硅藻土的深度物化改性及其对Cd~(2+)、Pb~(2+)吸附性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅藻土作为一种粘土矿物,具备吸附能力强、来源丰富、价格合理等特点,是重金属离子的良好吸附材料,但硅藻土存在一定的理化构造缺陷,严重限制了其吸附性能的发挥。因此有必要对硅藻土实施深度物化改性,改善其理化特性,提高其应用水平。柱撑作为一种先进改性技术能够有效提高层状结构物质的层间距、稳定性、比表面积及表面活性等特性,但将柱撑改性技术应用于硅藻土改性的研究尚未见报道,故研究硅藻土柱撑改性具有非常重要的意义。本论文采用聚羟基铝对硅藻土实施了深度化学改性,并将改性前后的硅藻土用于吸附重金属离子Pb2+、Cd2+,研究了硅藻土聚羟基铝柱撑改性工艺及条件,分析了改性前后硅藻土吸附性能的变化,探究了硅藻土聚羟基铝柱撑改性机理。主要研究结果如下:
     (1)通过静态吸附实验研究发现,离子初始浓度、硅藻土投加量、pH值、温度、震荡时间是硅藻土吸附性能主要影响因素;硅藻土对Pb2+、Cd2+的吸附量随着离子初始浓度的提高而增大,随着硅藻土投加量的增加而先增大后减小,随着pH值的提高而增大,随着震荡时间的延长而先增大后趋于平衡,随着温度的升高而先增大后减小;各因素对硅藻土吸附Pb2+、Cd2+的影响程度排序分别为:初始浓度>pH值>投加量>温度>震荡时间、初始浓度>投加量>pH值>震荡时间>温度。
     (2)通过吸附条件优化实验发现,聚羟基铝改性硅藻土对Cd2+、Pb2+的最优吸附条件均为:离子初始浓度为1500mg/L,硅藻土投加量为50g/L, pH值为8,温度为25℃,震荡时间120min。
     (3)通过柱撑改性实验研究发现,针对吸附模拟废水中的Cd2+,硅藻土聚羟基铝柱撑最佳改性条件为:柱化液浓度为0.2mol/L、[Al]/土摩尔比为10mmol/g、反应温度为60℃、反应时间为120min、活化温度为105℃、活化时间为16h;针对吸附模拟废水中的Pb2+,硅藻土聚羟基铝柱撑最佳改性条件为:柱化液浓度为0.1mol/L、[Al]/土摩尔比为10mmol/g、反应温度为60℃、反应时间为120min、活化温度为105℃、活化时间为16h。
     (4)通过吸附性能比较研究发现,在最优吸附条件下,硅藻土原土对Cd2+的饱和吸附量为6.9mg/g,去除率为34.5%,柱撑改性土对Cd2+的饱和吸附量为10.05mg/g,去除率为50.3%,改性土与原土相比饱和吸附量与去除效率分别提高了39.9%和15.8%,改性效果明显(P<0.05);硅藻土原土对Pb2+的饱和吸附量为10.39mg/g,去除率为52.0%,柱撑改性土对Pb2+的饱和吸附量为13.62mg/g,去除率为67.9%,改性土与原土相比饱和吸附量与去除效率分别提高了31.1%和15.9%,改性效果相比对Cd2+的吸附要差。
     (5)通过电子扫描电镜(SEM)研究发现,改性土与原土相比,表面要光滑,杂质较少;聚羟基铝改性硅藻土以分子插入硅藻土的层间距中,改善了硅藻土的结构,提高了聚羟基铝改性硅藻土在重金属废水处理中的去除效果。通过改性机理研究发现,硅藻土吸附性能的提高主要是由于经聚羟基铝改性后,聚羟基铝颗粒进入硅藻土层间,与硅藻土层间的可交换性阳离子进行交换,为重金属离子Cd2+、Pb2+提供更多的吸附位点。
Diatomite is a nature soil mineral with many excellent advantages, such as high adsorption ability, wide source and reasonable price, so it is widely used to adsorb heavy metal ions. But its adsorption ability is limited by some physical and chemical structure. In order to improve its physicochemical properties and application level, it is necessary to do research in modification of diatomite. Pillared agent, as an advanced modification technology, is a new tool which can improve the lamellar spacing, stability, special surface area and surface activity of layered materials. It is of importance to modify diatomite with pillared agent. In this article, we adopt poly-hydroxyl aluminum as pillared agent to do this chemical modification experiment. After adsorbing Pb2+, Cd2with diatomite and modified diatomite respectively, modification mechanism and technological conditions are studied in this paper. Conclusions can be got as following:
     (1) Static adsorption experiments reveal that the adsorption ability of diatomite depends closely upon initial concentration of heavy metal ion, the dosage of diatomite, temperature, and adsorption time. Diatomite adsorption amount is increased with the increase of initial concentration of heavy metal ion, adsorption time and pH. While the adsorption amount increase at first and then reduce with the ascension of temperature and the dosage of diatomite. The importance of adsorption factors are shown as follows: initial concentration of heavy metal ion> pH> the dosage of diatomite>temperature> adsorption time.
     (2) The experiment of optimum modification conditions reveals that when the initial concentration of Cd2+is1500mg/L, the dosage of diatomite is50g/L, pH is8, temperature is25℃and adsorption time is120min, both the adsorption of Cd2+and Pb2+get the optimum condition.
     (3) Pillared modification experiments reveal:when to adsorb Cd2+, the optimum modified conditions of diatomite is that the concentration of pillared liquid is0.2mol/L, molar ratio of [Al]/soil islOmmol/g, reaction temperature is60℃, reaction time is120min, activation temperature is105℃and activation time is16h. When to adsorb Pb2+, the optimum modified conditions of diatomite is that the concentration of pillared liquid is0.1mol/L, molar ratio of [Al]/soil islOmmol/g, reaction temperature is60℃, reaction time is120min, activation temperature is105℃and activation time is16h.
     (4) Through comparing the adsorption performance before and after modification, the study found that: when to adsorb Cd2+, the saturation absorptive capacity of diatomite is6.9mg/g and the removal rate is34.5%, while the saturation absorptive capacity of modified diatomite is10.05mg/g and the removal rate is50.3%, so the saturation absorptive capacity and removal rate of modified diatomite is greater than diatomite. When to adsorb Pb2+, the saturation absorptive capacity of diatomite is10.39mg/g and the removal rate is67.9%, while the saturation absorptive capacity of modified diatomite is13.62mg/g and the removal rate is67.9%, so the saturation absorptive capacity and removal rate of modified diatomite is greater than diatomite.
     (5) SEM experiments reveal that: compared with original diatomite, modified diatomite has more smooth surface and less impurity. In order to provide more adsorption sites for Cd2+and Pb2+, the poly-hydroxyl aluminum particles enter into layers of diatomite and then exchange with exchangeable cations. That is why the adsorption ability of diatomite is improved after modifying with poly-hydroxyl aluminum.
引文
[1]朱健,王平,罗文连等.硅藻土吸附重金属离子研究现状及进展[J].中南林业科技大学学报,2011,31(7):183-189.
    [2]张烨,王平,王韬远等.钡盐沉积改性硅藻土的制备及其吸附重金属Pb2+[J].环境污染与防治,2011,11(33):49-53.
    [3]Yang W, Wang P, Luo W L, et al. The diatomite modified by PAM and applied to adsorb Pb(II) in the simulated wastewater[J]. Advanced Materials Research. 2011, 233-235:382-389.
    [4]杨文,王平,朱健,等.PAM表面改性硅藻土吸附废水中Pb2+[J].非金属矿2011,34(2):54-58.
    [5]Moreno A M, Quintana J R, Perez L, et al. Actors influencing lead sorption-desorption at variable added metal concentrations in Rhodoxeralfs[J]. Chemosphere,2006,64:758-763.
    [6]Hasan M, Abdel A. Sorption equilibria of lead (II) on some Palestinian soils-the natural ion exchangers[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects. 2005,264:1-5.
    [7]Sastre J, Rauret G, Vidal M. Effect of the cationic composition of sorption solution on the quantification of sorption desorption parameters of heavy metals in soils[J]. Environmental Pollution,2006,140:322-339.
    [8]章明奎,郑顺安,王丽平.土壤中颗粒状有机质对重金属的吸附作用[J].土壤通报,2007,38(06):1100-1104.
    [9]常晋娜,瞿建国.水体重金属污染的生态效应及生物检测[J].四川环境,2005,24(4):29-33.
    [10]李晓静,周晓阳.重金属污染与植物修复[J].北方园艺,2010(4):214-217.
    [11]Ren AZ, Gao YB, Lui S.Effects of Cr, Cd and Pb on free praline content etc in leaves ofBrassica chinensis L[J].Chin J Appl Environ Biol, 2000, 6 (2):112-116.
    [12]Pol Kieffer, Jacques Dommes, Lucien Hoffmann, et al, Quantitative changes in protein expression of cadmium-exposed poplar plants[J]. Proteomics, 2008, 8:2514-2530.
    [13]黄永杰,刘登义,王友保,等.八种水生植物对重金属富集能力的比较研究[J].生态学杂志,2006,25(5):541-545.
    [14]孔繁翔,陈颖,章敏.镍、锌、铝对羊角月牙藻生长及酶活性影响研究[J].环境科学学报,1997,17(2):193-198.
    [15]简敏菲,弓晓峰,游海,等.鄱阳湖水土环境及其水生维管束植物重金属污染[J].长江流域资源与环境,2004,13(6):589-593.
    [16]刘丹赤,邵长明.鱼体内重金属含量测定及其分布状况的研究[J].中国测试技术,2007,33(4):121-123.
    [17]梁君荣,王军,苏永全等.四种重金属对中国鲎(Tachypleus tridentatus)胚胎发育的影响[J].生态学报,2001,21(6):1 009-1012.
    [18]赵红霞,周萌,詹勇,等.重金属对水生动物毒性的研究进展[J].中国兽医杂志,2004,40(4):39-41.
    [19]赵红霞,詹勇,许梓荣.重金属对水生动物毒性的研究进展(一)[J].内陆水产,2003,1:38-40.
    [20]杨宵霖,郑舜琼.环境铅污染对妇女生育功能危害的调查[J].环境与健康杂志,1998,15(1):154-156.
    [21]秦俊法,李增禧.镉的人体健康效应[J].广东微量元素科学,2004,11(6):1-10.
    [22]蒋绍阶,梁建军.净水中残余铝的危害与控制[J].重庆建筑大学学报,1999,21(6):27-30.
    [23]严刚,肖举强.硅藻土与FeCl组配处理含Pb2+废水研究[J].金属矿冶,2007,375:103-115.
    [24]丁社光.硅藻土对铅离子的静态吸附试验研究[J].重庆工商大学学报(自然科学版),2007,24(1):51-55.
    [25]沈岩柏,朱一民,王忠安,等.硅藻土对水相中Pb2+的吸附[J].东北大学学报(自然科学版),2003,24(10):982-985.
    [26]张秀丽,曹新,赵增迎.改性硅藻土处理含重金属Cu2+废水[J].中国非金属矿工业导刊,2007,59:58-62.
    [27]沈岩柏,朱一民,魏德洲.硅藻土对锌离子的吸附特性[J].东北大学学报(自然科学版),2003,24(9):907-910.
    [28]汪德进,黄银芝.硅藻土吸附水中Cr(Ⅵ)的实验[J].化学工程师,2007,141(6):28-30.
    [29]杜玉成,叶力佳,刘燕琴.硅藻土吸附重金属离子Cd2+的动力学研究[J].中 国非金属矿工业导刊,2004,38:38-40.
    [30]荆立坤,王银叶,王强.纳米分子筛和硅藻土去除水中锰离子的研究[J].天津城市建设学院学报,2008,14(3):207-209.
    [31]杨宇翔,王鹏,吴介达,等.用微电泳法研究改性硅藻土的表面性质[J].无机化学学报,1998,14(1)4:7-52.
    [32]Chang T W, Wang M K, Lin C. Adsorption of copper in the different sorbent/water ratios of soil systems[J]. Water Air and Soil Pollution, 2002, 138(1/4): 199-209.
    [33]杨宇翔,吴介达,王鹏,等.硅藻土表面酸性质的研究[J].无机化学学报,1996,12(4):356-360.
    [34]Bayat B. Combined removal of zinc(Ⅱ) and cadmium(Ⅱ) from aqueous solution by adsorption onto high-calcium trukish fly ash[J]. Water Air and Soil Pollution, 2002, 136(1/4):69-92.
    [35]Caillerie J B, Aimeur M R, Kortobi Y E. Water adsorption on pyrogenic silica followed by H MAS NMR[J]. J Colloid Interface Sci, 1997, 194:434-439.
    [36]李兵,廖家莉,张东,等.蛭石对Cs的吸附性能研究[J].四川大学学报(自然科学版),2008,45(1):115-120.
    [37]于旭彪,吴晓芙,芦鹏,等.固液体系中蛭石吸附Cu2+动力学研究[J].湘潭大学,自然科学学报,2007,29(2):80-86.
    [38]Das N C, Bandyopadhyay M. Removal of lead by vermiculite medium[J]. Apply Clay Science, 1991,6:221-231.
    [39]Mathialagan T, Viraraghavan T. Adsorption of cadmium from aqueous solutions by vermiculite [J]. Separation Science and Technology, 2003,38(1):57-76.
    [40]刘勇,肖丹,杨文树,等.蛭石吸附Pb2+的动力学和热力学机理研究[J].四川大学学报(工程科学版),2005,37(5):62-67.
    [41]Kithomem, Paul J W. Kinetics of anmmonium adsorption and desorption by the natural zeolite clinoptilolite[J]. Soil Sci Soc. Am. J.1998, 62(3):622-629.
    [42]Ando H, mihara C. The fate of ammonium nitrogen applied to flooded rice as affected by zeolite addition[J]. Soil Sc. i, 1996, 42:531-538.
    [43]Haidoutic. Inactivation of mercury in contaminated soils using natural zeolites[J]. Sc. i TotalEnviron.1997,208:105-109.
    [44]王春峰,李健生,王连军,等.粉煤灰合成NaA型沸石对重金属离子的吸附动力学[J].中国环境科学,2009,29(1):36-41.
    [45]胡克伟,贾冬艳,查春梅,等.天然沸石对重金属离子的竞争性吸附研究[J].中国土壤与肥料,2008(3):66-68.
    [46]Sj blom R, Bjurstrm H, Pusch R. Feasibility of compacted bentonite barriers in geological disposal of mercury-containing waste [J]. Appl. Clay Sci, 2003,23:187-193.
    [47]PivatoA, Raga R. Tests for the evaluation of ammonium attenuation in MSW landfill leachate by adsorption into bentonite in a landfill liner[J]. Waste Manage, 2006,26(2):123-132.
    [48]VillarM V, Garcfa-S ineriz J L, Barcena I, Lloret A. State of the bentonite barrier after five years operation of an in situ test simulating a high level radioactive waste repository [J]. Engineering Geology, 2005,80:175-198.
    [49]Hu Q H, Qiao S Z, Haghseresht F, W ilson M A. Lu G Q. Adsorption study for removal of basicred dye using bentonite[J].Ind. Eng. Chem. Res, 2006, 45 (2):733-738.
    [50]朱霞萍,白德奎,李锡坤,等.镉在蒙脱石等粘土矿物上的吸附行为研究[J].岩石矿物学杂志,2009,28(6):643-647.
    [51]叶玲,张敬阳.螯合物调控蒙脱石电动电位及其吸附铬离子性能[J].高等学校化学学报,2009,30(12):2478-2483.
    [52]Shahwan T, Akar D, Eroglu A E. Physicochemical characterization of the retardation of aqueous Cs+ions by natural kaolinite and clinoptilolite minerals [J]. Journal of Colloid and Interface Science,2005,285:9-17.
    [53]郭坤梅,马毅杰.几种粘土矿物对Pb2+的吸附作用及其主要影响因素的探讨[J].地质地球化学,1997(4):109-112.
    [54]Parkman R H, Charnock J M, Livens F R, et al. A study of the interaction of strontium ions in aqueous solution with the surfaces of calcite and kaolinite [J]. Geochimica et Cosmochimica Acta,1998,62 (9): 1481-1492.
    [55]贾燕,汪洋.重金属废水处理技术的概况及前景展望[J].中国西部科技(学术版),2007,(4):10-13.
    [56]刘有才,钟宏,刘洪萍.重金属废水处理技术研究现状与发展趋势[J].广东 化工,2005,32(4):36-39.
    [57]黄明,魏彩春,陆燕勤,等.化学分类法处理电镀生产废水[J].桂林工学院学报,2003,23(1):79-81.
    [58]郭嘉,陈延林,罗晔,等.新型离子交换纤维的应用研究及展望[J].高科技纤维与应用,2005,30(6):35-38.
    [59]R idha Alegre M F, T ellier S,Dubreuil J F, et al. R emoval of heavy metals from industrial effluents by electrodeposition on carbon felt electrode[R]. Heidelberg: Proc. Intern Conf. On Heavy Metals in the Environment, 1983,940-942.
    [60]杨璐,胡澄.铬污染水体修复技术研究进展[J].广西轻工业,2008(7):96-97.
    [61]Barnes L J. Proceedings of EMC[M]. N ew York:(1)Elsevier,1991.
    [62]陈明利,张艳丽,吴晓芙,等.人工湿地植物处理含重金属生活废水的实验研究[J].2008,31(12):164-168.
    [63]许树成.硅藻土开发应用与特性研究[J].阜阳师范学院学报(自然科学版),2009,17(3):29-31.
    [64]刘洁,赵东风.硅藻土的研究现状及进展[J].环境科学与管理,2009,34(5):104-106.
    [65]孙玉玲,倪晋仁.朗格缪尔等温式的适用性分析——以黄土吸持铜离子为例[J].环境化学,2002,21(1):37-44.
    [66]Tao Zuyi, Chu Taiwei. On the application of the Langmuir Equation to estimation of adsorption equilibrium constants on a powdered solid aqueous solution[J]. journal of Colloid and interface Science,1998,201:71-76.
    [67]M. luisa Cervera, M. Carmen Arnal. Removal of heavy metals by using adsorption on alumina or chitosan[J]. Anal. Bioanal. Chem,2003,375:820-825.
    [68]O'Connor D J, Connolly J P. The effect of concentration of adsorbing solids on the partition coefficient[J]. Wat. Res. 1980, 14:1517-1523.
    [69]Voice T C, Rice C P, Weber W J. Effect of solids concentration on the sorptive partitioning of hydrophobic pollutants in aquatic systems[J]. Environ. Sci. Technol, 1983,17: 513-518.
    [70]Cox L, Hermosin M C, Celis R. Sorption of two polar herbicides in soils and soil clay suspension[J]. Wat. Res. 1997, 31:1309-1316.
    [71]Sanudo Wilhelmy S A, Rivera D uarte I, Flegal A R. Distribution of colloidal trace medals in the San Francisco Bay estuary[J]. Geochim. Cosmochim. Acta, 1996, 60(24):4933-4944.
    [72]Voice T C, Weber W J. Sorbent concentration effects in liquid/solid partitioning [J]. Environ. Sci. Tech.1985,19:789-796.
    [73]Pan G, Liss P S, Krom M D. Particle concentration effect and adsorption reversibility[J]. Colloids and Surface A, 1999, 151:127-133.
    [74]T. Nagayasu, K. lmamura, K. Nakanishi. Adsorption characteristics of various organic substances on the surface of tantalum, titanium, and zirconium[J]. Journal of Colloid and interface Science,2005,286:462-470.
    [75]J. A. Greathouse, R. T. Cygan. Molecular dynamics simulation of uranyl(VI) adsorption equilibria onto an external montmorillonite surface[J]. Physical Chemistry Chemical Physics, 2005, 7:3580-3586.
    [76]Pan G, Liss P S. Metastable- equilibrium adsorption theory Ⅱ [J]. Journal of Colloid and interface Science,1998,201:77-85.
    [77]X. hao, W. A. Spieker, J. R. Regalbuto. A further simplification of the revised physical adsorption(RPA) model[J]. Journal of Colloid and interface Science,2003, 267:259-264.
    [78]R. Cseh, R. Bena. The adsorption of phloretin to lipid monolaters and bilayers cannot be explained by Langmuir adsorption isotherms alone[J]. Biophysical Journal, 1998,74:1399-1408.
    [79]R. Bai, R. T. Yang. Heterogeous extended Langmuir model with multiregion surfaces for adsorption of mixture[J]. Journal of Colloid and interface Science, 2002, 253:16-22.
    [80]L. Regdon, I. Dekany, G. Lagaly. A new way for calculation the adsorption capacity from surface excess isotherm[J]. Colloid Polym. Sci.1998, 276:511-517.
    [81]G Pan, M. D. Krom, B. Herut. Adsorption-desorption of phosphate on airborne dust and riverborne particulates in east Mediterranean seawater[J]. Environ. Sci. Technol.2002,36:3519-3524.
    [82]Y. Qin, G. Pan, M. Zhang. Adsorption of zine on manganite(7-MnOOH):particle concentration effect and adsorption reversibility[J]. Journal of Environ. Sci. 2004, 16: 627-630.
    [83]赵芳,吴晓芙,张艳丽,等.固液相离子吸附体系中的吸附剂浓度效应与Langmuir方程的适用性[J].环境化学,2007,26(3):335-338.
    [84]赵芳,吴晓芙,黄中子,等.液/固离子吸附体系中的强度因子[J].中南林业科技大学学报(自然科学版),2007,27(1):109-117.
    [85]WU Xiao-fu, HU Yueli, ZHAO Fang, et al. Ion adsorption components in liquid /solid systems[J]. Journal of Environmental Sciences, 2006, 18(6):1167-1175.
    [86]叶力佳,杜玉成.硅藻土对重金属离子Cu2+的吸附性能研究[J].矿冶,2005,14(3):69-71.
    [87]吕春欣.改性硅藻土对重金属离子吸附性能的研究[D].吉林大学硕士论文,2009.
    [88]赵芳玉.临江三级硅藻土吸附重金属的研究[D].吉林大学硕士论文,2009.
    [89]李仁炳,丁社光.硅藻土吸附Cu2+吸附平衡等温式及穿透曲线的测定[J].重庆工商大学学报(自然科学版),2008,25(3):286-287.
    [90]郑水林,李杨,杜玉成.吉林某矿含粘土硅藻土提纯工艺研究[J].非金属矿,1997,4:49-50.
    [91]刘频,赵黔榕,袁朗白.改性硅藻土对Pb(Ⅱ)的吸附作用[J].云南化工,2003,30(5):11-13.
    [92]赵黔榕,刘应隆,李璧玉.改性硅藻土对Cu(Ⅱ)吸附性能的研究[J].云南师范大学学报,2000,20(6):55-57.
    [93]Al-Degs, Y. Khraisheh, M. A. M. Tutunji et al. Sorption of lead ions on diatomite and manganese oxides modified diatomite [J]. Water Reaserch, 35(15):3724-3728.
    [94]M. A. M. K hraisheha, M. A. Al-Ghoutib, S. J. Allenb, M. N. Ahmadb. Effect of OH and silanol groups in the emoval of dyes from aqueous solution using diatomite [J]. Water Reaserch,2005,39(5):922-932.
    [95]林俊雄.硅藻土基吸附剂的制备、表征及其染料吸附特性研究[D].浙江大学博士论文集.2007.
    [96]刘景华,吕晓丽,等.硅藻土微波改性及对污水中硫化物吸附的研究[J].非金属矿,2006,29(3):36-37.
    [97]王泽民,马小凡,等.酸法提纯硅藻土及废酸综合利用研究[J].非金属矿,1995,(103):36-37.
    [98]Reyad A. Shawabkeha, M aha F. Tutunj. i Experimental study and modeling of basic dye sorption by diatom iceous clay[J]. Applied Clay Science, 2003,24(1-2): 111-120.
    [99]向红霞,罗琳,敖晓奎.改性硅藻土与细菌复合体对Mn(Ⅱ)的吸附特性及动力学研究[J].非金属矿,2008,31(1):15-18.
    [100]M. A. AI-Ghouti, M. A. M. Khraisheh, S. J. Allen, et al The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth[J]. Journal Environment Management, 2003, 69(3):229-238.
    [101]李增新,王国明,孟韵.壳聚糖改性硅藻土处理实验室有机废液[J].实验技术与管理,2009,26(8):23-24.
    [102]Gao Baojiao, JiangPengfei, An Fuqiang, et al Studies on the surface modification of diatomite with polyethyleneimine and trapping effect of the modified diatomite for phenol [J]. Applied Surface Science. 2005,250(1-4): 273-279.
    [103]M. Amara, H. Kerdjoudj, Modification of the cation exchange resin properties by impregnation in polyethyleneimine solutions:Application to the separation of metallic ions [J]. Talanta 2003,60(5):991-1001.
    [104]Xingwei Li, Xiaoxuan Li, Gengchao Wang. Surface modification of diatomite using polyaniline[J]. Materials Chem-istry and Physics, 2007, 102:140-143.
    [105]叶玲.蒙脱石改性及其吸附性能研究[J].矿物学报,2001,21(2):180—183.
    [106]吕宪俊,王桂芳,马少健等.铝柱撑蒙脱石的热稳定性和微结构变化规律研究[J].中国矿业大学学报,2011,40(2):252-258.
    [107]Maes N, Heylen I, Cool P, et al. The relation between the synthesisof pillared clays and their resulting porosity[J]. Applied Clay Science, 1997, 12:43-60.
    [108]戴劲松,叶 玲.纳米多孔黏土材料[J].非金属矿,1998,21(6):1-3.
    [109]吴平宵,张惠芬.无机—有机柱撑蒙脱石对苯酚的吸附[J].矿物学报,1999,18(1):58-69.
    [110]刘云,吴平霄,唐剑文等.聚羟基铝柱撑蒙脱石吸附重金属离子实验研究[J].矿物岩石,2005,25(3):122-126.
    [111]Boyd S A. Clay phentachorophenol sorption by organic-clays[J]. Clays and Clay Minerals,1988,36(8):724-733.
    [112]刘晓文,钟钢,刘庄铬等.铝基柱撑蒙脱石的制备与孔道结构[J].中南大学学报,2010,41(3):819-824.
    [113]Montarges E.Intercalation of Al 13-polyethylenoxide complexes into montmorillonite clay[J]. Clays and Clay Minerals, 1995,43(4):241-252.
    [114]王楠,梁成华,杜立宇等.柱撑蒙脱石对水中砷(V)的吸附研究[J].工业水处理,2009,29(7):31-35.
    [115]彭书传,张家红,黄川徽,等.无机柱撑蒙脱石吸附Cu2+的研究[J].合肥工业大学学报(自然科学版),2004,27(8):895-898.
    [116]Morfis S, Philippopoulos C, Papayannakos N. Application of Al-pillared clay minerals as catalytic carriers for the reaction of NO with CO[J]. Applied Clay Science, 1998,
    [117]Frini N, Crespin M, Trabelsi M, et al. Preliminary results on the properties of pillared clays by mixed Al-Cu solutions[J]. Applied Clay Science, 1997, 12:281-292.
    [118]吴平霄.聚轻基铁铝复合柱撑蒙脱石的微结构特征[J].硅酸盐学报,2003,31(10):1016-1020.
    [119]Wolf T A. Adsorption of organic pollutants on montmorillonite treated with amines[J]. Clays and Clays Minerals, 1985,33(4):301-311.
    [120]曹明礼,余永富.聚合羟基A1—柱撑蒙脱石的制备与机理研究[J].硅酸盐通报,2002,(4):23-27.
    [121]Mortland M. Clay organic complexes as sorbent for phenol and chlorophenols[J]. Clays and Clay Minerals, 1986, 34(6):423-434.
    [122]彭书传,叶鸽,李辉夫等.有机柱撑纯蒙脱石吸附Cr3+的研究[J].合肥工业大学学报,2006,29(2):226-229.
    [123]Vaughan DEW. Pillaredelays-a historical PersPective[J]. Catalysis Today, 1988, 2(2-3):187-198.
    [124]Selvaraj S, Mohan B V, Krishna K N, et al. Pillaring of smectites using an aluminium oligomer: a study of pillar density and thermal stability [J]. Applied Clay Science,1996,10:439-450.
    [125]马鸿文等.工业矿物与岩石[M].北京:化学工业出版社,2005:364-369.
    [126]奚旦立,孙裕生,刘秀英.环境监测(第三版)[M].北京:高等教育出版社, 2004:67-87.
    [127]蒋月秀.ST/A1-PILC催化剂的制备、结构表征及催化性能研究[D].南宁:广西大学化学化工学院,2004.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.