人造沸石—水溶液混合离子体系中锌、镉离子的吸附特性与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人工湿地以其低能耗、低运行成本等优点,近年来得到了广泛应用。利用人工湿地处理含重金属离子废水是一种新兴的工艺。但是人工湿地也有一些缺点制约了它的推广,如占地面积大,处理能力及效率较低,抗有机及重金属离子水力负荷能力有限,受季节气候影响等。在人工湿地中加入一个吸附单元,利用填料对污染物的强大吸附性能,可以有效解决上述问题。但是至今为止,人工湿地尚未有统一的规范指南,吸附单元的设计及运行的一些基本参数更是没有确定。吸附单元的设计与填料的选择需要知道污水处理量、起始污染物浓度与填料吸附能力及用量的基本关系,其涉及液/固体系吸附机理问题。
     前人在利用经典吸附理论描述在液/固体系中发生的吸附行为时,经常会出现参数不稳定的现象。在许多情况下,吸附剂浓度效应(经典等温曲线随吸附剂浓度增大而降低的现象)是导致经典方程参数不稳定的主要原因。且经典方程受基本函数关系的限制,不能在已知起始离子浓度C0和吸附剂浓度W0的条件下计算吸附量。因此,改进和完善液/固体系吸附理论、建立更为科学实用的吸附定量模型,不仅能为人工湿地的工程设计提供基础数据与参数,同时在环境界面化学研究中也具有一定理论意义。
     利用人造沸石(化学纯,粒径0.45~0.90mm)作为吸附剂,水为溶剂,在起始浓度为0.25" 3mmol/L,吸附剂浓度为0.5~2.5g/L的浓度范围内,设计了一系列实验,来研究Zn2+、Cd2+和K+单一及混合离子体系中的吸附特性与吸附机制。主要目的是获得基础数据,检测混合离子体系中的吸附效果,分析吸附体系组成分,然后建立可以用来预测混合离子吸附体系的平衡吸附量预测模型。本研究得出的主要结论概括如下:
     1)人造沸石表现出很强的阳离子吸附性能,其阳离子饱和吸附量约为7.8mmol/g。利用人造沸石来去除废水中的混合金属离子可取得良好的处理效果。
     2)实验证明交换与竞争性吸附是人造沸石吸附Zn2+、Cd2+、和K+主要途径,温度对离子吸附量的影响不显著;:
     3)经典等温吸附线存在明显的吸附剂浓度效应,不同W0水平上的离子吸附等温线之间存在显著差异,基本趋势是吸附等温线随吸附剂浓度W0增大而下降,用经典等温曲线描述人造沸石对混合金属离子的吸附过程时,经典方程参数呈现显著差异。用经典方程计算吸附量时,模拟值与实测值相差很大。说明Langmuir与Freundlich方程均不能用来描述综合样本试验数据。
     4)平衡离子吸附密度qe为C0/W0(起始点液相离子浓度C0与吸附剂浓度W0的比值)与Ce/W0(平衡液相离子浓度Ce与W0的比值)两者之差。重复测试证实qe、Ce/W0与C0/W0三者具有一一对应的关系。观察到的现象表明液/固相离子吸附体系中的强度因子不是Ce而是固相的qe与液相的Ce/W0。
     5)混合离子体系中离子的吸附竞争能力基本遵循等当量浓度定律,若A离子的初始浓度为C0A,混和离子体系总当量浓度为C0T,则平衡时A离子的吸附当量qeA=qeTC0A/C0T。
     6)基于单一离子系统的四组分模型,进一步提出适用于混合离子体系的平衡吸附模型:
     qeT={c0T+qmT-[(c0T+qmT)2-4c0TqmT(1-k)]1/2}/[2(1-k)]
     分析表明,新的混合离子平衡吸附方程适用于人造沸石对Zn2+、Cd2+、K+混合离子的吸附行为的描述。四组分模型从理论上合理地解释了经典等温吸附曲线存在吸附剂浓度效应与参数不稳定的原因。新方程的参数稳定、物理意义明确,在检测的离子浓度与吸附剂浓度变化范围内模拟值的精确度高。
Accounted for by its characters of low energy consumption and low operation and maintenance cost, constructed wetlands (CW) has been widly used in different countries as treatment systems for municipal sewage and stormwater As a new trend the CW technology has been adopted in recent years in treatment of wastewaters containing heavy metal pollutants. The application of CW techniques, however, has been limited to certain areas mainly due to their relatively low treatment efficiency, large land use area, low capacity to resist hydraulic, organic and heavy metal pollutant loads and particularly instability to seasonal changes. As an effective solution to above mentioned problems, introduction of an adsorption buffer unit into a CW and using materials with high adsorption capacity can improve its treatment efficiency as well as enhance its sustainability. There have been very few studis focusing on processes design and parameter estimation for establishing adsorption buffer units in CW systems. Therefore there have been so far no standardized guidelines and handbooks that can be used for design and costruction of CW systems for treatment of different types of wastewaters. For selection of proper adsorbents and design of buffer units for removal of metal ions it needs to know the quantitative relationship between the amount of wastewater to be treated, the metal ion concentration in the wastewater, the adsorption capacity of the adsorbent and the adsorbent quantity to be used for reducing the metal ion concentration to a stipulated discharge standard. This involves mechanisms of ion adsorption in liquid/solid systems.
     The parameter inconstancy problem has been frequently recognized by many researchers when describing adsorption kinetics in liquid/solid systems. In many situations, the adsorbent concentration effect (a phenomenon of decline of traditionally defined adsorption isotherms with increasing adsorbent concentration) has been considered to be the main reason for the parameter inconstancy problem. As limited by their defined functions, classical models cannot count ion adsorption for a given adsorption system with known initial ion concentration Co and adsorbent concentration Wo. Improvement of existing liquid/solid adsorption theories and establishment of quantitative adsorption relationships are of both theoretical and practical significances not only for scientific research in the field of environmental interface chemistry but also for use of CW technology in wastewater treatment engineering practices.
     Using synthetic zeolite (chemically pure, diameter 0.45-0.90mm) as the adsorbent and distilled water as the solvent, designed experiments were carried out to investigate the adsorption characteristic and mechanisms of Zn2+,Cd2+ and K+ in mono- and multiple ionic species systems in the range of initial ion concentration 0.25- 3.0 mmol/L and adsorbent concentration 0.5" 2.5 g/L. The main objective was to obtain basic data, test the adsorbent effect in multiple ionic species system, analyze the adsorption system component factors, and establish proper prediction models which can be used to describe ion adsorption in multiple ionic species system.
     The main results obtained from this study are summarized as follows:
     (1)Synthetic Zeolite has a very high cationic adsorption capacity and its maximum cation adsorption capacity is approximately 7.8 mmol/L. It is thus that this type of synthetic minerals can be well used as fine wetland fillers for removal of cationic pollutants from wastewaters.
     (2) Ion exchange and adsorption competition were found to be the main mechanisms for ion adsorption in the tested mixed ionic species system. Temperature was not shown to have significant effects on ion adsorption within the tested range between 15 and 45℃.
     (3) There were obviously effects of adsorbent concentration (W0) on the traditional adsorption isotherms (i.e., qe-Ce curves); The difference between ion adsorption isotherm curves obtained at different W0 levels was remarkable. The basic trend was that the qe-Ce curves declined apparently with increasing Wo.
     (4) The equilibrium adsorption density qe is the difference between C0/W0 (the ratio of initial ion concentration C0 to adsorbent concentration Wo) and Ce/W0 (the ratio of equilibrium ion concentration in liquid phase to adsorbent concentration). Repeated tests indicate that these three ion/adsorbent ratios are closely related with unique values in the tested range. The argument to support this intensity factor concept is that it is the relative level of ion quantity to adsorbent quantity that determines the direction and the rate of ion adsorption reactions. The observed phenomenon indicates that the intensity factor in liquid/solid ion adsorption systems is not Ce but Ce/W0 in the liquid phase and Qe/W0 in the solid phase.
     (5) Ion adsorption in mixed ionic species systems follows baxically the mass law in chemical equivalent, i.e., if use C0A to denote the equivalent concentration of ion A, C0T to stand for the total system equivalent ion concentration (sum of the concentration for all ionic species present in the mixed system) and qeA to represent the adsorption mole density, we have:qeA=qeTC0A/C0T.
     (6) Based on the four adsorption components model established for single ionic species systems, an extended model for mixed ionic species systems has been further developed by applying the mass law in chemical equivalent:
     qeT={c0T+qmT-[(c0T+qmT)2-4c0TqmT(1-k)]1/2}[2(1-k)]
     Analytical results confirm that the extended model can be well used to describe ion adsorption phenomena for Zn2+、Cd2+ and K+ adsorptions in syntheric zeolite-aqueous solutions.
     The developed model gives reasonabl explanations to observed adsorbent concentration effect and parameter inconstancy problems associated with classical adsorption models. The new medol, with stable and meaningful parameters fit well the experimental data obtained from the examined samples and its prediction accuracy is satisfactory.
引文
[1]石玉波(水利部水资源司).我国水资源的状况与利用.www.esph.com.cn,2004.
    [2]孙铁珩,周启星,李培军.污染生态学[M].北京:科学出版社.2001,p282.
    [3]周怀东,彭文启,等.水环境与水环境修复[M].北京:化学工业出版社.2005.3.
    [4]胡必彬.我国十大流域片水污染现状及主要特征[J].重庆环境科学.2003,25(6):15-17.
    [5]顾征帆,吴蔚.太湖底泥中重金属污染现状调查与评价[J].甘肃科技.2005,12.
    [6]成新.太湖流域重金属污染亟待重视[J].水资源保护.2002(4):39-41.
    [7]赵璇,吴天宝,叶裕才.我国饮用水源的重金属污染及治理技术深化问题[J].给水排水.1998,24(10):22-25.
    [8]中国近岸海域环境质量公报(2001年).国家环境保护总局.
    [9]2003年辽宁省海洋环境质量公报.辽宁省海洋与渔业厅.2004.4.
    [10]刁维萍,倪吾钟,倪天华,等.水环境重金属污染的现状及其评价[J].广东微量元素科学.2004,11(3):1-5.
    [1l]王吉中,李胜荣,刘宝林等.国内矿物治理重金属废水研究进展与展望[J].矿物岩石地球化学通报,2005,24(2):159-164.
    [12]国家环保总局《水和废水监测分析方法》编委会编.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [13]马晓航,贾小明,赵宇华.用硫酸盐还原菌处理重金属废水的研究[J].微生物学杂志,2003,23,(1):36-37.
    [14]奚旦立.环境监测[M].北京:高等教育出版社,1998:59.
    [15]《食品卫生学》编写组编,食品卫生学[M].北京:中国轻工业出版社.1993:213
    [16]夏立江.环境化学[M].北京:中国环境科学出版社,2003:236-238.
    [17]孙胜龙,等.环境污染与控制[M].北京:化学工业出版社.2001:127-129.
    [18]叶常明,王春霞,金龙珠.21世纪的环境化学[M].北京:科学出版社:200,15,75-178.
    [19]赵由才.环境工程化学[M].北京:化学工业出版社,2003.142-300.
    [20]顾继光,周启星,王新.土壤重金属污染的治理途径及其研究进展[J].应用基础与工程学报,2003,11(2):143-151.
    [21]陈怀满.土壤-植物系统中的重金属污染[M].北京:北京出版社,1996.
    [22]李家珍.染料、染色工业废水处理[M].北京:化学工业出版社,2000.25-53.
    [23]刘佳佳,康勇.绿色试剂—天然高分子絮凝剂的研究与利用进展.化学工业与工程.2005,22(6):476-481.
    [24]李江,甄宝勤.吸附法处理重金属废水的研究进展.应用化工.2005,34(10):591-594.
    [25]鲁安怀.环境矿物材料在土壤、水体、大气污染治理中利用.岩石矿物学杂志.1999,18(4):292-300.
    [26]李梦耀,车红荣.膨润土的改性研究及在污水治理中的应用.长安大学学报(建筑与环境科学版).2004,21(2):42-45.
    [27]朱一民,王忠安,苏秀娟,等.钙基膨润土对水相中铜离子的吸附.东北大学学报(自然科学版).2006,27(1):99-102.
    [28]韩润平,宋建梅.活性氧化铁/石英砂吸附剂去除水体中的重金属.江苏环境科学.2000,13(3):11-12.
    [29]S. H. Gharaibeh, W. Y. Abu-El-Sha'r. Removal of selected heavy metals from aqueous solutions using a solid by-product from the Jordenian oil shale refining [J]. EnvironmentalGeology 39(2):113-116.
    [30]易琼,叶菊招.壳聚糖吸附剂的制备及其性能[J].离子交换与吸附.1996,1(1):19-23.
    [31]M. Sciban, M. Klasnja. Wood sawdust and wood originatematerials as adsorbents for heavy metal ions[J]. Holz RohWerkst (2004) 62:69-73
    [32]宋关玲,侯文华,汪群慧.水体中镉对紫萍修复富营养化水体影响的研究[J].四川大学学报(工程科学版),2005,37(3):56-60.
    [33]郭嘉,陈延林,罗哗,等.新型离子交换纤维的应用研究及展望.高科技纤维与应用.2005,30(6):35-138.
    [34]Richard R. Goulet, Frances R. Pick. Changes in dissolved and total Fe and Mn in a young constructed wetland:Implications for retention performance [J]. Ecological Engineering,2001, 17:373-384.
    [35]W. Bradley Hawkins, John H. Rodgers, W. B. Gillespie, et al. Design and Construction of Wetlands for Aqueous Transfers and Transformations of Selected Metals [J]. Ecotoxicology and Environmental Safety.1997,36:238-248.
    [36]聂桂惠.芦苇湿地净化污水解干旱,寿北盼来生命泉[J].中国环境报,2001-07-11.
    [37]黄淦泉,杨昌凤,靳立军,等.人工湿地处理重金属Pb、Cd污水的机理探讨[J].应用生态学学报,1993,4(4):456-459.
    [38]Naidu R, Bolanns, Kookana R S, et al. Ionic-strenth and pH effects on the sorption of cadmium and the surface charge of soils [J]. Euro J Soil Sci,1994,45:419-429.
    [39]Selim H M, Buchter B, Hinz C, et al. Modeling the transport and retention of cadmium in soils: Multireaction and multicomponent approaches [J]. Soil Sci Soc Am J,1992,56:1004-1015.
    [40]Ross S M. Toxic metals in soil-plant systems [M]. New York:John Wiley&Sons Ltd,1994: 98,106.
    [41]V. Chantawong, N. W. Harvey, V. N. Bashkin. Comparison of heavy metal adsorption by thai kaolin and ballclay[J]. Water, Air, and Soil Pollution,2003,148:111-125.
    [42]D. E. Chirkst, T. E. Litvinova, O. V. Cheremisina, et al. Isotherm of strontium sorption on clay. Russian Journal of Applied Chemistry,2003,76(5)727-730.
    [43]Nagarethinam Kannan, Gurusamy Rengasamy. Comparison of cadmium ion adsorption on various activated carbons [J]. Water, Air, and Soil Pollution,2005,163:185-201.
    [44]Robert D. Harter, Ravendra Naidu. An assessment of environmental and solution parameter impact on trace-metal sorption by soils [J]. Soil Sci. Soc. Am. J.65:597-612(2001).
    [45]W. Y. Wan,Zuhairi.Sorption capacity on lead, copper and zinc by clay soils from South Wales, United Kingdom [J]. Environmental Geology (2003)45:236-242.
    [46]北川浩,铃木谦一郎.吸附的基础与设计[M].鹿政理译.化学工业出版社.
    [47]缪应祺主编.水污染控制工程[M].南京:东南大学出版社,2002年12月.
    [48]朱亦仁编著.环境污染治理技术[M].北京:中国环境科学出版社,1996年8月.
    [49]郑铭主编,陈万金副主编.环保设备—原理·设计·应用[M].北京:化学工业出版社,2001年4月.
    [50]Marc A. Anderson, Alan J. Rubin,水溶液吸附化学——无机物在固-液界面上的吸附作用[M].刘莲生,张正斌,刘国盛译,北京:科学出版社,1989,p275.
    [51]Langmuir I. The Adsorption of Gaseson Plane Surfaces of Glass, Micaand, Platinum [J]. J. Arn. Chem. Soc.1918,40:1361.
    [52]沈钟,王果庭.胶体与表面化学[M].化学工业出版社,1991,p166.
    [53]Harter R D, Baker D E. Applications and Misapplications of the Langmuir Equation to Soil Adsorption Phenomena [J]. Soil Sci. Soc. AmJ.1977,41:1077-1080.
    [54]Elprince A M, Sposito G, The romodynamic Derivation of Equations of the Langmuir Type for Ion Equilibriain Soils [J]. Soil Sci. Soc AmJ.1981,45:1077-1080.
    [55]吴香梅,熊春华,舒增年.巯基树脂吸附银的行为及机理[J].化工学报,2003,54(10):1466-1469.
    [56]Ahmet Demir, Ahmet Gunay, Eyyiip Debik. Ammonium removal from aqueous solution by ion-exchange using packed bed natural zeolite[J]. Water SA,2002,28(3):329-335.
    [57]Sameer Al-Asheh, Fawzi Banat, Asmahan Masad. Physical and chemical activation of pyrolyzed oil shale residue for the adsorption of phenol from aqueous solutions [J]. Environmental Geology, 2003,44:333-342.
    [58]邱学青,杨东杰,欧阳新平.木素磺酸盐在固体颗粒表面的吸附性能[J].化工学报,2003,54(8):1155-1159.
    [59]曾阿妍,颜昌宙,金相灿,等.金鱼藻对Cu2+的生物吸附特征[J].中国环境科学,2005,25(6): 691-694.
    [60]K. Singh, S. Mohan. Adsorption behavior of selected monosaccharides onto analumina interface [J]. Journal of Colloid and interface Science,2004,270:21-28.
    [61]B. B. Sahu, H. K. Mishra, K. Parida. Cation exchange and sorption properties of TIN(IV) phosphate [J]. Journal of Colloid and interface Science,2000,225:511-519.
    [62]Griffin RA, Shimp NF. Attenuation of pollutants in municipal landfill leachate by clay minerals [R].1978, Report:EPA-600/2-78-157. US Environmental Protection Agency.
    [63]Majone M, Papini MP, Rolle E. Clay adsorption of lead from landfill leachate [J]. Environ Technol,1993,14:629-638.
    [64]Mohamed AMO and others. Geo-environmental assessment of a micaceous soil for its potential use as an engineered clay barrier. Geotech Test JASTM,1994,17(3):291-304.
    [65]Yong RN,Mohamed AMO,Warkentin BP. Principles of contaminant transport in soils [J].1992, Elsevier, Amsterdam,328pp.
    [66]Rowe RK, Quigley RM, Booker JR. Clayey barrier systems for waste disposal facilities [J].. E and FN Spon, London,1995.
    [67]Farrah H, Hatton D, Pickering WF. The affinity of metals ions for clay surfaces [J]. Chem Geol, 1980,28:55-68.
    [68]江霜英,高廷耀.粘土对水中氟离子吸附去除机理的研究[J].化工环保,2003,23(4):204-208.
    [69]孙家寿,刘羽,鲍世聪等.交联膨润土吸附磷行为研究[J].化学工业与工程技术,1998,19(2):1-6.
    [70]翟云波,魏先勋,曾光明等.污泥衍生吸附剂去除水溶液中镉、镍离子的研究[J].现代化工2003,23(10):36-39.
    [71]W. Y. Wan Zuhairi. Sorption capacity on lead, copper and zinc by clay soils from South Wales, United Kingdom [J]. Environmental Geology,2003,45:236-242.
    [72]Bohn HL and others. Soil chemistry [J]. Wiley, New York,1979,360pp.
    [73]M. R. Taha and others. Batch adsorption tests of phenol in soils [J]. Bull Eng Geol Env,2003, 62:251-257.
    [74]Shackelford CD. Contaminant transport. In:Daniel DE(ed) Geotechnical practice for waste disposal. Chapman and Hall, LOndon,1993, pp 33-63.
    [75]M. J. Mura-Galelli, J. C. Voegel, S. Behr. Adsorption/desorption of human serumalbumin on hydroxyapatite:A critical analysis of the Langmuir model [J]. Pro. Natl. Acad. Sci. USA Biochemistry,1991,88:5557-5561.
    [76]C. N. Cordeiro, M. S. da Rocha, A. C. Faleiros. Analysis of application of Langmuir isotherm to heterogeneous systems:High-pressure conditions [J]. Journal of Colloid and interface Science, 2005,286:459-461.
    [77]G. Pan, P. S. Liss. Metastable-equilibrium adsorption theory I. Theoretical [J]. Journal of Colloid and interface Science,1998,201:71-76.
    [78]孙卫玲,倪晋仁.兰格缪尔等温式的适用性分析——以黄土吸持铜离子为例[J].环境化学,2002,21(1):37-44.
    [79]Tao Zuyi, Chu Taiwei. On the applicability of the Langmuir Equation to estimation of adsorption equilibrium constants on a powdered solid from aqueous solution[J]. Journal of Colloid and Interface Science,2000,231:8-12.
    [80]M. Luisa Cervera, M. Carmen Arnal. Removal of heavy metals by using adsorption on alumina or chitosan[J]. Anal. Bioanal. Chem.2003,375:820-825.
    [81]O'Connor D J, Connolly J P.The effect of concentration of adsorbing solids on the partition coefficient [J].Wat. Res.1980,14:1517-1523.
    [82]Voice T C, Rice C P, Weber W J. Effect of Solids Concentration on the Sorptive Partitioning of Hydrophobic Pollutants in Aquatic Systems [J]. Environ. Sci. Technol.,1983,17:513-518.
    [83]Cox L, Hermosin M C, Celis R. Sorption of two polar herbicides in soils and soil clay suspensions [J]. Wat. Res.1997,31:1309-1316.
    [84]Sanudo Wilhelmy S A, Rivera Duarte I, Flegal A R. Distribution of colloidal trace metals in the San Francisco Bay estuary [J].Geochim. Cosmochim. Acta,1996,60(24):4933-4944.
    [85]Voice T C, Weber W J. Sorbent concentration effects in liquid/solid partitioning[J]. Environ. Sci. Technol.,1985,19:789-796.
    [86]Pan G, Liss P S, Krom M D. Particle concentration effect and adsorptionreversibility [J]. Colloids and Surface A,1999,151:127-133.
    [87]G. Benoit. The influence of size distribution on the particles concentration effect and trace metal partitioning in rivers [J]. Geochim Cosmochim Acta,1995,59:2677-2687.
    [88]D. Grolimund, M. Borkovec, P. Federer. Measurement of sorption isotherms with flow-through reactors [J]. Environ. Sci. Technol.1995,29:2317-2321.
    [89]U. P. Nyffeler, Y. Li, P. H. Santschi. A kinetic approach to describe traceelement distribution between particles and solution in natural aquatic systems [J]. Geochim Cosmochim Acta,1984, 48:1513-1522.
    [90]R. L. Curl, G. A. Keioleian. Implicit-adsorbate model for apparent anomalies with organic adsorption on natural adsorbents [J]. Environ Sci Technol,1984,18:916-922.
    [91]J. J. W. Higgo, L. V. C. Reos. Adsorption of actinides by inarine sediments:effect of the sediment/sea water ratio on the measured distribution ratio [J]. Environ. Sci. Technol.1986, 20:483-490.
    [92]T. Nagayasu, K. Imamura, K. Nakanishi. Adsorption characteristics of various organic substances on the surfaces of tantalum, titanium, and zirconium [J]. Journal of Colloid and interface Science, 2005,286:462-470.
    [93]Pan G., Liss, P S. Metastable-equilibrium adsorption theory Ⅱ. Experimental [J]. Journal of Colloid and interface Science,1998,201:77-85.
    [94]J. A. Greathouse, R. T. Cygan. Molecular dynamics simulation of uranyl (VI)adsorption equilibria onto an external montmorillonite surface [J]. Physical Chemistry Chemical Physics,2005,7: 3580-3586.
    [95]X. Hao, W.A. Spieker, J.R. Regalbuto. A further simplification of the revised physical adsorption (RPA) model [J]. Journal of Colloid and interface Science,2003,267:259-264.
    [96]R. Cseh, R. Benz. The adsorption of phloretin to lipid monolayers and bilayers cannot be explained by Langmuir adsorption isotherms alone [J]. Biophysical Journal,1998,74: 1399-1408.
    [97]R. Bai, R. T. Yang. Heterogeous extended Langmuir model with multiregion surfaces for adsorption of mixtures [J]. Journal of Colloid and interface Science,2002,253:16-22.
    [98]L. Regdon, I. Dekany, G. Lagaly. A new way for calculation the adsorption capacity from surface excess isotherm [J]. Colloid Polym. Sci.,1998,276:511-517.
    [99]G. Pan, M. D. Krom, B. Herut. Adsorption-desorption of phosphate on airborne dust and riverborne particulates in east mediterranean seawater [J]. Environ. Sci. Technol.,2002,36: 3519-3524.
    [100]郑铭主编,陈万金副主编.环保设备-原理·设计·应用[M].北京:化学工业出版社,2001年4月.
    [101]M. Luisa Cervera, M. Carmen Arnal. Removal of heavy metals by using adsorption on alumina or chitosan[J]. Anal Bioanal Chem,2003,375:820-825.
    [102]Wu Xiaofo, Hu Yueli, Zhao Fang et al. Ion adsorption components in liquid/solid systems [J]. Journal of Environmental Sciences,2006,18:1167-1175.
    [103]郭永龙,武强,王焰新,等.利用粉煤灰合成沸石处理重金属污水研究[J].重庆环境科学,2003,25(9):26-31.
    [104]S K Pitcher, R C T Slad, N I Ward. Heavy metal removal from mo-torway storm water using zeolites[J]. ScienceoftheTotalEnviron-ment,2004,334-335,161-166.
    [105]赵芳.蛭石-水溶液体系中锌、镉离子吸附特性与离子吸附理论[D],株洲:中南林业科技大学研究生部,2007.
    [106]Sarkar D, Essington M E, Misra K C. Adsorption of mercury (Ⅱ) by variable charge surfaces of quartz and gibbsite [J]. Soil Sci. Soc. Am. J.,1999,63:1626-1636.
    [107]Saha U K, Taniguchi S, Sakurai K. Adsorption behavior of cadmium, zinc, and lead on hydroxyaluminum-and hydroxyaluminosilicate-montmorillonite complexes [J]. Soil Sci. Soc. Am. J.,2001,65:694-703.
    [108]Jiang K, Sun T, Sun L, et al. Adsorption characteristics of copper, lead, zinc and cadmium ions by tourmaline [J]. Journal of Environmental Sciences,2006,18(6):1221-1225.
    [109]Burgess R M, Perron M M, Gantwell M G, et al. Use of zeolite for removing ammonia and ammonia-caused toxicity in marine toxicity identification evaluations [J]. Arch. Environ. Contain. Toxical.,2004,47:440-447.
    [110]Wang Y, Zhou D, Luo X, et al. Cadmium adsorption in montmorillonite as afected by glyphosate [J]. Journal of Environmental Sciences,2004,6(6):881-884.
    [111]Li Y, Di Z, Luan Z, et al.Removal of heavy metals from aqueous solution by carbon nanotubes:adsorption equilibrium and kinetics [J]. Journal of Environmental Sciences, 2004,16(2):208-211.
    [112]刘勇,肖丹,杨文树,等.蛭石吸附Pb2+的动力学和热力学机理研究[J].四川大学学报(工程科学版),2005,37(5):62-67.
    [113]刘羽,胥焕岩,黄志良等.羟基磷灰石吸附水溶液中Cd2+的影响因素的研究.岩石矿物学杂志.2001,20(4):583-586.
    [114]Sameer Al-Asheh, Fawzi Banat. Adsorption, of copper and zinc by oil shale[J].Environmental Geology,2001,40(6):693-698.
    [115]Curkovic L, Cerjan-Stefanovic S, Filipan T. Metal ion exchange by natural and modified zeolite [J]. Water Res,1997,31(6):1379-1382.
    [116]Evangelou V P, Lumbanraja J. Ammonium-potassium-calcium exchange on vermiculite and hydroxyl-aluminum vermiculite[J]. Soil Sci. Soc. Am. J.,2002,66:445-455.
    [117]陶祖贻,张保林,盛芬玲.低浓度下离子交换树脂吸附氨基酸的机理[J].物理化学学报,1992,8(a):464-469.
    [118]丁述理,彭苏萍,刘钦甫等.膨润土吸附重金属离子的影响因素初探——以Zn2+为例[J].岩石矿物学杂志.2001,20(4):579-582.
    [119]Jiang K, Sun T, Sun L, et al. Adsorption characteristics of copper, lead, zinc and cadmium ions by tourmaline [J]. Journal of Environmental Sciences,2006,18(6):1221-1225.
    [120]何江,李朝生,王新伟等.多离子体系中黄河沉积物对重金属的竞争字符研究[J].沉积学报.2003,21(3):500-504.
    [121]Barros, M. A. S. D., A. S. Zola, P. A. Arroyo, C. E. G.Tavares and E.F. Sousa-Aguiar, 'Chromium uptake from tricomonent solution in zeolite fixed bed,'Adsorption,12,239-248 (2006).
    [122]Evangelou, V.P. and J. Lumbanraja,'Ammonium-Potassium-Calcium exchange on vermiculite and Hydroxy-aluminum vermiculite [J].'Soil Sci. Soc. Am.,66,445-455(2002).
    [123]Curkovic, L.,S.Cerjan-Stefanovic and T.Filipan,"Metal ion exchange by natural and modified zeolite, "Water Res.,31(6),1379-1382(1997).
    [124]Dwairl,I.M.,"Evaluation of Jordanin zeolite tuff as a controlled slow-release fertilizer for NH4+ "[J].Environmental Geology,34(1),14(1998).
    [125]Ishfaq, M. M.and M.Safdar, ARadiochemical study of the kinetics and mechanism of caesium ion adsorptionon potassium copper nickel hexacyanoferrate(Ⅱ) [J]. Adsorp. Sci. Technol.,17(8), 689-701 (1999).
    [126]Nabi, S. A., N.Rahman, and A. Islam, Ion-exchange equilibria of transition metals and potassium ions on an inorganic ion-exchanger:Zirconium(Ⅳ) iodophosphate [J]. Adsorp. Sci. Technol.,17(8),629-637(1999).
    [127]Zakaria, E. S., I. M. Ali and H.F. Aly,Adsorption behaviors of 134Cs and 22Na ions on tin and titanium ferrocyanides [J]. Adsorption,10,237-244(2004).
    [128]Sahu, B.B., K. Parida and H. K. Mishra, Cation exchange and sorption properties of TIN(IV) phosphate [J]. Colloid and Interf. Sci.,225(2),511-519(2000).
    [129]Demir, A., A. Gunay and E. Debik. Ammonium removal from aqueous solution by ion-exchange using packed bed natural zeolite [J]. Water Research.,28(3),329-335 (2002).
    [130]于旭彪.蛭石-水溶液体系中Cu(Ⅱ)的吸附特性研究[D].株洲:中南林业科技大学研究生部,2007.
    [131]芦鹏.红壤-水溶液体系Cr(Ⅱ)的吸附特性研究[D].株洲:中南林业科技大学研究生部,2007.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.