板栗疫病菌脱毒方法比较及受病毒侵染后与症状表达有关的靶标基因的克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
病毒与宿主相互作用是现代病毒学研究最重要的前沿领域之一。本文采用具有独特优点的一个崭新的病毒/宿主模型系统—低毒病毒/板栗疫病菌系统来研究病毒与宿主的相互作用。建立了板栗疫病菌的原生质体再生脱毒方法,该方法可望应用到其他具有工农业重要使用价值的感染病毒真菌的脱毒纯化。通过用EP155单交换随机整合质粒文库转化低毒的板栗疫病菌工程菌株LC1,构建了突变体库,并以孢子形成为标记,从突变体库中筛选到了一批携带病毒且产孢良好的病毒靶基因突变株。通过对突变株B910 Southern杂交分析确定为单插入突变。质粒拯救获得了突变基因片段,对该基因片段序列分析表明,该基因(命名为cpta1)的编码产物与炭疽菌Colletotrichum lindmuthianum中的转录激活因子CLTA1有64%的同源性和75%的相似性。这些结果暗示CPTA1可能是低毒病毒的一个靶标,其功能因病毒侵染而发生改变并且干扰真菌的正常产孢过程。
The interaction between virus and host is one of the most important front of virology. A novel hypovirus/Cryphonectria parasitica system was adopted to study the interaction between a virus and its host. It was found that the hypovirus could be eliminated after protoplast regeneration in C. parasitica, a method that can be used to eliminate virus for other fungi. By insertional mutagenesis of the transgenic strain LCI with a single-cross random integration plasmid library that contain random DNA of the virus-free wild type C. parasitica, many mutants with varied phenotype were obtained. One of such mutants, B910, sporulated well while was still infected by the viruses. Southern blot analysis showed it was a single insertional mutant. A fragment of 888bp that flanks the insertion site was recovered by plasmid rescue. Sequence analysis indicated that the insertion interrupted an ORF (termed CPTAl) that encodes a protein similar to a GAL4-like transcription activator of Colletotrichum lindmuthianum with 64% ide
    
    ntity and 75% positives. This result implies that CPTAl maybe the target of the hypovirus and whose funtion was modulated by the virus to interfere with the sporulation process of the fungus.
引文
1. Blumenthal T. and Carmichael G. 1979. RNA replication: function and structure of Qβ replicase. Annual Review of Biochemistry 48: 525-548.
    2. Chen MH., Sheng J., Hind G., Handa A.K., Citovsky V. 2000. Interaction between the tobacco mosaic virus movement protein and host cell pectin methylesterases is required for viral cell-to-ceil movement. EMBO J. 19: 913-920.
    3. Osman T.A. and Buck K.W. 1997. The tobacco mosaic virus RNA polymerase complex contains a plant protein related to the RNA-binding subunit of yeast eIF-3. J. Virol. 71: 6075-6082.
    4. Quadt R., Kao C.C., Browning K.S., Hershberger R.P., and Ahlquist P. 1993. Characterization of a host protein associated with brome mosaic virus RNA-dependent RNA polymerase. Proc. Natl. Acad. Sci. USA. 90: 1498-1502.
    5. Gamarnik A.V., and Andino R. 1997. Two functional complexes formed by KH domain containing proteins with the 5' noncoding region of poliovirus RNA. Proc. Natl. Acad. Sci. USA. 3: 882-892.
    6. Newman J.F. and Brown F. 1999. Foot-and-mouth disease virus and poliovirus particles contain proteins of the replication complex. J. Virol. 71: 7657-7662.
    7. Bonneau A.M., Darveau A., Sonenberg N. 1985. Effect of viral infection on host protein synthesis and mRNA association with the cytoplasmic cytoskeletal structure. J. Cell Biol. 100:1209-1218.
    8. Gontarek R.R., Gntshall L.L., Herold K.M., et al. 1999. hnRNP C and polypyrimidine tract-binding protein specifically interact with the pyrimidine-rich region within the 3'NTR of the HCV RNA genome. Nucleic Acids Res. 27: 1457-1463.
    9. Krüger M., Beget C., Li Q., et al. 2000. Identification of elF2Bgamma and elF2 gamma as cofactors of hepatitis C virus interr/aI ribosome entry site-mediated translation using a functional genomic approach. Proc. Natl. Acad. Sci. USA. 97: 8566-8571.
    10. Schaad M.C., Anderberg R.J., Carrington J.C. 2000. Strain-specific interaction of the tobacco etch virus NIa protein with the translation initiation factor elF4E in the yeast two-hybrid system. Journal of Virology 273: 300-306.
    11. Wang X., Ullah Z. and Grumet K. 2000. Interaction between zucchini yellow mosaic potyvirus RNA-dependent RNA polymerase and host poly-(A)binding protein. Virology 275: 433-443.
    
    
    12. Gontarek R.R., Gutshall L.L., Herold K.M., et al. 1999. hnRNP C and polypyrimidine tract-binding protein specifically interact with the pyrimidine-rich region within the 3' NTR of the HCV RNA genome. Nucleic Acids Res. 27: 1457-1463.
    13. Diez J., Ishikawa M. and Ahquist P. 2000. Identification and characterization of a host protein required for efficient template selection in viral RNA replication. Proc. Natl. Acad. Sci. USA. 97: 3913-3918.
    14. Adamson A.L., Kenney S. 1999. The Epstein-Barr virus BZLF1 protein interacts physically and functionally with the histone acetylase CREB-binding protein. J. Virol. 73:6551-6558.
    15. Chen B., Gao S., Choi G.H., and Nuss D.L. 1996. Extensive alteration of fungal gene transcript accumulation and elevation of G-protein-regulated cAMP levels by a virulence-attenuating hypovirus. PNAS. 93: 7996-8000.
    16. Sheng J., Lartey R., Ghoshroy S., and Citovsky V. An Arabidopsis thaliana bovine viral diarrhoea virus: a crucial step in the indution of apoptosis. J. Gen. Virol. 80: 1147-1155.
    17. Mantovani F. and Banks L. 1998. The interaction between p53 and papillomaviruses. Semin. Cancer Biol. 9: 387-395.
    18. Janda M. and Ahlquist P. 1993. RNA-dependent replication, transcription, and persistence of brome mosaic virus RNA replicons in S. cerevisiae. Cell 72(6): 961-970.
    19. Ishikawa M., Janda M., Krol M.A. 1997. In viro DNA expression of functional brome mosaic viruse RNA replicons in Saccharomyces cerevisiae. J. Virol. 71: 7781-7790.
    20. Lee W.M., Ishikawa M. and Ahlquist P. 2001. Mutation of host △9 fatty acid desaturase inhibits brome mosaic virus RNA replication between template recognition and RNA synthesis. Journal of Virology 75: 2097-2106.
    21. Ishikawa M., Obata F., Kumagai F., et al. 1991. Isolation of mutants of Arabidopsis thaliana in which accumulation of tobacco mosaic virus coat protein is reduced to low levels. Mol. Gen. Genet. 230: 33-38.
    22. Yamanaka T., Ohta T., Takahashi M., et al. 2000. TOM1, an Arabidopsis gene required for efficient multiplication of a tobamovirus, encodes a putative transmembrane protein. Proc. Natl. Acad. Sci. USA. 97(18): 10107-10112.
    
    
    23. Hagiwara Y., Komoda K., Yamanaka T., et al. 2003. Subcellular localization of host and viral protein associated with Tobamovirus RNA replication. EMBO J. 22(2): 344-353.
    24. Ohshima K., Taniyama T., Yamanaka T., Ishikawa M., Naito S. 1998. Isolation of a mutant of Arabidopsis thaliana carrying two simultaneous mutations affecting tobacco mosaic virus multiplication within a single cell. Virology. 243(2): 472-481.
    25. Yamanaka T., Imai T., Satoh R., et al. 2002. Complete inhibition of tobamovirus multiplication by simultaneous mutation in two homologous host genes. J. Virol. 76(5): 2491-2497.
    26. Sharpira R., Choi G.H., and Nuss D.L. 1991. Virus-like genetic organization and expression strategy for a double-stranded RNA genetic element associated with biological control of chestnut blight. EMBO J. 10:731-739.
    27. Kooning E.V., Choi G.H., Nuss D.L., Shapira R., and Carrington J.C. 1991. Evidence for common ancestry of a chestnut blight hypovirulence-associated double-stranded RNA and a group of positive-strand RNA plant viruses. Proc. Natl. Acad. Sci. USA. 88: 10647-10651.
    28. Biraghi A. 1953. Possible active resistance to Endothia parasitica in Castaneasativa. Rep. Congr. Int. Union For. Res., Org., 11th, pp149-57, Rome
    29. Grente J. 1965. Les forme hypovirulentes d'Endothia parasitica et les espoirs delutte contre le chancre du chatagnier. C. R. Seance A cad. Agric. Fr. 51:1033-1037
    30. Grente J., Sauret S. 1969. L'hypovirulence exclusive, est-elle controlée par des determinants cytoplasmiques? C. R. Acad. Sci. Paris Ser. D 268:3173-3176
    31. Elliston J.E. 1985. Characteristics of dsRNA-free and dsRNA-containing strains of Endothia parasitica in relation to hypovirulence. Phytopathology 74: 151-158.
    32. Elliston J.E., R.A. Jaynes, P.R. Day, and S.L. Anagnostakis. 1977. A native American hypovirulent strain of Endothia parisitica. Proc. Amer. Phytopathol Soc. 4:111-115(Abstr.)
    33. MacDonald W.L., and Fulbright D.W. 1991. Biological control of chestnut blight: Use and limitations of transmissable hypovirulence. Plant Disease 75(7): 656-661.
    34, Day P.R., Dodds J.A., Elliston J.E., Jaynes R.A., and Anagnostakis S.L. 1977. Double-stranded RNA in Endothia parasitica. Phytopathology 67:1393-1396.
    35.梁平彦,陈开英,具有与低致病力有关的dsRNA的我国栗疫菌的研究,微生物学报,1990,30(1):73-74
    36.梁平彦,陈开英,栗疫菌低毒力菌株dsRNA的分离及转移,微生物学报,1992,32(4):253-261
    37. Elliston J.E. 1985. Characteristics of dsRNA-free and dsRNA-containing strains of Endothia parasitica in relation to hypovirulence. Phytopathology 74: 151-158.
    
    
    38. Fulbright D.W. 1984. Effect of eliminating dsRNA in hypovirulent Endothia parasitica. Phytopathology 74: 722-724
    39. Dodds J.A. 1980. Assosiation of type 1 viral-like dsRNAwith club-shaped particles in hypovirulent strains of Endothia parasitica. Virology 107: 1-12
    40. Van Alfen N.K. 1982. Biology and potential for disease control of hypovirulenceof Endothia parasitica. Annu. Rev. Phytopathology 20: 349-362
    41. Shapira R., Choi G.H., and Nuss D.L. 1991. Virus-like genetic organization and expression strategy for a double-stranded RNA genetic element associated with biological control of chestnut blight. EMBO J. 10: 731-739.
    42. Hillman B.I., et al. 1992. A north American hypovirulent isolate of the chest nut blight fungus with European isolate-related dsRNA. J. Gen. Virol. 73: 681-686
    43. Choi G.H. and Nuss D.L. 1992. Hypovirulence of chestnut blight fungus conferred by an infectious viral dsRNA. Science 257: 800-805.
    44. Chen B., Choi G.H., and Nuss D.L. 1993. Mitotic stability and nuclear inheritance of Integrated viral cDNA in engineered hypovirulent strains of the chestnut blight fungus. EMBO J. 12: 2991-2998.
    45. Hillman B.I., Fulbright D.W. and Nuss D.L. 1995. Hypoviridae. In virus Taxonomy, ed. FA Murphy, pp:261-264. New York: Springer-Verlag.
    46. Choi G.H., Shapira R., and Nuss D.L. 1991. Co-translational autoproteolysis involved in gene expression from a double-stranded RNA genetic element associated with hypovirulence of the chestnut blight fungus. Proc. Natl. Acad. Sci. USA. 88: 1167-1171.
    47. Shapira R., and Nuss D.L. 1991. Gene expression by a hypovirulence-associated virus of the chestnut blight fungus involves two papain-like protease activities. J. Biol. Chem. 266: 19419-19425.
    48. Choi G.H., Nuss D.L. 1991. The autocatalytic protease p29 edcoded by a hypovirulece-associated virus of the chesnut blight fungus resembles the potyvirus-encoded protease HC-Pro. Virology 183: 747-752.
    49. Koonin E.V., Choi G.H., Nuss D.L., Shapira R., and Carrington J.C. 1991. Evidence for common ancestry of a chestnut blight hypovirulence-associated double-stranded RNA and a group of positive-strand RNA plant viruses. Proc. Natl. Acad. Sci. USA. 88: 10647-10651.
    
    
    50. Hillman B.I., Halpem B.T. and Brown M.P.A. 1994. Viral dsRNA element of the chestnut blight fungus with a distinct genetic organization. Virology 201: 241-250.
    51. Smart C.D., Yuan W., Foglia R., Nuss D.L., Fulbright D.W., Hillman B.I. 2000. Cryphonetria parasitica hypovirus3, a virus species in the family Hpoviridae with a single open reading frame. Virology 231: 66-73.
    52. McBratney S., Chen C.Y., Sarnow P. 1993. Internal initiation of translation. Curr. Opin. Cell Biol. 5:961-965.
    53. Hillman B.I., Tian Y., Bedker P.J. and Brown M. P. 1992. A North American hypovirulent isolate of the chestnut blight fungus with European isolate-related dsRNA. J. Gen. Virol. 73: 681-686.
    54. Rae B.P., Hillman B.I., Tartaglia J. and Nuss D.L. 1989. Characterization of double- stranded RNA genetic elements associated with biological control of chestnut blight: organization of terminal domains and identification of gene products. EMBO J. 8: 657-663.
    55. Chen B. and Nuss D.L. 1999. Infectious cDNA clone of hypovirus CHV1-Euro7: a comparative virology approach to investigate virus-mediated hypovirulence of the chestnut blight fungus Cryphonectria parasitica. J. Virology 73: 985-992.
    56. Suzuki N. and Nuss D.L. 2002. Contribution of protein p40 to Hypovirus-mediated modulation of fungal host phenotype and viral RNA accumulation. J. Virology 76: 7747-7759.
    57.杨旺,韩光明,罗晓芳,我国板栗疫病研究初报,北京林学院学报,1979(1):74-77
    58.周而勋,王克荣,陆家云,中国东部11省(市)栗疫病的发生条件,南京农业大学学报,1993,16(3):44-49
    59.王万章,鄂从军,李海菊,板栗干枯病防治实验,林业科技通讯,1990,(2):25-26
    60.赵永琴,张英,沈百炎,板栗胴枯病的发生及其防治研究,植物保护,1980,1):13-16
    61.汪樟春,余建民,顾伟民,陈海法,程永行,桐庐县板栗主要病虫为害现状及防治,浙江林业科技,2001,21(3):56-60
    62. Griffin G. 1986. Chestnut blight and its control. Horticultural reviews 8: 291-335
    63.周而勋,王克荣,陆家云,栗疫病研究进展,果树科学,1999,16(1):66—71
    64.王克荣,周而勋,陆家云,栗疫病菌的培养性状、毒力与dsRNA的关系,植物病理学报,1996,26(4):341-346
    
    
    65. Anagnostakis S.L. 1988. Cryphonectria parasitica, cause of chestnut blight. Adv. Plant Pathol. 6: 123-136
    66. Andes J.O. 1961. Cultural variation in Endothia parasitica. Phytopathology 51: 808-816
    67. Anagnostakis S.L. 1977. Vegetative incompatibility in Endothia parasitica. Experimental. Mycology 1:306-316.
    68. Anagnostakis S.L. 1982. Genetic analysis of Endothia parasitica: linkage data for four single genes and three vegetative compatibility types. Genetics 102: 25-28.
    69. Anagnostakis S.L. and Kranz J. 1987. Population dynamics of Cryphonectria parasitica in a mixed-hardwood forest in Connecticut. Phytopathology 77:751-754.
    70.王克荣,邵见阳,陆家云,苏皖地区栗疫菌营养体亲和性研究,南京农业大学学报,1991,14(4):44-48
    71. Todd N., Kand L. Fungal individualism, Science Progress 1980. 66:331-354.
    72. Puhalla J.E., Anagnostakis S.L. 1971. Genetics and nutritional requirements of Endothia parasitica. Phytopathology 61: 169-173.
    73. Milgroom M.G. and Liparis Liu Y.C. 1993. Estimation of the outcrossing rate in the chestnut blight fungus, Cryphonectria parasitica. Heredity 70: 385-392.
    74.王克荣,周而勋,陆家云,中国东部栗疫病菌的交配型,南京农业大学学报,1997,20(3):117-119
    75. Larson T.G., Choi G.H. and Nuss D.L. 1992. Regulatory pathways governing modulation of fungal gene expressing by a virulence-attenuating mycovirus. EMBO J. 11: 4539-4548.
    76. Rigling D., Van Alfen N.K. 1991. Regulation of laccase biosynthesis in the plant pathogenic fungus Cryphonectria parasitica by double-strand RNA J. Bacteriol 173: 8000-8003.
    77. Kazmierczak P., Pfeiffer P., Zhang L., and Van Alfen N.K. 1996. Transcriptional repression of specific host genes by the mycovirus Cryphonectria hypovirus. J. Virol. 70: 1137-1142.
    78. Wang P., Nuss D.L. 1995. Induction of Cryphonectria parasitica cellobiohydrolase Ⅰ genes suppressed by hypovirus infection and regulation by a G-protein linked signaling pathway involved in fungal pathogenesis. Pro. Natl. Acad. Sci. USA. 92: 11529-11533.
    79. Chen B., Lynn M. heletka, and Nuss D.L. 2000. Using chimeric hypoviruses to fine-turn the
    
    interaction betweena pathogenic fungus and its plants host. J. Virology 74: 7562-7567.
    80. Zhang L., Churchill A.C.L., Kazmierczak P., et al. 1993. Hypovirulence-associated traits induced by a mycoviruse of Cryphonectria parasitica are mimicked by targeted inactivation of a host gene. Mol. Cell. Biol. 13: 7782-7792.
    81. Kim D.H., Rigling D., Zhang L. and Van Alfen N.K. 1995. A new extracellular laccase of Cryphonectria parasitica is revealed by deletion of Lacl. Mol. plant-Microbe Interact. 8: 259-268.
    82. Gao S. and Nuss D.L. 1996. Distinct roles for two G protein α subunits in fungal virulence,morphology and0 reprodution revealed by targeted gene disruption. Proc. Natl. Acad. Sci.USA. 93: 14122-14127.
    83. Gao S., Choi G.H., Shain L. and Nuss D.L. 1996. Cloning and targeted disruption of enpg-1, encoding the major in vitro extracellular endopolygalacturonase of the chestnut blight fungus Cryphonectria parasitica. Appl. Environ. Microbiol. 62:1984-1990.
    84. Kasahara S. and Nuss D.L. 1997. Targeted disruption of a fungal G-protein β subunit gene results in increased vegetative growth but reduced virulence. Mol. plant-Microbe Interact. 8: 984-996.
    85. Kasahara S. and Nuss D.L. 2000. Identification of bdm-1, a gene involved in G-protein β subunit and α subunit accumulation. Proc. Natl. Acad. Sci. USA. 97: 412-417.
    86. Chen B., Choi G.H. and Nuss D.L. 1994. Attenuation of fungal virulence by synthetic infectious hypovirus transcripts. Science 264: 1762-1764.
    87. Chen B., Craven M.G. and Choi G.H. 1994. cDNA-derived hypovirus RNA in transformed chestnut blight fungus is spliced and trimmed of vector nucleotides. Virology 202: 441-448.
    88. Chen B., Chen C.H., Bowman B.H. and Nuss D.L. 1996. Phenotypic changes associated with wilde-type and mutant hypovirus RNA transfection of plant pathogenic fungi phylogenetically related to Cryphonetria parasitica. Phytopathology 86: 301-310.
    89. Shapira R., Choi G. H., Hillman B. I. and Nuss D. L. 1991. The contribution of defective RNAs to complexity of viral-encoded double-stranded RNA populations present in hypovirulent strains of the chestnut blight fungus Cryphonectria parasitica. EMBO J. 10: 741-746.
    90. Craven M.G., Pawlyk D.M., Choi G.H., and Nuss D.L. 1993. Papain-like protease p29 as a symptom determinant encoded by a hypovirulence-associated virus of the chestnut blight fungus.
    
    J. Virol. 67: 6513-6521.
    91. Shapira R. and Nuss D.L. 1991. Gene expression by a hypovirulence-associated virus of the chestnut blight fungus involves two papain-like protease activities. J. Biol. Chem. 266: 19419-19425.
    92. Gilman A.G. 1987. G proteins: tranduction of receptor-generated signals. Annu. Rev. Biochem. 56: 615-649.
    93. Choi G.H., Chen B. and Nuss D.L. 1995. Virus-mediated or transgenic suppression of a G-protein α subunit and attenuation of fungal virulence. Pro. Natl. Acad. Sci. USA. 92: 305-309.
    94. Gao S., Nuss D.L. 1996. Distinct roles for two G protein α subunits in fungal virulence, morphology and reproduction revealed by targeted gene disruption. Proc. Natl. Acad. Sci. USA. 93:14122-14127
    95. Varley D.A., Podila G.K. and Hiermath S.T. 1992. Cutinase in Cryphonectria parasitica, the chestnut blight fungus: suppression of cutinase gene expression in isogenic hypovirulent strains containing double-stranded RNAs. Mol. Cell Biol. 12(10): 4539-4544.
    96. Wang P. and Nuss D.L. 1995. Induction of a Cryphonectria parasitica cellobiohydrolase Ⅰ gene is suppressed by hypovirus infection and regulated by a GTP-binding-protein-linked signaling pathway involved in fungal pathogenesis. Proc. Natl. Acad. Sci. USA. 92(25): 11529-11533.
    97. Gao S. and Shain L. 1994. Reduced polygalacturonase ativity in dsRNA containing hypovirulent strains of Cryphonectria parasitica in Proc. International Chestnut Conference, M. L. Double and W.L.MacDonald, Eds. West Virginia University Press, Morgantown, p35
    98. Choi G.H., Palwyk D.M., Rae B. et al. 1993. Molecular analysis and over-expression of the gene encoding endothiapepsion, and aspartic protease from Cryphonectria parasitica. Gene 125(2): 135-141.
    99. Koller W. 1990. Plant cuticles: the first barriers to overcome by fungal plant pathogens, in The fungal spore and disease initiation in plants and animals. G. T. Cole and H.Hoch Eds. Plenum Press. New York. p219.
    100. Edens W.A., Goins T.Q., Dooley D. and Henson J.M. 1999. Purification and characterization of secreted laccase of Gaeumannomyces graminis var tritici. Appl. Environ. Microbiol. 65(7):
    
    3071-3074.
    101. Staples R.C.and Mayer A.M. 1995. Putative virulence factors of Botrytis cinerea as a wound pathogen. FEMS Microbiol Let. p134.
    102. Temp U. and Eggert C. 1999. Novel interaction between laccase and cellobiose dehydrogenase during pigment synthesis in the white rot fungus Pycinoporus cinnabarinns. Appl Environ Microbiol. 65(2): 389-395.
    103. Rigling D. and Van Alfen N.K. 1991. Regulation of laccase biosynthesis in the plantpathogenic fungus Cryphonectria parasitica by double-stranded RNA. J. Bacteriol. 173(24): 8000-8003.
    104. Powell W.A. and Van Alfen N.K.. 1987. Differential accumulation of poly(A)+RNA between virulent and double-stranded RNA-induced hypovirulent strains of Cryphonectria(Endothia) parasitica. Mol. and Cell Biol. 7(10): 3688-3693.
    105. Chen B., Gao S., Choi G.H. and Nuss D.L. 1996. Extensive alteration of fungal gene transcript accumulation an evevation of G-protein-regulated cAMP levels by a virulence-attenuating hypovirus. Proc. Natl. Acad. Sci.USA. 93(15): 7996-8000.
    106. Powell W.A. and Van Alfen N.K. 1987. Two nonhomologus viruse of Cryphonectria(Endothia) parasitica reduce accumlation of specific virulence-associated polypeptides. J. Bacteriol. 169: 5324-5330.
    107. Allen T.D., Dawe A.L., and Nuss D.L. 2003. Use of cDNA microarrays to monitor transcriptional responses of the chestnut blight fungus Cryphonectria parasitica to infection by virulence-attenuating hypoviruses. Eukaryotic Cell 2(6): 1253-1265.
    108. Allen T.D. and Nuss D.L., 2004. Specific and common alterations in host gene transcript accumulation following infection of the chestnut blight fungus by mild and severe hypoviruses. Journal of Virology 78(8): 4145-4155.
    109. Heiniger U. and Ringling D. 1994. Biological control of chestnut blight in Europe. Ann. Rev. Phytopathol. 32:581-588.
    110. Bissegger M., Rigling D. and Heiniger U. 1997. Population structure and disease development of Cryphonectria parasitiea in European chestnut forest in the presence of natural hypovirulence. Phytopatholgy 87:50-56
    
    
    111. Anagnostakis S.L. 1990. Improved chestnut tree condition maintained in two Connecticut plots after treatments with hypovirulent strains of the chestnut blight fungus. Forest Science 36: 113-124.
    112. Liu Y.C.and Milgroom M.G. 1996. Correlation between hypovirus transmission and the number of vegetative incompatibility(vic) genes different among isolate from natural population of Cryphonectria parasitica. Phytopatho186:79-86
    113. Choi G.H. and Nuss D.L. 1992. A viral gene confers hypovirulence-associated traits to the chestnut blight fungus. EMBO J. 11: 473-477.
    114. Anagnostakis S.L., Chen B., Geletka G.M., and Nuss D.L. 1994 Hypovirus transmition to ascospore progeny by field released transgenic hypovirulent strains of the chestnut blight fungus Cryphonectria parasitica. Phytopathology 86:301-310.
    115. Chen B. and Nuss D.L. 1999. Infectious cDNA clone of hypovirus CHV1-Euro7: a comparative virology approach to investigate virus-mediated hypovirulence of the chestnut blight fungus Cryphonectria parasitica. J. Virology 73(2): 985-992.
    116.徐启江,陈典等,茎尖分生组织培养在植物病毒防治中的应用,生物学教学,2001,26(9)
    117. Anagnostakis S.L. 1982. Biological control of chestnut blight. Science 215:466-471.
    118. Russin J.S. and Shain L. 1985. Disseminative fitness of Endothia parasitica containing different agents for cytoplasmic hypovirulence. Can. J. Bot. 65: 54-57.
    119.J.萨姆布鲁克等著,金冬雁等译,分子克隆实验指南,第三版,2002,科学出版社.
    120. Puhalla J.E. and Anagnostakis S.L. 1971. Genetics and Nutritional Requirements of Endothia parasitica Phytopathology 61: 169-173
    121. Churchill A.C.L., Ciuffetti L.M., Hansen D.R., VanEtten H.D. and VanAlfen N.K. 1990. Transformation of the fungal pathogen Cryphonectria parasitica with a variety of heterologous plasmids. Current Genetics 25:25-31
    122. Van Alfen N.K., Jaynes R.A., Bowman J.T. 1978. Stability of Endothia parasitica hypovirulence in culture. Phytopathology 68:1075-1079
    123.王关林,方宏筠植物基因工程与技术,科学出版社
    124. Choi G.H. and Nuss D.L. 1992. A viral gene confers hypovirulence-associated traits to the chestnut blight fungus. EMBO J. 1: 473-477.
    125.F.奥斯伯等著,颜子颖等译,精编分子生物学实验指南,科学出版社
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.