红壤—水溶液体系中Cr(Ⅵ)的吸附特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电镀、印染等工业的快速发展,含Cr废水的污染形势日益严峻,严重影响人类的健康和生存。采用人工湿地处理含重金属离子废水是一种新兴工艺,其低能耗、低运行成本的优点吸引着众多研究者的关注。人工湿地中吸附剂对污染物的吸附是处理工艺中重要环节之一。因此填料的选择、定量及其对重金属离子吸附行为的研究在应用人工湿地处理重金属废水中具有重要意义。
     经典等温吸附理论都将平衡离子吸附密度qe定义为平衡液相离子浓度C的一元函数,而所有经典动力学方程也只给出了吸附密度q与吸附接触时间t的关系。在实际应用中经典吸附方程存在着吸附剂浓度效应和方程中参数不稳定等问题。受基本函数关系的限制,经典方程不能直接用于计算已知起始离子浓度C0和吸附剂浓度W0体系的吸附量。因此,改进和完善液/固吸附理论,建立更为科学实用的离子吸附定量模型成为当前吸附领域的研究重点之一
     本研究的理论基础是离子吸附四组分模型。模型认为,吸附系统应由四个必要因子组成,其分别为:液相离子C、固相离子Q、未被占据的吸附点Wu、以及被离子占据的吸附点Wc。和经典等温吸附理论不同,四组分理论认为平衡离子吸附密度qe(离子吸附量Qe与吸附剂量Wo的比值)是C0/W0(起始液相离子浓度C0与吸附剂浓度W0的比值)与Ce/W0(平衡液相离子浓度Ce与W0的比值)的一元函数。基于这一原理,可得出qe与ce的基本关系:k=Ce(qm-qe)/qe2 Ce=Ce/W0及qe与c0的基本关系(即平衡吸附预测模型):qe={co+qm-[[(c0+qm)2-4c0qm(I-k]1/2}/[2(1-k)] co=C0/W0
     本研究的目的是通过探讨三个离子/吸附剂比值,qe,ce和c0之间的关系来检验四组分模型是否适合于描述固/液吸附体系中阴离子的吸附过程;并在四组分理论的基础上建立新吸附动力学方程,用来预测不同时间t点上离子的吸附量。
     针对以上问题,本研究选择红壤作为吸附剂,在起始离子浓度5-375 mg/L和吸附剂浓度50-250 g/L范围内进行了Cr(Ⅵ)的等温吸附试验和动态吸附试验。主要研究结果如下:
     (1)红壤来源广泛、廉价易得,含有大量的铁、铝氧化物凝胶,具有较强吸附Cr(Ⅵ)的能力。作为人工湿地填料,可以高效地去除废水中的Cr(Ⅵ)。
     (2)Cr(Ⅵ)吸附速率在初始2小时内很高,吸附在10小时左右趋向平衡。吸附达到平衡所需的时间与起始离子浓度C0和吸附剂浓度Wo相关,基本趋势是随C0增大而延长,随Wo增大而减短。
     (3)经典方程的应用主要存在两大问题:一是吸附剂浓度效应,表现为等温吸附曲线(即qe-Ce曲线)随吸附剂浓度增大而降低;二是方程参数不恒定为常数,随吸附剂浓度变化而变化,说明吸附密度qe不是平衡液相离子浓度Ce的一元函数。
     (4)遵循系统的状态函数唯一由状态间的差异来决定的热力学原理,平衡点固相离子/吸附剂比(Qe/W0)唯一由起始点液相离子/吸附剂比(C0/W0)与平衡点液相离子/吸附剂比(Ce/W0)的差异来决定,与离子、吸附剂的体积浓度及吸附反应过程无关。这意味着液/固离子吸附体系中的强度因子不是离子的体积浓度,而是离子量与吸附剂量的比值,其决定吸附反应的方向与速率。离子吸附达到平衡的条件是离子与吸附剂化学势之和在固液相之间的差异为零。
     (5)离子/吸附剂比试验与体积影响试验结果均表明,给定c0,qe与ce值基本保持为常数,说明qe是ce或者c0的一元函数。qe与ce而不是与Ce具有一一对应函数关系,因此经典等温曲线(即q,-Ce曲线)存在吸附剂浓度效应是一种必然现象。
     (6)反复测试的结果显示,平衡吸附模型预测值与试验数据吻合很好,具有较高的预测精度。新定义的qe-ce和qe-c0等温曲线基本消除了吸附剂浓度效应。
     (7)基于qe-c0关系,建立了新的离子吸附动力学方程:q=qe{1-[b/(b+t)]a},a=1/2,b=qe/(c0qm)1/2试验检测结果表明新方程的参数与起始离子浓度C0和吸附剂浓度W0具有相对稳定的函数关系,可作为给定C0、Wo条件下红壤-水溶液体系中Cr(Ⅵ)吸附动力学过程的预测模型。
     本试验结果证明四组分吸附模型适用于描述阴离子吸附过程。
Following the rapid development of galvanization, printing and dyeing industries, Chromium-containing wastewater pollution has become a severe problem that gives potential hazard to ecosystems as well as the public health. Development of new techniques for removal of Cr (VI) from wastewaters has thus become an important topic in water environmental protection. As a new technology developed in recent years with characters of low energy consumption low operation and maintenance cost, constructed wetlands (CW) used for treatment of wastewaters containing heavy metal pollutants have received great attention in the field of environmental sciences. Removal of harmful pollutants using adsorbent as CW fillers plays an important role in the CW process for wastewater treatment. For selection of proper adsorbents with low cost and high adsorption capacity it needs to know the quantitative relationship between the amount of wastewater to be treated, the metal ion concentration in the wastewater, the adsorption capacity of the adsorbent and the adsorbent quantity to be used for reducing the metal ion concentration1 to a stipulated discharge standard. This involves mechanisms of ion adsorption in liquid/solid systems.
     All classical adsorption isotherms, when being applied to describe the ion adsorption in liquid/solid systems, define the equilibrium ion adsorption density qe as a single function of the ion concentration in bulk solution Ce while all existing kinetic adsorption models deal with only the relationship between adsorption density q and contacting time t. The main problem associated with classical adsorption isotherms and kinetic models is the instability of their constant parameters. Furthermore, limited by their defined functions, classical models cannot be directly used for prediction of ion adsorption for a given adsorption system with known initial ion concentration Co and adsorbent concentration Wo. Establishment of a quantitative relationship with adsorption as a function of Co and Wois thus of high values for use of CW technology in wastewater treatment engineering practices.
     The theoretical ground of this study is the recently developed ion adsorption component model. According to this model, the equilibrium state of a liquid/solid ion adsorption system should be determined by four mutually related components:ions in liquid phase C, ions in solid phase Q, uncovered adsorption sites Wu and covered adsorption sites Wc. Different from that defined by classical adsorption isotherms, the equilibrium ion adsorption density qe (the ratio of the equilibrium ion adsorption Qe to adsorbent concentration Wo) in the adsorption component model is defined as a single function of Ce/Wo (the ratio of the equilibrium ion concentration in liquid phase Ce to Wo) or Co/Wo (the ratio of initial ion concentration Co to Wo) in the following forms, k=ce(qm-qe)/qe2 ce=CeWo qe={co+qm-[(co+qm)2-4coqm(1-k)]1/2}/[2(1-k)] Co=rCo/Wo
     The main objective of this study is to test the fitness of the developed model to anion adsorptions in liquid/solid systems with focus on examining the basic relationship among the ion/adsorbent ratios, qe, ce and co. In addition a kinetic adsorption model was further developed for prediction of anion adsorption as a function of contacting time t.
     Using red soil as the adsorbent, both equilibrium and kinetic adsorption experiments were therefore conducted to investigate the adsorption characteristic of Cr (Ⅵ) in red soil-aqueous solution systems in the range of initial ion concentration 5-375 mg/L and adsorbent concentration 50-250 g/L under different conditions. The experimental results are summarized as follows:
     (1) Red soil contains high amount of iron and aluminum oxides and has thus relatively high capacity to adsorb Cr (Ⅵ). As a natural resource widely distributed in south China, red soil can be easily obtained with very low cost and has thus also economic values when being used as a CW filler for treatment of Cr(Ⅵ)-containing wastewater.
     (2) The rate of Cr (Ⅵ) adsorption on red soil was found to be very high in the first 2h. After that period the adsorption rate gradually descended and finally approached to zero at approximately 10 h. The time needed for adsorption to reach its equilibrium was related to both the initial Cr (Ⅵ) concentration (Co) and the red soil concentration (Wo) in the adsorption system. The general trend was that the time needed was longer at higher initial Cr (Ⅵ) concentration levels but shorter at higher adsorbent concentration levels.
     (3) Two major problems were observed when applying the classical adsorption model to describe the Cr (VI) adsorption on red soil:one was a decline of the adsorption isotherm with increasing adsorbent concentration, interpreted as adsorbent effect, and the other was the inconstancy of the equation parameters, namely, the defined constant parameters varied significantly in the sample series with great variation in adsorbent concentration. The observed results suggests that unlike that defined by classical adsorption isotherms, the equilibrium Cr (VI) adsorption density qe is not a single function of its equilibrium concentration in bulk solution Ce.
     (4) In agreement with the theory of thermodynamics that the sate function of a system is only determined by its difference between states, the obtained results showed that the equilibrium Cr (VI) adsorption density qe was uniquely determined by the difference between Co (the ratio of initial Cr (VI) concentration Co to adsorbent concentration Wo) and ce (the ratio of the equilibrium Cr (VI) concentration in liquid phase Ce to Wo) independent of Co, Wo and the process history. This is an indication that the intensity factor in a liquid/solid ion'adsorption system is not the volume-based ion concentration but rather the ratio of ion quantity to adsorbent quantity as it is the relative level of ion quantity to adsorbent quantity that determines both the direction and rate of the ion adsorption. Ion adsorption arrives at equilibrium only when the difference in sum of ion and adsorbent chemical potentials between liquid and solid phases is zero.
     (5) Both the concentration and volume tests conducted at different Co and Wo levels proved that giving the Co/Wo ratio co, the CJWo ratio ce and QJWo ratio qe remained nearly unchanged, confirming that qe can be expressed as a single function of either ce or Co. As qe corresponds to a unique ce rather than to a unique Ce, the widely observed adsorbent concentration effect on traditionally defined adsorption isotherm is an expected result.
     (6) Results from repeated Cr (VI) adsorption tests indicated that the proposed model fit well the combined experimental data with satisfactory prediction accuracy. The adsorbent concentration effect was eliminated in both the qe-ce and qe-co plots.
     (7) Subject to the qe-co relation, the following kinetic equation was further proposed q=qe{1-[bl(b+t)a), a=1/2, b= qe/(coqm)1/2
     Results from the kinetic experiment indicated that the above defined parameters remain nearly constant in the tested range, showing that given C0 and W0, the proposed model can be used to describe the kinetic Cr (VI) adsorption process in red soil-aqueous solutions.
     The result from the present study confirms that the adsorption component model can be applied to describe the anion adsorption in aqueous solution.
引文
[1]石玉波(水利部水资源司).我国水资源的状况与利用.www. esph. com. cn,2004.
    [2]国家环境保护总局.2004年全国环境统计公报[J].环境经济,2005,07:22-24.
    [3]国家环保局编.水和废水监测分析方法[M].北京:中国环境科学出版社,1989.157-159.
    [4]韦进宝,钱沙华编.环境分析化学[M].北京:化学工业出版社,2002.80-81.
    [5]史吉平,董永华,檀建新.铬对小麦幼苗超氧物歧化酶活性的影响[J].河北农业大学学报,1994,17(增刊):62-65.
    [6]林加涵,林海宁,黄志斌,等.铬对文昌鱼的毒性效应和生长的影响[J].台湾海峡,1998,17(2):134-138.
    [7]逯兆庆,寻知磊.活性炭处理含铬废水的方法[J].三废治理,2002,21(5):4244.
    [8]徐衍忠,秦绪娜,刘详红,等.铬污染及其生态效应[J].科学与技术,2002,25:8-28.
    [9]Krishnamurthy S, Wilkens M M. Environmental chemistry of Cr[J]. Northeastern Geology,1994,16(1):14-17.
    [10]云兵,仇荣亮,陈志良,等.重金属污染土壤中提高植物提取修复功效的探[J].环境污染治理技术与设备,2002,3(4):56-59.
    [11]刘华良,王晓蓉,周徐海,等.污染土壤/沉积物的修复技术研究进展[J].环境污染与防治网络版,2005,(5)
    [12]胡凯,季永盛.含铬废水治理技术及应用现状[J].中国资源综合利用,2005(3):28-29.
    [13]赵文波.电镀废水处理方法评议[J].工业水处理,1987,7(3):7-11.
    [14]丁翼.铬化学物生产与应用[M].北京:化学工业出版社,2003,2.
    [15]王亚雄,郭瑾珑,刘瑞霞.微生物吸附剂对重金属的吸附特性[J].环境科学,2001,22(6):72-75.
    [16]Kratochivll D. Volesky B. Advance in Biosorption of Heavy Metals [J]. Trends Biotechnol,1998(16):291-300.
    [17]张永锋,许振良.重金属废水处理最新进展[J].工业水处理,2003,23(6):1-5.
    [18]彭超英,朱国洪,尹国,等.人工湿地处理污水的研究[J].重庆环境科学,2000,22(6):43-45.
    [19]刘勇,肖丹,杨文树,等.蛭石吸附Pb2+的动力学和热力学机理研究[J].四川大学学报(工程科学版),2005,37(5):64-67.
    [20]夏海萍,柯家骏.膨润土对重金属离子的吸附动力学[J].中国有色金属学报,1995,5(4):51-53.
    [21]刘廷志,田胜艳,商平,等.蒙脱石吸附Cr3+、Cd2+、Cu2+、Pb2+、Zn2+的研究:pH值和有机酸的影响[J].生态环境,2005,14(3):353-356.
    [22]Pilon-Smits E. A. H, de Souza M. P, Hong G. Volatilization and accumulation by twenty aquatic plant species [J]. Environ Qual,1999,128(3):1011-1018.
    [23]Qian J. H., Zayed A., Zhu Y. H.. Phytoaccumulation of trace elements by wetland plants:Ⅲ. Uptake and accumulation of ten trace elements by twelve plant species [J]. Environ Qual,1999,28(5):1448-1455.
    [24]Srivastav R. K., Gupta S. K., Nigam K. D. P. Treatment of chromium and nickel in watewater by using aquatic plants [J]. Wat Res,1994,28(7):1631-1638.
    [25]颜素珠,梁东,彭秀娟.8种水生植物对污水中重金属铜的抗性及净化能力的探讨[J].中国环境科学,1990,10(3):166-170.
    [26]党酉胜,黄钟,张伯鸣,等.污水土地处理的研究现状及发展趋势[J].陕西环境,2002,9(5):17-19.
    [27]Comin F A, Romero J A.1997. Nitrogen removal and cycling in restored wetlands used as filters of nutrients for agricultural run off [J]. Wat Sci Tech,35(5): 255-261.
    [28]Mckin Lay RG, Kasperek.1999. Observations on decontamination of herbicide polluted water by marsh plant systems [J]. Wat Res,32(2):505-511.
    [29]Shutes RBE.1997. The design of wetland systems for the treatment of urban runoff [J]. Wat Sci Tech,35(5):19-25.
    [30]刘文祥.人工湿地在农业面源污染控制中的应用研究[J].环境科学研究,1997,10(4):15-19.
    [31]付融冰,杨海真,顾国维,等.潜流人工湿地对农村生活污水氮去除的研究[J].水处理技术,2006,32(1):18-22.
    [32]于少鹏,孙广友,窦素珍.人工湿地污水处理技术及其在东平湖水质净化中的运用[J].湿地科学,2004,2(3):228-233.
    [33]JiG-D(籍国东),SunT-H(孙铁珩),ChangS-J(常士俊).2001. Super heavy oil produced water treatment by surface flow constructed wetland. Environ Sci(环境科学),22 (4):95-99 (in Chinese)
    [34]JiG-Di籍国东),SunT-H(孙铁珩),ChangS-J(常士俊).2001. Studies on subsurface flow wetland treatment system for special thick oil production wastewater from Liaohe oilfield. China Environ Sci(中国环境科学),21(1):85-88(in Chinese).
    [35]Gschll T, Steinmann C.1998. Constructed wetlands for effluent polishing of lagoons. Wat Res,33(2):505-511.
    [36]Schonborn A.1997. Long term performance of the sand-plant-filter Schatt weid (Switzerland). Wat Sci Tech,35(5):307-314.
    [37]Vrhovsek D, Kukanja V.1997. The use of constructed wetland for landfill leachate treatment. Wat Sci Tech,35(5):301-306.
    [38]Cui B S(崔宝山),Liu XT(刘兴土).2001. Discussion on some basic problems in design of wetland ecosystem. Chin J Appl Ecol(应用生态学报),12(1):145-150 (in Chinese)
    [39]Greenway M.1997. Nutrient content of wetland plants in constructed wetlands receiving municipal effluent in tropical Australia. Wat Sci Tech,35(5):135-142.
    [40]Gulley JR, KlymDJ.1992. In environmental issues and waste management in energy and minerals production. Balkema, Rotterdam.1431-1438.
    [41]KadlecH.1997. Deterministic and stochastic aspects of constructed wetland performance and design. Wat Sci Tech,35(5):149-154.
    [42]Mitsch WJ, Wise KM.1998. Water quality, fate of metals, and predictive model validation of a constructed wetland treating acid mine drainage. WatRes,32(6):1888-1900.
    [43]Morris M, HerbertR.1997. The design and performance of avertcal flow reed bed for the treatment of high ammonia, low suspended solids organic effluents. Wat Sci Tech,35(5):197-204.
    [44]Richardson CJ, QianSS.1999. Long-term phosphorus assimilative capacity in fresh water wetlands:a new paradigm for sustaining ecosystem structure and function. Environ Sci&Tech,33(10):1545-1551.
    [45]TyrellWR.1997. Trialing wetlands to treat coal mining wastewater in a low rainfall, high evaporation environment. Wat Sci Tech,35(5):293-300.
    [46]Vrhovsek D, KukanjaV.1996. Constructed wetland(CW) for industrial wastewater treatment. Wat Res,30(10):2287-2292.
    [47]Wiebner A, Kuschk P.1999. Treating a lignite pyrolysis wastewater in a constructed subsurface flow wetland. Wat Res,33(5):1296-1302.
    [48]尹军,催玉波编著.人工湿地污水处理技术[M].北京:化学工业出版社,2006.150-152.
    [49]尹军,催玉波编著.人工湿地污水处理技术[M].北京:化学工业出版社,2006.152-154.
    [50]尹军,催玉波编著.人工湿地污水处理技术[M].北京:化学工业出版社,2006.103-104.
    [51]黄高凌,张勇,张杰.污水—海水混合体系中磷和有机物的吸附过程[J].厦门大学学报[J].2001,40(3):751-757.
    [52]刘成伦,徐龙君,刘希东.利用煤吸附处理含铬废水及生活污水的试验研究[J].四川环境,1998,17(2):20-24.
    [53]周富春,鲜学福,徐龙君.吸附在污水处理中的应用和研究进展[J].中国矿业,2004,13(12):47-49.
    [54]顾惕人等主编.表面化学[M].北京:科学出版社,1994.234-354.
    [55]王正烈,周亚平.物理化学,天津大学物理化学教研室[M].高等教育出版社,2001年第四版.
    [56][日]北川浩,铃木谦一郎著.吸附的基础与设计[M].化学工业出版社,1983.31.
    [57]M.A.安德森,A.J.鲁宾主编.刘莲生,张正斌,刘国盛译.水溶液吸附化学[M].北京:科学出版社,1989年.
    [58]朱步瑶,赵振国编著.界面化学基础[M].北京:化学工业出版社,1996.327.
    [59]Juang R s, Chen M L. Competitive sorption of metal ions from binary sulfate solutions with solvent-impregnated resins[J]. Reactive and Functional Polymers.1997,4(l):93-102.
    [60]Carter W C, Roosen A R, Cahn J W, et al. Shape evolution by surface diffusion and surface attachment limited kinetics corn pletely faceted surfaces [J]. Acta Metallurgica Materialia.1995,43(12):4309-4323.
    [61]Antonio R. Cestari, Eunice F. S. Vieira, Joana D. S. Matos. Determination of Kinetic parameters of Cu(Ⅱ) interaction with chemically modified thin chitosan membranes[J]. Journal of Colloid and Interface Science.285(2005):288-295.
    [62]杜冬云,柯小宁,赵小蓉,等.改性累脱石对磷的吸附[J].非金属矿,2003,26(5): 51-55.
    [63]吴晓芙,胡曰利,聂发辉.蛭石氨氮吸附量与起始溶液浓度和介质用量的函数关系[J].环境科学研究,2005,18(1):64-66.
    [64]吴宏海,刘佩红,张秋云,等.高岭石对重金属离子的吸附机理及其溶液的pH条件[J].高校地质学报,2005,11(1):85-91.
    [65]周平,刘东.利用天然蛭石处理造纸黑液[J].环境科学研究,2001,14(3):37-39.
    [66]郭继香,袁存光.吸附法处理石油污水中COD的实验研究(Ⅰ)——吸附剂及吸附条件的选择[J].精细化工,2000,17(9):522-525.
    [67]陈天虎,汪家权.蒙托石粘土改性吸附剂处理印染废水试验研究[J].中国环境科学,1996,16(1):60-63.
    [68]邵颖,王青清,刘维屏.膨润土改性及其在分散大红溶液脱色处理中的应用[J].环境科学与技术,1997,(4):16-18.
    [69]王连军,黄中华,孙秀云,等.改性凹凸棒土处理染化废水研究[J].南京理工大学学报,1998,22(3):240-243.
    [70]金辉,徐得才,李忠敏,等.有机膨润土处理乳化油废水研究[J].环境污染与防治,1998,20(6):11-13.
    [71]裘祖楠,沈祖勤,张谊,等.用凹凸棒石处理高浓度含油废水的研究[J].上海环境科学,1995,14(2):22-26.
    [72]George R. Alther. Organically modified clay remove soil from water [J]. Waste Mangement,1995,15(8):623-628.
    [73]O. R. Pal, A. K. Vanjara. Removal of malathion and butachlor from aqueous solution by clay sand or ganoclays [J]. Separation and Purification Technology, 2001,24:167-172.
    [74]E. Gonzlez-Pradas, M. VillaFranca-snchez, F. Delrey-Bueno, M. Durea-Amate, M. Socias-Viciana and M. Fernndez-Perz. Removal of diquat and deisopropylatrazine from water by montmorillonite (CeorZr) phosphatecros linked compounds. Chemosphere,1999,9(3):455-466.
    [75]Y. H. Hsu, M. K. Wang, C. W. Pai, Y.S.Wang. Sorption of 2,4-dichlorophenoxy propionic acid by organo-clay complexes. Applied Clay Science, 2000,16:147-159.
    [76]吴克明,张承舟,曹建保.镀铬废水的活性炭法处理试验研究[J].贵州环保科技,2005,11(2):1-8.
    [77]肖文香,刘成良.改性粉煤灰除去水中六价铬的研究[J].桂林电子工业学院学报,2003,23(6):40-42.
    [78]叶瑛,杨帅杰,郑丽波,等.几种层状化合物对六价铬吸附性能的对比与讨论[J].无机材料学报,2004,19(6):1379-1385.
    [79]谢晓凤,王京刚.有机沸石处理含铬废水的试验研究[J].金属矿山,2002,317(11):47-49.
    [80]张立娟,秦海燕,孙家寿,等.羟基交联累托石吸附重金属离子Cr6+的研究[J].水处理技术,2004,30(6):330-332.
    [81]蓝磊,童张法,李仲民,等.改性膨润土对废水中六价铬的吸附过程研究[J].环境污染与防治,2005,27(5):352-353.
    [82]Alves M M, Beca C G, Guedes C R. Chromium Removal in Tannery Wastewaters "Polishing" by Pinus Sylvestris Bark. Water Res,1993, 27:1333-1337.
    [83]Deshar A M., Bokade S S, Dada S S. Modified Hardwickia Binata Bark for Adsorption of Mercury(Ⅱ) from water. Water Res,1990,24:1011-1016.
    [84]C. Namasivayam, etc. Chroroium(Ⅲ)removal in tannery waste waters using Chinese Reed(Miscanthus Sinensis), a fast growing plant[J]. Holz Roh Werkst(2004)62:74-80.
    [85]Changgeng Z. Studies on Heavy Metal Removal from Industrial Water by Insoluble Straw Xanthate. Water Treat,1991,6:211-218.
    [86]Srivatava H C P, Mathru R P, Mehrotra I. Removal of Chromium from Industrial effluent by Adsorption on Sawdust. Environ Technol Lett,1986, 7:55-63.
    [87]胡传有,涂传青.镀铬废水治理、资源回用技术及进展[J].电镀与环保,1999,19(3):28-32.
    [88]张晋京,窦森,王淑华,等.玉米秸秆对Cr(Ⅵ)表观吸附过程的研究[J].土壤肥料,2004(3):28-30.
    [89]史会齐,周嵘,焦贺贤,等.花生壳综合利用研究——花生壳对Cr(Ⅵ)的吸附作用[J].河南大学学报(自然科学版),2004,34(2):41-43.
    [90]伍钧,漆辉,郭佳.黄壤对铬(Ⅵ)吸附特性的研究[J].农业环境科学学报,2003,22(3):333-336.
    [91]易秀,李五福.黄土性土壤对Cr(Ⅵ)的吸附还原动力学研究[J].干旱区资源与环境,2005,19(3):141-144.
    [92]任爱玲,郭斌,刘三学,等.含铬污液在土壤中迁移规律的研究[J].城市环境与城市生态,2000,13(2):54-56.
    [93]李桂菊,何迎春,丁绍兰,等.制革污泥农用中土壤对铬的吸附特性[J].中国皮革,2002,31(5):7-9.
    [94]余纯丽,任建敏,吴四维.壳聚糖/PVA微粒上Cu2+的吸附平衡与动力学[J].中国环境科学,2006,26(4):449-453.
    [95]赵丹,王曙光,栾兆坤,等.改性斜发沸石吸附水中氨氮的研究[J].环境化学,2003,22(1):59-63.
    [96]Sameer Al-Asheh, Fawzi Banat. Adsorption of copper and zinc by oil shale[J]. Environmental Geology,2001,40(6):693-698.
    [97]W. Y. Wan Zuhairi. Sorption capacity on lead, copper and zinc by clay soils from South Wales, United Kingdom. Environmental Geology,2003,45:236-242.
    [98]Bohn HL and others. Soil chemistry. Wiley, New York,1979,360pp
    [99]周代华,李学垣,徐凤琳,等.用质量模型描述重金属离子在土壤中的吸附特点[J].环境科学学报,1996,(4):425-430.
    [100]Harter R D, Baker D E, Applications and Misapplications of the Langmuir Equation to soil Adsorption Phenomena[J]. Soil Sci. Soc. Am. J.,1977,41: 1077-1080.
    [101]Elprince A M, Sposito G, The romodynamic Derivation of Equations of the Langmuir Type for Ion Equilibria in Soils[J]. Soil Sci. Soc. Am. J.,1981, 45:1077-1080.
    [102]M. Luisa Cervera, M. Carmen Arnal. Removal of heavy metals by using adsorption on alumina or chitosan. Anal Bioanal Chem.2003,375:820-825.
    [103]黄岁梁,万兆惠.泥沙浓度和水相初始浓度对泥沙吸附重金属影响的研究[J].环境科学学报,1995,15(1):67-77.
    [104]赵芳,吴晓芙,黄中子,等.液/固离子吸附体系中的强度因子[J].中南林业科技大学学报,2007,27(1):109-117.
    [105]丁世敏,封享华,汪玉庭,等.交联聚壳糖多孔微球对染料的吸附平衡及吸附动力学分析[J].分析科学学报,2005,21(2):127-130.
    [106]韩严和,全燮,赵慧敏,等.电增强活性炭纤维吸附有机污染物的动力学研究[J].环境科学,2006,27(6):1111-1116.
    [107]朱波,汪涛,王艳强,等.锌、镉在紫色土中的竞争吸附[J].中国环境科学,2006,26(Suppl.):73-77.
    [108]李鱼,王晓丽,董德明,等.湿地土壤草根层对铅、镉吸附与解吸的动力学研究[J].湿地科学,2004,2(1):10-14.
    [109]董元彦,李宝华,路福绥.物理化学(第二版)[M].北京:科学出版社,2001:154.
    [110]胥焕岩,刘羽,彭明生.碳羟基磷灰石吸附水溶液中镉离子的动力学研究[J].矿物岩石,2004,24(1):108-112.
    [111]周洁,阳永荣,王靖岱.新型介孔活性炭对Cr(Ⅵ)的吸附动力学研究[J]化工进展,2005,24(4):403-407.
    [112]董元彦,罗厚庭,李学垣.黄棕壤和红壤吸附磷酸根后对Zn2+和Cd2+次级吸附的动力学[J].环境化学,1995,14(4):300-305.
    [113]X. Wu, Y. Hu, F. Zhao, Z. Huang, D. Lei. Ion adsorption components in liquid/solid systems [J]. Journal of Environmental Sciences,2006,18: 1167-1175.
    [114]国家环保局编.水和废水监测分析方法[M].北京:中国环境科学出版社.1989.159-161.
    [115]刘云惠,魏显有,王秀敏,等.土壤中铬的吸附与形态提取研究[J].河北农业大学学报,2000,23(1):16-20.
    [116]陈英旭.土壤中铬的化学行为研究[J].环境科学学报,1989,9(2):137-143.
    [117]陈英旭.土壤、矿物对Cr(Ⅵ)吸附机制的研究[J].农业环境保护,1993,12(4):150-152.
    [118]S. Yu and others. Adsorption-Desorption Behavior of Copper at Contaminated Levels in Red Soils from China[J]. Environ. Qual.2002,31:1129-1136.
    [119]James B R, Bartlett R J. Behavior of chromium in soils:Ⅵ. Interactions between oxidation-reduction and organic complexation [J]. J. Environ Qual, 1983,12:173-176.
    [120]Bartlett R J, Kimble J M. Behavior of chromium in soils:ⅢOxidation[J]. J. Environ Qual,1979,8:31-35.
    [121]李天然.土壤环境化学[M].北京:高等教育出版社,1996.126-213.
    [122][日]北川浩,铃木谦一郎著.吸附的基础与设计[M].化学工业出版社,1983.33.
    [123]M.A.安德森,A.J.鲁宾.水溶液吸附化学[M].北京:科学出版社,1989.275.
    [124]D. J. O'Connor, J. P. Connolly. The effect of concentration of adsorbing solids on the partition coefficient[J]. Wat Res,1980,14:1517-1523.
    [125]G. Pan, P. S. Liss. Metastable-equilibrium adsorption theory II. Experimental [J]. J. Colloid Interface Sci.1998b,201:77-85.
    [126]G Pan, P. S. Liss, M. D. Krom. Particle concentration effect and adsorption reversibility [J]. Colloids and Surface A,1999,151:127-133.
    [127]G. Pan, M. D. Krom, B. Herut. Adsorption-desorption of phosphate on airborne dust and riverborne particulates in east mediterranean seawater [J]. Environ Sci Technol,2002,36:3519-3524.
    [128]Y. Qin, G Pan, M. Zhang. Adsorption of zinc on manganite (7-MnOOH): particle concentration effect and adsorption reversibility [J]. Journal of Environmental Sciences,2004,16:627-630.
    [129]R. Bai, R. T. Yang. Heterogeous extended Langmuir model with multiregion surfaces for adsorption of mixtures [J]. J. Colloid Interf. Sci.2002,253:16-22.
    [130]R. Cseh, R. Benz. The adsorption of phloretin to lipid monolayers and bilayers cannot be explained by Langmuir adsorption isotherms alone [J]. Biophysical Journal,1998,74:1399-1408.
    [131]R. L. Curl, G.. A. Keioleian. Implicit-adsorbate model for apparent anomalies with organic adsorption on natural adsorbents [J]. Environ Sci Technol,1984,18: 916-922.
    [132]Langmuir. The Adsorption of Gases on Plane Surfaces of Glass, Mica, and Platinum [J]. J. Am. Chem. Soc.1918,40:1361-1403.
    [133]吴晓芙,胡曰利,聂发辉,等.蛭石的NH4+吸附与Langmuir方程[J].湘潭大学自然科学学报,2004,26(3):66-71.
    [134]孙越,陈金龙,李爱民,等.胺基修饰的高度交联聚苯乙烯树脂对间苯二酚吸附行为研究[J].高分子学报,2005,(6):801-806.
    [135]王重,史作清,施荣富,等.酚醛型吸附树脂在非水体系中对吡啶和N,N-二甲基苯胺的吸附性能研究[J].高分子学报,2004,(1):59-63.
    [136]梁足培,冯亚青,梁智妍,等.固定化尿酶催化作用下双醛纤维素对尿素氮的吸附平衡和动力学[J].化学学报,2006,64(3):255-260.
    [137]赵芳,吴晓芙,张艳丽,等.固液相离子吸附体系中的吸附剂浓度效应与Langmuir方程的适用性[J].环境化学,2007,26(3):335-338.
    [138]M. J. Mura-Galelli, J. C. Voegel, S. Behr. Adsorption/desorption of human serum albumin on hydroxyapatite:A critical analysis of the Langmuir model[J]. Pro. Natl. Acad. Sci. USA Biochemistry,1991,88:5557-5561.
    [139]GPan, P. S. Liss. Metastable-equilibrium adsorption theory I. Theoretical [J]. J. Colloid Interf. Sci.1998a,201:71-76.
    [140]K. Singh, S. Mohan. Adsorption behavior of selected monosaccharides onto an alumina interface [J]. J. Colloid Interf. Sci.2004,270:21-28.
    [141]M. O zacar, I. A. Sengil. Equilibrium data and process design for adsorption of disperse dyes onto Alunite [J]. Environmental Geology,2004,45:762-768.
    [142]Voice T C, Weber W J. Adsorbent Concentration Effects in Liquid/solid Partitioning[J]. Environ. Sci. Technol.,1985,19:789-796.
    [143]G. Benoit. The influence of size distribution on the particles concentration effect and trace metal partitioning in rivers [J]. Geochim Cosmochim Acta,1995,59: 2677-2687.
    [144]D. Grolimund, M. Borkovec, P. Federer. Measurement of sorption isotherms with flow-through reactors [J]. Environ. Sci. Technol.,1995,29:2317-2321.
    [145]T. Nagayasu, K. Imamura, K. Nakanishi. Adsorption characteristics of various organic substances on the surfaces of tantalum, titanium, and zirconium [J]. J. Colloid Interface Sci.2005,286:462-470.
    [146]J. A. Greathouse, R. T. Cygan. Molecular dynamics simulation of uranyl (Ⅵ) adsorption equilibria onto an external montmorillonite surface [J]. Physical Chemistry Chemical Physics,2005,7:3580-3586.
    [147]X. Hao, W. A. Spieker, J. R. Regalbuto. A further simplification of the revised physical adsorption (RPA) model [J]. J. Colloid Interf. Sci.,2003,267: 259-264.
    [148]L. Cox, M. C. Hermosin, R. Celis. Sorption of two polar herbicides in soils and soil clay suspensions [J]. Wat Res.,1997,31:1309-1316.
    [149]孙迎雪,李杰,董波.海绵铁处理Cr(Ⅵ)动力学[J].水处理技术,2006,32(2):41-44.
    [150]郑丽波,叶瑛,季珊珊,等.Mg,/Al型双金属氧化物对六价铬的吸附作用[J].地球化学,2004,33(2):208-214.
    [151]李娜,袁世斌,李旭东.胶原纤维固化黑荆树单宁吸附Cr(Ⅵ)的研究[J].应用与环境生物学报,2006,12(2):185-189.
    [152]杨志生,郭琦.动态法研究苯酚在土壤中吸附的动力学[J].农业环境科学学报,2003,22(4):477-479.
    [153]于旭彪.蛭石-水溶液体系中Cu(Ⅱ)的吸附特性研究[D].株洲:中南林业科技大学研究生处,2007.55-65.
    [154]黄中子.吸附法除磷的理论模型研究[D].株洲:中南林业科技大学研究生处,2006.28-29.
    [155]薛永强,赵红,杜建平.纳米氧化铜的粒度对多相反应动力学参数的影响[J].无机化学学报,2006,22(11):1952-1956.
    [156]芦鹏,吴晓芙,于旭彪,等.固液体系中Cr(Ⅵ)吸附的动态模拟[J].中南林业科技大学学报,2007,27(1):118-123.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.