吸附填料选择及其在人工湿地好氧缓冲单元中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不同种类的矿物吸附剂被作为去除污水中重金属离子的吸附剂材料,有些被用在人工湿地污水处理系统中。废水中重金属离子浓度与废水种类相关,并随时间变化,其对湿地生物(植物、微生物与水生动物)的生长与活性有负面作用,从而影响系统的处理效率与稳定性。本研究提出构建缓冲系统的新思路,通过选用高吸附容量的吸附填料在湿地系统中建立一个前置吸附缓冲单元,用以降低进入后续单元的污染物质(尤其是重金属离子)浓度的水平,从而保证湿地植物的正常生长和处理系统的正常运行。目前,人工湿地填料的吸附性能比较尤其是缓冲单元建立方面研究数据资料很少。
     本研究选择以人工沸石、天然沸石、膨胀蛭石和硅藻土(或红壤)四种矿物填料为吸附剂,在吸附剂浓度100 g/L和起始离子浓度50~500 mg/L内,配置了水溶液与污水溶液中Cd2+和Zn2+与NH4+等单一与混合离子吸附的对比试验。同时在中试组合人工湿地污水处理系统中,构建立了一个前置吸附缓冲单元,开展了生活污水与实验室废水混合污水处理的中试试验。本试验目的是分析矿物吸附剂的吸附特性,考察吸附缓冲单元在污水处理中的作用与效果,为人工湿地吸附填料的选择、系统构建和运行实践提供基础试验数据与技术支持。实验结果表明:
     1.在本试验条件下,Langmuir与Freundlich等温方程与四组分吸附模型均能较好的模拟离子的平衡吸附行为。
     2.处理效率与经济成本综合分析结果表明,在四种矿物吸附剂中,天然沸石和膨胀蛭石是人工湿地系统去除锌、镉离子的最佳填料,单位投资成本分别为:6.125元/m3和8.98元/m3。
     3.混合离子吸附试验验证了共存离子间存在竞争吸附,污水配置的混合离子体系中各离子的吸附密度均小于纯水配置的混合离子体系。
     4.在中试系统中,采用矿物填料建立的缓冲系统有很好的缓冲效果,在缓冲单元内植物生长生长正常,在出水水质达标的前提下,其缓冲期可达60天左右;缓冲单元内部的曝气系统对整个缓冲单元的三要素起到了积极的作用,提升了整个系统的缓冲及处理能力。
Various types of minerals have been selected as potential adsorbents for the removal of metal pollutants from aqueous solutions. Some of them have been utilized as fillers or liner materials in constructed wetlands and landfills for waste disposal. The concentration of metal pollutants in wastewaters varies to a large extent not only with wastewater type but also with time. This has a negative impact on the normal growth of plants as well as on the activity of micro-organisms in the open wetland system. The introduction of an adsorption buffer unit using materials with a high adsorption capacity into a wetland system can thus improve both the treatment capacity and sustainability. There have been so far very few reports concerning comparison of the adsorption capacity among different mineral absorbents and establishment of a buffer unit using mineral adsorbent in constructed wetland system for treatment of wastewaters.
     The present study was conducted using synthetic zeolite, natural zeolite, swelling vermiculite and the diatomaceous earth (or red soil) as absorbents to compare their ability to adsorb Zn2+ and Cd2+, NH4+ in single and mixed metal ion systems preapared in aqueous solutions and wastewaters within the range of initial ion concentration 50-500 mg/L at a given adsorbent concentration level (100 mg/L). A pilot buffer unit using relevant adsorbents was further established in the constructed wetland system built for wastewater treatment. The objective of this study was to provide basic data and information for selection of proper adsorbent fillers that can be used for establishment of buffer unit in constructed wetland systems. The main results obtained from this study are summarized as follows:
     1. The equilibrium ion adsorption can be well described by the Langmuir isotherm, the Freundlich equation and the four adsorption component model under the tested conditions.
     2. Among the minerals tested, the natural zeolite and the swelling vermiculite were found to be the best wetland fillers in terms of cost effective for removal of Cd2+ and Zn2+ ions. Their costs were estimated, respectively, as 6.125 and 8.98 Yuan/m3.
     3. Adsorption competition among coexisting ionic species was observed in the mixed metal ion systems. The ion adsorption quantity in mixed ionic species system was found to be higher in sewage than in aqueous solutions.
     4. Establishment of the pilot buffer unit using the selected adsorbent enhanced the treatment efficiency by providing an adequate condition for normal growth of plants in the constructed wetland system. The buffering effect lasted for more than 60 days within which the water quality reached the national wastewater discharge standard in the outlet. Aeration in the buffer unit was found to be effective in improving the treatment efficiency and stability.
引文
[1]魏复盛.水和废水监测分析方法指南:上册[M].北京:中国环境科学出版社,1990.
    [2]《中国水资源公报》编写组.中国水资源公报(1999-2005)DB/OL]. http://old.cows.Net.cn/cwsnet/gazette.asp.中国水利科技网,2006.
    [3]孙铁珩,周启星,李培军.污染生态学[M].北京:科学出版社.2001,282.
    [4]高卫强,丁振华,谢陈笑,等.某大型金—铜矿对环境的重金属污染及生态影响[J].厦门大学学报:自然科学版,2006,45(B05):281-285.
    [5]凌其聪,严森,鲍征宇.大型冶炼厂重金属环境污染特征及其生态效应[J].中国环境科学,2006,26(5):603-608.
    [6]利峰,韦献革.佛山水道底泥重金属污染调查[J].环境监测管理与技术,2006,18(4):12-14,18.
    [7]陈清敏,张晓军.大宝山铜铁矿区水体重金属污染评价[J].环境科学与技术,2006,29(6):64-65.
    [8]常晋娜,瞿建国.水体重金属污染的生态效应及生物监测[J].四川环境,2005,24(4):29-33.
    [9]胡必彬.我国十大流域片水污染现状及主要特征[J].重庆环境科学,2003,25(6):15-17.
    [10]成新.太湖流域重金属污染亟待重视[J].水资源保护,2002(4):39-41.
    [11]赵璇,吴天宝,叶裕才.我国饮用水源的重金属污染及治理技术深化问题[J].给水排水.1998,24(10):22-25.
    [12]中国近岸海域环境质量公报.国家环境保护总局.2001.
    [13]2003年辽宁省海洋环境质量公报.辽宁省海洋与渔业厅.2004.4.
    [14]乔胜英,蒋敬业,向武,等.武汉市湖泊中重金属污染状况[J].水资源保护,2007,23(1):45-48.
    [15]涂淑玲,汪先明.鄱阳湖水体重金属污染的现状评价[J].江西科学,2005,23(6):796-798.
    [16]邬建中,黄爱珠.浈水水体的重金属迁移与吸附特性[J].人民珠江,1996(1):45-48.
    [17]陈义光,苏锋,姚俊,等.风雨湖水体污染监测研究[J].湖北农学院学报,2001,21(1):46-49.
    [18]Thornton G J P, Walsh P D. Heavy metals in the waters of the Nanty-Fendrod:change in pollution levels and dynamics associated with the redevelopment of the Lower Swansea Valley, South Wales, UK [J]. The Science of the total envi-ronment,2001, 278(1-3):45-55.
    [19]Agrawal G D.Difuse agricultural water pollution in India [J]. Water Science and Technology,1999,39(3):33-47.
    [20]万双秀,王俊东.汞对人体神经的毒性及其危害[J].微量元素与健康研究,2005,22(2):67-69.
    [21]崔玉静,黄益宗,朱永官.镉对人类健康的危害及其影响因子的研究进展[J].卫生研究,2006,35(5):656-659.
    [22]刁维萍,倪吾钟,倪天华,等.水环境重金属污染的现状及其评价[J].广东微量元素科学,2004,11(3):1-5.
    [23]国家环境保护总局科技标准司.环境标准实施指南[M].长春:吉林科学技术出版社,1999.
    [24]浩云涛等浩云涛,李建宏.椭圆小球藻(Chlorellaell ipsoidea)对四种重金属的耐受性及富集[J].湖泊科学,2001,13(2):158-162.
    [25]阎海,潘纲,霍润兰Cu,Zn和Mn抑制月形藻生长的毒性效应[J].环境科学学报,2001,21(3):328-332.
    [26]孔繁翔,陈颖,章敏Ni,Zn,Al对羊角月牙藻生长及酶活性影响研究[J].环境科学学报,1997,7(2):193-198.
    [27]Al-Yousuf M H, El-Shahawi M S, Al-Ghais S M, Trace metal silver, skin and muscle of lethrinuslentjan fish species in relation to body length and sex [J]. The Science of the Total environment,2000,256(2-3):87-94.
    [28]Kowk Lim Lam, Po Wai Ko, JudyKa-YeeWong, et.al. Metal Toxicity and metal lothione in gene expression studies in common Carpand Tilapia [J]. Marine environmental Research,1998,46(1-5):563-566.
    [29]奚旦立.环境监测[M].北京:高等教育出版社,1998:59.
    [30]《食品卫生学》编写组编,食品卫生学[M].北京:中国轻工业出版社.1993:213.
    [31]夏立江.环境化学[M].北京:中国环境科学出版社,2003:236-238.
    [32]黄吉厚.镉对环境的污染及其对策研究[J].辽宁教育学院学报,2000,17(5):29-31.
    [33]常晋娜,瞿建国.水体重金属污染的生态效应及生物监测[J].四川环境,2005,24(4):29-33.
    [34]王焕校,吴玉树,等.污染生态学研究[M].北京:科学出版社,2006.
    [35]张琼,陈晓燕,陈梅,等.镉对绿豆幼苗生长的影响的研究[J].漳州师范学院学报(自然科学版),2006,4(4):107-111.
    [36]RashedRashed M N. Monitoring of environmental heavy metals in fish from Nasser Lake [J]. Environment International,2001:27-33.
    [37]Oertl N. Plants and animals as biomonitors of heavy metal level in the aquatic ecosystem of the River Danube [J]. Toxi ecology Letters,1995,78(1):9.
    [38]Kaladharanp, Kellerae. In hibition of primary production as induced by heavy metalion on phytoplankt on population of Co. chin [J]. Indian J Fish,1990,37(1):51-54.
    [39]杨红玉,王焕校.某些绿藻对Cd的富集作用及其毒性反应[J].环境科学学报,1990,10(1):64-71.
    [40]陈愚,任长久,蔡晓明.Cd对沉水植物硝酸还原酶和超氧化物歧化酶活性的影响[J].环境科学学报,1998,18(3):313-317.
    [41]匡少平,徐倩.铅对泥鳅的致毒效应[J].环境科学技术.2003,26(6):11-14.
    [42]黄雪琴,龙玉博.Cd对江蚬Corbiculafluminalis碱性磷酸酶的影响[J].福建师范大学学报,1995,11(2):74-78.
    [43]DelaTorre F R, Ferrari L, Salibian A. Freshwater pollution biomarker:response of brain acetylcholinester aseactivity in two fish species [J]. Comparative Biochemistry and Physiology-partC,2002,131(3):271-280.
    [44]Jensen S,Mazhitova Z, Zetterstrom R. Environmental pollution and child health in the AralSeargion in Kazakhstan [J].The Science of the Total Environment, 1997,206(2-3):187-193.
    [45]顾继光,周启星,王新.土壤重金属污染的治理途径及其研究进展[J].应用基础与工程学报,2003,11(2):143-151.
    [46]陈怀满.土壤—植物系统中的重金属污染[M].北京:北京出版社,1996.
    [47]黄继国,张永祥,吕斯濠.重金属废水处理技术综述[J].世界地质,1999,18(4):83-86.
    [48]K.M.Ibrahim, T.Akashah. Lead removal from wastewater using faujasite tuff [J]. Environmental Geology,2004,46:865-870.
    [49]单宝田,张爱滨,胡立阁,等.沸石对重金属废水中Cu2+的吸附性能研究[J].水处理技术,2002,28(4):207-209.
    [50]吴晓芙,胡曰利,聂发辉.蛭石氨氮吸附量与起始溶液浓度和介质用量的函数关系[J].环境科学研究,2005,18(1):64-66.
    [51]刘勇,肖丹,杨文树,等.蛭石吸附Pb2+的动力学和热力学机理研究[J]。矿物学报,2001年21(3):335:62-67
    [52]胡忠于,罗道成,易平贵,等.改性海泡石对电镀废水中Pb2+、Cu2+、Cd2+的吸附[J].材 料保护,2002,35(5):45-53.
    [53]叶力佳,杜玉成.硅藻土对重金属离子Cu2+的吸附性能研究[J].矿冶,2005,14(3):69-74.
    [54]S.H.Gharaibeh, W.Y.Abu-El-Sha'r. Removal of selected heavy metals from aqueous solutions using a solid by-product from the Jordenian oil shale refining. Environmental Geology 39(2):1133/116.
    [55]潘海燕,冀兰涛,丁清波.落叶对重金属吸附的初步研究[J].环境与发展,2001,16(2):30-31.
    [56]P F Cooper. A Review of the design and performance of vertical flow and hybrid reed bed treatment systems [J]. Water Sci-Technol,1999,40(3):1-9.
    [57]O'Hogain S. The design, operation and performance of a municipal hybrid reed bed treatment system [J]. Water Sci Technol,2003,48(5):119-126.
    [58]JLaber, R Haberl, G Langer graber. Treatment of hospital wastewater with a 2-stage constructed wetland system[A].R Haberl, G Langergraber, Achievements and Prospects of Phytore mediation in Europe[C].Vienna:University of Natural Resources and Applied Life Sciences,2003.
    [59]Masi F, Conte G, Martinuzzi N, et al. Winery high organic content wastewaters treated by constructed wetlands in Mediterranean climate [A].Proceedings of Eighth International Conference Wetland Systems for Water Pollution Control[C]. Tanzania: IWA and University of Dares Salaam,2002.
    [60]汪俊三,覃环.高水力负荷人工湿地处理富营养化湖水[J].中国给水排水,2005,21(1):1-4.
    [61]白晓慧,王宝贞,余敏,等.人工湿地污水处理技术及其发展应用[J].哈尔滨建筑大学学报,1999,32(6):88-92.
    [62]M B Green, P Griffin, J K Seadridge.et al. Removal of Bacteria in Subsurface Flow Wetlands [J]. Water Science and Technology,1997,35(5):109-116.
    [63]吴晓芙.生态型复合人工湿地污水处理工艺[J].城市环境与城市生态,2006,6:36-39.
    [64]吴晓芙.组合人工湿地污水处理系统示范工程研究[Z].湖南省科技厅,2006.
    [65]吴晓芙.污水处理组合湿地系统及其污水处理工艺[P].200510031468.8,2006.
    [66]G A Brodie, D A Hammer, D A TomIjanovich. Treatment of acid drainage with constructed wetland at Tennessee valley authority 950 coal mine [M]//Hammer D A(Ed).Constructed wetlands for wastewater treatment. Chelsea:Lewis,1989,211-219.
    [67]Green M B, Griffin P, Seadridge J K, et al. Removal of Bacteria in Subsurface Flow Wetlands [J]. Water Science and Technology,1997,35(5):109-116.
    [68]K R Reddy, E M D'Angelo. Soil processes regulating water quality in wetlands [M]//Mitsch W J(Ed).Global wetlands:old world and new. Amsterdam:Elsevier,1994, 309-324.
    [69]白晓慧,王宝贞,于敏等.人工湿地污水处理技术及其发展应用[J].哈尔滨建筑大学学报.1999,32(6):88-92.
    [70]吴亚英.人工湿地在新西兰的应用[J].江苏环境科学,2000,13(3):32-33.
    [71]USA EPA. Guiding principles for constructed treatment wetlands:providing for water quality and wildlife habit [M]. Washington DC:US EPA, Office of Wetlands, Oceans and Watershed,2000.
    [72]吴晓磊.人工湿地废水处理机理[J].环境科学,1995,16(3):83-86.
    [73]朱彤,许振成.酬康萍等.人工湿地污水处理系统应用研究[J].环境科学研究,1991,4(5):17-22.
    [74]Craig S Campbell, Michael H Ogden. Constructed wetlands in the sustainable landscape [M]. New York:John Wiley & Sons Inc,1999:237-257.
    [75]Shuiping Cheng, Wolfgang Gross, Friedhelm Karrenbrock, et al. Efficiency of constructed wetlands in decontamination of water polluted by heavy metals [J]. Ecological Engineering,2002,18:317-325.
    [76]JiG-D(籍国东),Sun T-H((孙铁珩),Chang S-J(常士俊).2001. Studies on subsurface flow wetland treatment system for special thick oil production wastewater from Liaohe oil field. China Environ Sci(中国环境科学)[J].2001,21(1):85-88(in Chinese).
    [77]唐述虞,宋正达,史建文等.金属矿酸性废水的湿地生态工程处理研究[J].中国环境科学,1993,13(5(:356-360)).
    [78]叶志鸿,陈桂珠,蓝崇钰等.宽叶香蒲净化塘系统净化铅/锌矿废水效应的研究[J].应用生态学报,1992,3(2(:190-194)).
    [79]阳承胜,蓝崇钰,束文圣.重金属在宽叶香蒲人工湿地系统中的分布与积累[J].水处理技术,2002,28(2):101-104.
    [80]黄淦泉,杨昌凤,靳立军等.人工湿地处理重金属Pb,Cd污水的机理探讨[J].应用生态学报,1993,4(4):456-459.
    [81]Shuiping Cheng, Wolfgang Gross, Friedhelm Karrenbrock, etal. Efficiency of constructed wetlands in decontamination of water polluted by heavy metals [J]. Ecological Engineering,2002,18:317-325.
    [82]Miklas Scholz. Performance predictiongs of mature experimental constructed wetlands which treat urban water receiving high loads of lead and copper [J]. Water Research 37(2003)1270-1277.
    [83]Lloyd R.Stark, Frederick M.Williams. Assessing the performance indices and design parameters of treatment wetlands for H+, Fe, and Mn retention [J]. Ecological Engineering,1995,5:433-444.
    [84]A.S.Mungur, R.B.E.Shutes, D.M.Revitt, et al. An Assessment of metal removal by a laboratory scale wetland [J]. Wat.Sci.Tech.1997,35(5):125-133.
    [85]Shuiping Cheng, Wolfgang Grosse, Friedhelm Karrenbrock, et al. Efficiency of constructed wetlands in decontamination of water polluted by heavy metals [J]. Ecological Engineering,2002,18:317-325.
    [86]Richard R.Goulet, Frances R.Pick. Changes in dissolved and total Fe and Mn in a young constructed wetland:Implications for retention performance [J]. Ecological Engineering,2001,17:373-384.
    [87]W.Bradley Hawkins, John H.Rodgers, W. B. Gillespie, et al. Design and Construction of Wetlands for Aqueous Transfers and Transformations of Selected Metals [J]. Ecotoxicology and Environmental Safety.1997,36:238-248.
    [88]Hana Obarska-Pempkowiak.etc, Distribution of nutrients and heavy metals in a constructed wetland system [J].PII:S0045-6535(99)00111-3.
    [89]L A Baker. Design considerations and applications for wetland treatment of high-nitrate waters [J]. Water Science and Technology,1998,38(1):389-395.
    [90]J Laber, R Perfler, R Heberl. Two strategies for advanced nitrogen elimination in vertical flow constructed wetland [J]. Water Science and Technology,1997, 35(5):71-77.
    [91]Elprince A M, Sposito G, The romodynamic Derivation of Equations of the Langmuir Type for Ion Equilibriain Soils [J]. Soil Sci.Soc AmJ.1981,45:1077-1080.
    [92]Ahmet Demir, Ahmet Gunay, Eyyup Debik. Ammonium removal from aqueous solution by ion-exchange using packed bed natural zeolite [J]. Water SA,2002, 28(3):329-335.
    [93]B.B.Sahu, H.K.Mishra, K.Parida. Cation exchange and sorption properties of TIN (IV) phosphate [J]. Journal of Colloid and interface Science,2000,225:511-519.
    [94]Griffin RA, Shimp NF. Attenuation of pollutants in municipal landfills leachate by clay minerals.1978, Report:EPA-600/2-78-157. US Environmental Protection Agency. Majone M, Papini MP, Rolle E.Clay adsorption of lead from landfill leachate [J]. Environ Technol,1993,14:629-638.
    [95]Mohamed AMO and others. Geo-environmental assessment of a micaceous soil for its potential use as an engineered clay barrier. Geotech Test JASTM,1994,17(3):291-04.
    [96]Yong RN, Mohamed AMO, Warkentin BP. Principles of contaminant transport in soils.1992, Elsevier, Amsterdam,328pp.
    [97]Farrah H, Hatton D, Pickering WF. The affinity of metals ions for clay surfaces [J]. Chem Geol,1980,28:55-68.
    [98]W.Y.Wan Zuhairi. Sorption capacity on lead, copper and zinc by clay soils from South Wales, United Kingdom. Environmental Geology,2003,45:236-242.
    [99]M.R.Taha and others. Batch adsorption tests of phenol in soils [J]. Bull Eng Geol Env., 2003,62:251-257.
    [100]陈怀满.土壤对镉的吸附与解吸[J].土壤学报,1988,25(3):227-235.
    [101]James R.O., HealyT.W. Adsorption of hydrolyze able metal ions'at the oxside-water interface [J]. Colloid Interface Sci.,2006,40(1):65-81.
    [102]Bowden J.W.Describing adsorption of cop-per, zinc and lead on a variable charge mineral surface [J].SoilRes.2004,19:309-312.
    [103]HohlH, StumnW. Interaction of Pb2+with hydrous x-Al2O3[J]. Colloid Interface Sci., 1999,55(2):281-288.
    [104]Davis J.A., JamesR.O. Surface ionization and complexation at the oxide/water interface [J]. Colloid Interface Sc.i,2001,42:480-490.
    [105]孙卫玲,倪晋仁.兰格缪尔等温式的适用性分析—以黄土吸附铜离子为例[J].环境化学,2002,21(1):37-44.
    [106]Tao Zuyi, Chu Taiwei. On the applicability of the Langmuir Equation to estimation of adsorption equilibrium constants on a powdered solid from aqueous solution [J]. Journal of Colloid and Interface Science,2000,231:8-12.
    [107]Voice T C, Weber W J.Sorbent concentration effects in liquid/solid partitioning [J]. Environ.Sci.Technol.1985,19:789-796.
    [108]Pan G, Liss PS, Krom M D.Particle concentration effect and adsorption reversibility [J]. Colloids and Surface A,1999,151:127-133.
    [109]Voice T C, Weber W J.Sorbent concentration effects in liquid/solid partitioning [J]. Environ.Sci.Technol.1985,19:789-796.
    [110]D.Grolimund, M.Borkovec, P.Federer. Measurement of sorption isotherms with flow-through reactors [J]. Environ.Sci.Technol.1995,29:2317-2321.
    [111]U.P.Nyffeler, Y.Li, P.H.Santschi. A kinetic approach to describe trace element distribution between particles and solution in natural aquatic systems [J]. Geochim Cosmochim Acta,1984,48:1513-1522.
    [112]X.Hao, W.A.Spieker, J.R.Regalbuto. A further simplification of the revised physical adsorption (RPA) model [J]. Journal of Colloid and interface Science,2003, 267:259-264.
    [113]Pan G, Liss P S, Krom M D.Particle concentration effect and adsorption reversibility [J]. Colloids and Surface A,1999,151:127-133.
    [114]R.L.Curl, GA.Keioleian. Implicit-adsorbate model for apparent anomalies with organic adsorption on natural adsorbents [J]. Environ Sci Technol,1984,18:916-922.
    [115]T.Nagayasu, K.Imamura, K.Nakanishi. Adsorption characteristics of various organic substances on the surfaces of tantalum, titanium, and zirconium [J]. Journal of Colloid and interface Science,2005,286:462-470.
    [116]GBenoit. The influence of size distribution on the particles concentration effect and trace metal partitioning in rivers [J]. Geochim Cosmochim Acta,1995,59:2677-2687.
    [117]吴晓芙,胡曰利,陈明利.蛭石氨氮吸附量与起始溶液浓度的的二次函数关系[J].中南林业科技大学学报,2005,10(5):1-4.
    [118]胡曰利,吴晓芙,聂发辉.天然蛭石对污水中氨氮吸附去除率的影响[J].中南林学院学报,2004,24(1):30-33.
    [119]邓雁希,许虹,黄玲.蛭石去除废水中磷酸盐的研究[J].中国非金属矿工业导刊,2003年第6期,42-44.
    [120]聂发辉.人工湿地中新型填料净化污水能力的研究[D].株洲:中南林业科技大学研究生部,2003.
    [121]周平,刘东.利用天然蛭石处理造纸黑液[J].环境科学研究,2001,14(3):37-39.
    [122]郭继香,袁存光.吸附法处理石油污水中COD的实验研究(Ⅰ(吸附剂及吸附条件的选择[J],精细化工,2000,17(9):522-525.
    [123]黄中子.吸附法除磷的理论模型研究[D].株洲:中南林业科技大学研究生部,2006.
    [124]郭继香,袁存光,郑参军,等.用蛭石吸附法脱除污水中的重金属[J].石油大学学报(自 然科学版),1998,22(2):60-65.
    [125]谭光群,李晖等,彭同江.蛭石对重金属离子吸附作用的研究[J].四川大学学报(工程科学版),2001,33(3):58-61.
    [126]赵芳.人造沸石—水溶液体系中锌、镉离子吸附特性与离子吸附理论[D].株洲:中南林业科技大学研究生部,2007.
    [127]于旭彪.蛭石—水溶液体系中Cu(Ⅱ)的吸附特性研究[D].株洲:中南林业科技大学研究生部,2007.
    [128]赵崇.人造沸石-水溶液混合离子体系中锌、镉离子的吸附特性与机理研究[D].株洲:中南林业科技大学研究生部,2008.
    [129]周海兰.蛭石—水溶液混合离子体系中锌、镉离子的吸附特性与机理研究[D].株洲:中南林业科技大学研究生部,2008.
    [130]郭永龙,武强,王焰新,等.利用粉煤灰合成沸石处理重金属污水研究[J].重庆环境科学,2003,25(9):26-31.
    [131]杨芳,孟昭福,杨海妮,等.两性修饰剂修饰红壤对镉离子吸附的影响[J].农业环境科学学报,2007,26(2):462-466.
    [132]谢丹,徐仁扣,卞永荣,等.不同体系中不同土壤对Cu2+、Pb2+和Cr2+吸附能力的比较[J].农业环境科学学报,2005.24(5):899-904.
    [133]Werker, A.G., Dougherty, J.M., Mchenry, J.L., et.al. Treatment variability for wetland wastewater treatment designs in cold climates [J]. Ecological Engineering,2002, 19(5):1-11.
    [134]Cooper, P. A review of the design and performance of vertical-flow and hybrid CW treatment systems [J]. Water Science Technology,1999,40(3):1-9.
    [135]任拥政,章北平,海本增.局部充氧提高波形潜流人工湿地除污效能的研究[J].2007,23(11:28-31,46).
    [136]Gabriel Maltais-Landry, Florent Chazarenc, Yves Comeau, Stephane Troesch, and Jacques Brisson. Effects of artifical aeration, macrophyte species, and loading rate on removal efficiency in constructed wetland mesocosms treating fish farm wastewater [J]. Environmental Engineering Science,2007,6:409-414.
    [137]王宝贞,王琳.水污染治理新技术:新工艺、新概念、新理论[M].北京:科学出版社,2004.
    [138]Scholz, M.Wetland systems to control urban runoff [M]. Amsterdam:Elesevier,2006. De-Bashan, L.E., Bashan, Y.Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997-2003) [J]. Water Research,2004,38(19): 4222-4246.
    [139]柯凡,王磊,李海英,等.微曝气垂直流湿地处理城郊低浓度生活污水模拟实验[J].湖泊科学,2008,20(2):257-262.
    [140]胡绵好,奥岩松,朱建坤,杨肖娥.PH和曝气对水生植物去除富营养化水体中氮磷等物质的影响[J].水土保持学报,2008,22(4):168-173.
    [141]Yuna G, Lavkulich L M. Phosphate sorption in relation to extractabale iron and aluminum in Spodosoils [J]. Soil Sci Sco Am J,1994,58:343-346.
    [142]Marc A.Anderson, Alan J.Rubin,水溶液吸附化学——无机物在固—液界面上的吸附作用[M].刘莲生,张正斌,刘国盛译.北京:科学出版社,1989.
    [143]陈明利.效应及景观植物筛选研究[D].长沙:中南林业科技大学研究生部,2008.
    [144]Moshi A. O., Greenland G D. Effect of organic matter on the charge and phosphate adsorption characteristics of Kikuyu red clay from Kenya [J]. Geoderna,1974, 11:275-285.
    [145]Xu D F, Xu J M, Wu J J, et al. Studies on the phosphorus sorption capacity of substrates used in constructed wetland systems [J]. Chemosphere,2006,63:344-352.
    [146]Sanyal S K, De Datta S K, Chan P Y. Phosphorus transformations and desorption behavior of some acidic soils of South and Southeast Asia [J]. Soil Science Society of America Journal,1993,57:937-945.
    [147]Xianqiang Tang, Suiliang Huang, Miklas Scholz. Nutrient removal in wetlands during intermittent artificial aeration [J]. Environmental Engineering Science,2008, 25:1279-1290.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.