan membranes[J]. Journal of Colloid and Interface science,2005,28 (5):288-295.
    [92]X.Wu, Y.Hu, F.Zhao, Z.Huang, D.Lei. Ion Adsorption components in liquid/solid systems[J]. Journal of Environmental Sciences,2006,18:1167-1175.
    [93]赵芳.蛭石——水溶液体系中锌、镉离子吸附特性与离子吸附理论[D].长沙:中南林业科技大学研究生部,2007.
    [94]Sarkar D, Essington M E, Misra K C. Adsorption of mercury(Ⅱ) by variable charge surface of quartz and gibbsite[J]. Soil Sci.Soc.Am.J.,1999,63:1626-1636.
    [95]Saha U K, Taniguchi S, Sakurai K. Adsorption behavior of cadmium,zinc and lead on hydroxyaluminum- and hydroxyaluminosilicate-montmorillonite complexes[J]. Soil Sci.Soc.Am.J.,2001,65:694-703.
    [96]Kaman Singh, Sudhanshu Mohan. Adsorption behavior of selected monosaccharides onto an alumina interface[J]. Journal of Colloid and Interface Science.,2004,270:21-28.
    [97]赵芳,吴晓芙,胡曰利.等,蛭石吸附水溶液中锌、镉的行为研究[J].环境化学,2007,5(7):115-118.
    [98]杭州大学化学系分析化学教研室编.化学分析(第二分册)[M].杭州:化学工业出版社.1982,53-59.
    [99]Sastra de Vicente M E. The concept of ionic strength eighty years after its introduction in chemistry [J]. Journal of chemical Education,2004,81 (5):750-753.
    [100]卢鹏.红壤——水溶液体系中Cr(Ⅵ)的吸附特性研究[D].株洲:中南林业科技大学研究生部,2007
    [101]于旭彪.蛭石——水溶液体系中Cu(Ⅱ)的吸附特性研究[D].株洲:中南林 业科技大学研究生部,2007
    [102]Jiang K, Sun T, Sun L, et al. Adsorption characteristics of copper,lead,zinc and cadmium ions by tourmaline[J]. Journal of Environmental Sciences,2006,18 (6): 1221-1225.
    [103]Burgess R M. Perron M M, Gantwell M G, et al. Use of zeolite for removing ammonia and ammonia-caused toxicity in marine toxicity identification evaluations[J]. Arch.Environ.Contam.Toxical.,2004,47:440-447.
    [104]Wang Y, Zhou D, Luo X, et al. Cadmium adsorption in montmorillonite as affected by glyphosate[J]. Journal of Environmental Sciences,2004,6(6):881-884.
    [105]Li Y, Di Z, Luan Z, et al. Removal of heavy metals from aqueous solution by carbon nanotubes:adsorption equilibrium and kinetics[J]. Journal of Environmental Sciences,2004,16(2):208-211.
    [106]刘勇,肖丹,杨文树,等.蛭石吸附Pb2+的动力学和热力学机理研究[J].四川大学学报(工程科学版),2005,37(5):62-67.
    [107]何江,李朝生,等.多离子体系中黄河沉积物对重金属的竞争吸附研究[J].沉积学报,2003,21(3):500-505.
    [108]陶祖贻,张保林,盛芬岭.低浓度下离子交换树脂吸附氨基酸的机理[J].物理化学学报,1992,8(4):464-469.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.