水稻稻瘟病菌对六种杀菌剂的抗性测定及抗稻瘟灵机制的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻稻瘟病是由Magnaporthe oryzae引起的一种病害,是世界上重要的水稻病害之一,与纹枯病、白叶枯病被列为水稻三大病害。本研究采用菌落生长速率法,测定了2008年从湖南、湖北和广西三省水稻主产区典型病株上分离得到的50个水稻稻瘟病菌菌株对六种杀菌剂的抗药性,建立了水稻稻瘟病菌对六种杀菌剂的敏感性基线,经诱导得到抗稻瘟灵的高、低抗突变株,对参试药剂各抗性菌株抗药性的水平进行测定,对低、高抗菌株及敏感菌株中菌落生长速率进行测定和比较得到较好结果;在测定低、高抗菌株及敏感菌株致病力时采用活体接种法,比较了低、高抗菌株及敏感菌株的适合度和不同浓度的稻瘟灵处理后每个样品中的溶液用电导仪测定电导率的不同;分析高低抗、敏感菌株的可溶性蛋白质的聚丙烯酰胺凝胶电泳图谱和测定相关酶的活性进行及其五种药剂的交互抗性。经过本试验得到以下结果:
     1.稻瘟灵、三环唑、异稻瘟净、多菌灵、稻瘟酰胺和春雷霉素对40个菌株的EC50值分布在1.08-22.54、0.68-11.53、10.67-92.74、50.34-196.55、2.12-7.09和2.29-178.77μg/mL之间,均值为7.96、3.51、43.10、116.93、4.91和43.38μg/mL。
     2.稻瘟灵、三环唑、异稻瘟净、多菌灵、稻瘟酰胺和春雷霉素对均来自敏感群体、组成近正态连续抗性频次分布的40个菌株的EC50均值0.7487、0.4259、6.5729、3.4521、0.8532和1.8532μg/mL可分别作为水稻稻瘟病菌的敏感基线。
     3.经过实验室培养稻瘟灵药剂诱导产生了低抗突变株十个和高抗突变株一个。在浓度范围为0-400μg/mL中抗性突变株发生频率与稻瘟灵浓度呈正比,突变株的发生频率与诱导药剂浓度的对数之间存在高度正相关。
     4.抗突变株的抗药性能遗传下去。水稻稻瘟病菌株在第F2、F4、F6代逐渐稳定。
     5.稻瘟灵对十个低抗突变株EC50值在16.02-56.02μg/mL范围之内,EC50均值为36.00μg/mL,抗性水平分布在4.26-14.90范围之内,平均抗性大约为9.57;为稻瘟灵药剂对高抗突变株200M-008的EC50值(1832.10μg/mL)最大,其抗性水平(487.26)最高;没有出现中抗突变株。抗稻瘟灵可能属于质量性状的突变。
     6.供试敏感菌株LX003在的离、活体适合度指数和综合适合度指数方面高于抗性突变株;在抗突变株在离、活体适合度指数和综合适合度指数方面中最高的是高抗突变株200M-008。
     7.稻瘟灵能对水稻稻瘟病菌的细胞膜造成伤害,敏感菌株LX003和低抗菌株200M-005和高抗菌株200M-008三个菌株中,前两个菌株的细胞膜透性持续升高;高抗菌株相对来说受到的影响最小且这种能力与稻瘟灵药剂的浓度呈反比。
     8.水稻稻瘟病菌对稻瘟灵的敏感菌株LX003、高、低抗菌株200M-008、200M-005的相关酶在聚丙烯酰胺凝胶电泳图谱上有很大的不同。敏感菌株LX003的特征带为Rf0.716和Rf0.835酶带,高抗菌株200M-008的特征带为Rf0.452酶带。水稻稻瘟病敏感菌株LX003的Rf0.716和Rf0.835酶带低于高抗菌株200M-008和低抗菌株200M-005的Rf0.033酶带很多的量。
     9.水稻稻瘟病菌对稻瘟灵的敏感菌株LX003、高抗菌株200M-008与低抗菌株200M-005三个菌株在可溶性蛋白质电泳图谱上发现仅有极小的特异性不同,但抗性菌株高于敏感菌株在图谱上的表达。
     10.抗稻瘟灵水稻稻病菌菌株对内吸性杀菌剂异稻瘟净有负交互抗性现象,而对保护性杀菌剂三环唑、内吸性杀菌剂多菌灵、稻瘟酰胺和春雷霉素之间则无交互抗性。
Rice blast which is caused by Magnaporthe oryzae is one of the most serious diseases in the world.Rice blast,rice sheath Blight and rice bacterial leaf blight are listed as rice three diseases.According to the research,the plants resistances to tric-yclazole which is protective fungicide and five systemic fungicides of isoprothio- lane, iprobenfos, carbendazim, fenoxanil, kasumin of the 50 strains of Magnaporthegrisea (Herbert) Barr gathered from rice of plants in Hunan province,Hubei province,Guangxi probince in the south of China in 2008 were determined by the mean of bacterial colonial growth-rate.By analyzi-ng the frequence, the baselines-sensitivity to above six fungicides of Magnaporthe grisea(Herbert)Barr were established. And the low and high resistam-metalaxy 1 strains of Magnaporthe grisea (Herbert) Barr have been gained with the method of isoprothiolane inducement, as well as the hereditary stabilities of all the resistant-isoprothiolane strains and the resistance levels of all the resistant- isoprothiolane strains. Besides, in the research of the colonial growth-rate,a lot of sporangium, the pathogenigity with comformity of the high and low resistant-isoprothiolane strains and the sensitive strain were compared with the path of colonial diameter,The method of count, the method of inoculation in vivo and the mean of computation, respectively. The conformity of the low and high resistant-isoprothiolane strains and the sensitive strain and the conductivity changing of isoprothiolane solution by dealing with different concentrations were analysed. As well as the polyacrylamide gel electrophoretical patterns of the esterases and the soluble proteins of the low and high resistant- isoprothiolane strains and the sensitive strain and the interactive resistances of the five systemic fungicides of resistant-isoprothiolane strains in Magnaporthe grisea (Herbert) Barr.The test results were as below:
     l.The EC50 values of isoprothiolane,tricyclazole,iprobenfos,carbendazim,fenoxanil and kasumin to the 40 strains of Magnaporthe grisea (Herbert) Barr ranged from 1.08μg/mL to 22.54μg/mL,0.68μg/mL to 11.53μg/mL,10.67μg/mL to 92.74μg/mL, 50.34μg/mL to 96.55μg/mL,2.12μg/mL to 7.09μg/mL and 2.29μg/mL to 178.77μg/ mL.The average values of EC50 to the 40 strains of above six fungicides were 7.9 6μg/mL,3.51μg/mL,43.10μg/mL,116.93μg/mL,4.91μg/mL and 43.38μg/mL.
     2.The mean EC50 values of isoprothiolane, tricyclazole,iprobenfos,carbendazim, fenoxanil and kasumin to the 40 strains,which were all from sensitive colony and composed the continuous and approximately normal distributions-resistance, respec-ti vely were 0.7487μg/mL,0.4259μg/mL,6.5729μg/mL,3.4521μg/mL,0.8532μg/mL and 1. 8532μg/mL.They could be used as the baselines-sensitivity of Magnapor the grisea (Herbert) Barr.
     3.10 lower resistance strains with 1 higher resistance strains were engendered by isoprothiolane experiment. when isoprothiolane focus increased within the range of from 0μg/mL to 400μg/mL, The occurrence frequency of resistant strains increased. The mutation frequency of resistant strains and the logarithm of isoprothiolane concentration is highly positive correlation.
     4. Resistance mutations of resistance can genetic down. Rice blast strains in F2, F4, F6 generation is stable and genetic down gradually.
     5. Ten low resistant strains' EC50 of isoprothiolane ranged from 16.02μg/mL to 56.02μg/mL, and the average EC50 was 36.00μg/mL; the resistance levels of 10 low resistance strain ranged from 4.26 to 14.90 and the average resistance level were about 9.57.The EC50 of isoprothiolane of mutations 200M-008 EC50 value (1832.10μg/mL) is the largest, its resistance level (487.26) highest; Did not appear of resistant mutations. Resistant-isoprothiolane could belong to quality traits mutations.
     6. The vitro,vivo and compound fitness indexes of the sensitive strain,LX003 were higher than the tested resistant strains,and the highest index specie was high resistant strain,200M-008. But the three fitness indexes had no any correlationship with resistances of Magnaporthe grisea.
     7.The membrane of Magnaporthe grisea (Herbert) Barr could be damaged by Isoprothiolane.During the sensitive strain,LX003, the low resistant strain,200M-005
     and the high resistant strain,200M-008,The membrane permeability of first two st rains has increased after isoprothiolane treatment. While the high resistant strain, 200M-008 had stronger ability to resist to isoprothiolane. And this ability has the inverse ratio with the concentration of isoprothiolane.
     8. Some Magnaporthe grisea hot the spirit of rice LX003, low antibacterial strains of the sensitive plant 200M-005 and 200M-008 strains resistant to the esterase on electrophoresis there exist obvious differences between the specificity,LX003,the low resistant-isoprothiolane strain,200M-005,and the high resistant-isoprothiolane strain,200M-008, in Magnaporthe grisea (Herbert) Barr. Besides the sensitive strain,LX003, had the esterase-gonos of Rf0.716 and Rf0.835 while the highresistant strain 200M-008 only had the esterase-zone of Rf0.452. The quantity of the esterasezone of Rf 0.033 in the high resistant strain,200M-008, and in the low resistant strain, 200M-005,was higher than that in the sensitive strain,LX003.
     9.These are little significant differences in the polyacrylamide gel electrophoretical patterns of the soluble proteins between the spirit of rice LX003 strains resistant strains sensitive,200M-008and low antibacterial strains of 200-M005 3 strains in Magnaporthe grisea(Herbert)Barr.But the expression on the picture of resistant-isoprothiolane strains were higher than sensitives.
     10. The resistant-isoprothiolane strains in Magnaporthe grisea (Herbert) Barr had negative cross-resistance to iprobenfos,which belongs to the systemic fungicide and had no cross-resistance to tricyclazole,which belongs to the unsystemic fungicide,to carbendazim, which belongs to the systemic fungicide,to fenoxanil,which belongs to the systemic fungicide,and to kasumin, which belongs to the systemic fungicide.
引文
[1]北京农业大学.农业植物病理学[M].北京:农业出版社,1989,283-286.
    [2]陈年春.农药生物测定技术[M].北京:北京农业大学出版社,1991,191-192.
    [3]陈曾燮,刘兢,罗丹.生物化学实验[M].北京:中国科学技术大学出版社,1994,21-25.
    [4]陈利锋,徐敬友.农业植物病理学[M].北京:中国农业出版社,2001.
    [5]曾千春,叶华智,朱祯,等.稻瘟病分子生物学研究进展[J].生物技术通报,2000(3):1-7.
    [6]蔡海林,柏连阳,王彦辉,周小毛,等.1831与稻瘟灵混配对稻瘟病菌的毒力测定[J].农药科学与管理,2010,31(2):50-52.
    [7]车淑静,靳学慧,史金良,杨顺利.稻瘟病菌对稻瘟灵的敏感性检测和抗药风险分析[J].北方水稻,2008,138(3):32-34.
    [8]车淑静.黑龙江省稻瘟病菌对稻瘟灵和三环唑的敏感性研究[D].黑龙江八一农垦大学硕士学位论文,2008.
    [9]戴芳澜。中国真菌总汇[M].科学出版社,1979.
    [10]丁中,刘峰,慕立义.应用电导仪测定番茄灰霉病菌对多菌灵抗药性的初步研究[J].农药学学报,2003,5(3):94-96.
    [11]丁锐.利用酯酶同工酶谱鉴定黑稻品种纯度的研究[J].种子科技,2005,3(4)224-226.
    [12]丁锦华,徐雍皋,李希平.植物保护辞典[M].南京:江苏科学技术出版社,1995.
    [13]方仲达.植病研究方法(第三版)[M].北京:中国农业出版社,1998.
    [14]付焕延.遗传学实验[M].济南:山东科学技术出版社,1987,114.
    [15]高智谋,郑小波,陆家云.苎麻疫霉对甲霜灵抗性的遗传研究[J].南京农业大学学报,1997,20(3):54-59.
    [16]辜运富,张小平,陈强,廖德聪,徐开未.双孢蘑菇菌丝体酯酶同工酶及可溶性蛋白的电泳分析[J].四川农业大学学报,2003,21(3):217-220.
    [17]顾宝根,刘经芬.小麦赤霉病菌对多菌灵抗药性研究[J].南京农业大学学报,1990,13(1):57-61.
    [18]郭梅,黄春艳,商世吉,等.稻瘟病菌抗药性研究初报[J].黑龙江农业科学.1997,6:21-22.
    [19]何月秋,唐文华.水稻稻瘟病研究进展[J].云南农业大学学报,2001,16(1): 60-63.
    [20]洪建民,童贤明,徐福寿.中国水稻病害及其防治[M].上海:上海科学出版社,2006.
    [21]胡燕,王开运,许学明,等.烯酰吗啉对我国烟草黑胫病菌的毒力研究[J].农药学学报,2006,8(4):339-343.
    [22]胡能书,万贤国.同工酶技术及其应用[M].长沙:湖南科技出版社,1985.96-]04.
    [23]华南农业大学、河北农业大学主编.植物病理学第二版(农学专业用)[M].农业出版社出版,1985,3:71-80.
    [24]黄春艳.国内稻瘟病菌抗药性研究概况[J].黑龙江农业科学,1995,6:33-34.
    [25]黄春艳,郭梅,商世吉,等.黑龙江稻瘟病对三环唑抗药性研究[J].中国水稻科学,1999,13(1):49-50.
    [26]黄星,周明国.稻瘟病对三环唑的抗药性测定:小苗法[J].中国植物病害化学防治研究.2002,3:147-151.
    [27]黄丽萍.水稻稻瘟病综合防治技术[J].现代农业,2009,6:51.
    [28]兰波,李湘民.江西省稻瘟病菌对富士一号的抗药性研究[J].江西农业大学学报,2007,29(3):351-355.
    [29]陆凡,王法明,郑小波,等.江苏省稻瘟病菌生理小种的演变及与水稻品种的相互关系[J].南京农业大学学报,1999,22(4):3]-34.
    [30]卢萍,刘军,邬惠梅.一种新的酯酶同工酶染色方法[J].内蒙古师大学报(自然科学汉文版),1999,28(4):327-328.
    [31]吕佩珂,苏慧兰,吕超.中国粮食作物、经济作物、药用植物病虫原色图鉴[M].呼和浩特:远方出版社,1999.
    [32]吕跃东,王勇,张文革,谢程程,宫立晶,王雪.拮抗真菌菌株BOS-013对稻瘟病菌的抑制作用[J].安徽农业科学,2011,39(11):6450-6452.
    [33]李清铣,朱华,王彰明等.江苏麦类禾谷镰刀菌酯酶同工酶的测定[J].植物病理学报,1985,15(4):217-223.
    [34]李桦.稻瘟病菌培养技术的研究[J].黑龙江农业科学,1993;(5):17-20.
    [35]李宝笃,李梅,沈崇尧.“霜霉威(Propamocarb)"“甲霜灵(Metalaxyl)"对我国辣椒疫霉作用方式比较及交互抗性的研究[J].植物病理学报,1994,24(2):169-174.
    [36]李成云.稻瘟病菌的菌丝融合及其与有性世代形成的关系一云南省稻瘟病菌有性世代研究之六[J].西南农业学报,1995(8):65-69.
    [37]李振歧.植物免疫学[M].北京:中国农业出版社,1995.
    [38]李新风,刘惠平,程麦芳等.核盘菌不同水平抗药性菌株可溶性蛋白和酯酶的电泳图谱比较研究[J].山西农业大学学报,2003,2:106-108.
    [39]李新凤,刘慧平,韩巨才,高俊明.抗多菌灵和乙霉威叶霉菌株可溶性蛋白和酯酶的电泳图谱研究[J].山西农业大学学报,2005,27-29,37.
    [40]李忠有.水稻稻瘟病的防治[J].农村科学实验,2009(6):15.
    [41]林孔勋主编.杀菌剂毒理学[M].北京.中国农业出版社.
    [42]刘洪斌,顾宝根,刘西莉等.马铃薯晚疫病菌对甲霜灵抗性机制的初步研究[J].植物病理学报,2003,33(2):178-182.
    [43]马忠华,周明国,叶钟音.噻枯唑对水稻白叶枯病菌作用机制研究初报[J].植物病理学报,1997,27(3):237-241.
    [44]慕立义.植物化学保护研究方法[M].北京:中国农业出版社,1994,9-81,219.
    [45]南开大学元素有机化学研究所.国外农药进展(三)[M].北京:化学工业出版社,1990.
    [46]彭绍裘,刘二明.作物持久抗病性的研究进展与战略[J].湖南农业科学,1993(1):47-48.
    [47]彭云良.四川稻瘟病菌对异稻瘟净和稻瘟灵抗药性研究[J].西南农业学报.1991,4(2):102-108.
    [48]彭云良,刘经芬,叶钟音,等.稻瘟病对稻瘟灵耐药性研究[J].植物保护学报.1993,20(1):77-81.
    [49]彭云良,刘经芬,叶钟音,等.稻瘟病菌对有机磷杀菌剂交互抗药性及抗药机制的初步研究[J].南京农业学报.1994,7(1):55-57.
    [50]彭丽年,彭化赞,张小,等.四川稻区几种重耍病虫抗药性评估[J].四川农业大学学报.2003,21(2):17-19.
    [51]祁之秋,周明国.小麦纹枯病菌对几种杀菌剂的敏感性基线研究[C].中国植物病害化学防治研究(第三卷).北京:中国农业科技出版社,2002:203-208.
    [52]山崎义人,高坂卓尔.稻瘟病与抗病育种[M].凌忠专,孙昌其译.北京:农业出版社,1990:19-31.
    [53]邵见阳,马辉刚,苏玲.辣椒疫霉病菌对内吸性杀菌剂抗药性的研究[J].江西农业学报,1998,10(4):46-50.
    [54]沈嘉祥.云南稻瘟病抗药性的研究[J]植物保护学报.1988,15(1):49-54.
    [55]沈瑛.稻瘟菌对三环唑的抗药性研究[J].植物保护.1993,19(3):54-57.
    [56]沈瑛,朱培良,袁筱萍,等.稻瘟病菌有形态的诱导及其后代的致病性[J].西南农业学报,1995,8(3):74-78.
    [57]石志琦.核盘菌对菌核净的抗药性机制初探[J].农药学学报2000,(2):47-51.
    [58]孙国昌.杜新法,柴荣耀,等.遗传同质性在水稻品种抗瘟性丧失中的作用初探[J].中国农业科学,1998,31(4):78-80.
    [59]孙国昌,杜新法,陶荣祥等.水稻稻瘟病防治研究进展和21世纪初研究设想[J],植物保护,2000,26(1):33-35.
    [60]孙漱元.我国水稻稻瘟病防治概况[J].植物保护,1983,9(2):1-4.
    [61]孙漱沅,孙国昌.我国稻瘟病研究的现状和展望[J].植保技术与推广,996,(3):39-40.
    [62]陶家凤.稻瘟病菌致病性变异研究现状(评述)[J].四川农业大学学报,1995,13(4):518-521.
    [63]唐旭,郑毅,汤利,等.不同品种间作条件下的氮硅营养对水稻稻瘟病发生的影响.中国水稻科学,2006,20(6):663-666.
    [64]王源超,郑小波,华永刚,等.疫霉菌对霜脲氰抗性遗传及霜脲氰和甲霜灵的交互抗性[J].植物保护,1997,23(1):7-10.
    [65]王革,郑小波,陆家云等.云南省烟草黑胫病菌对甲霜灵抗性的检测[J].南京农业大学学报,1997,20(4):105-107.
    [66]王守正,王海燕,李洪连,等.用酯酶同工酶酶谱鉴定病原菌专化型研究[J].河南农业科学,2000,10:15-17.
    [67]王文桥,马志强,张小风,等.致病疫霉抗药性、交配型和适合度[J].植物病理学报,2002,32(3):278-283.
    [68]王美琴,刘慧平,韩巨才,等.番茄叶霉病菌对多菌灵、乙霉威及代森锰锌的抗性检测[J].农药学学报,2003,5(4):30-36.
    [69]王晓丽,周敬,等.45%硫·三环唑WP防治水稻稻瘟病药效的研究[J].现代农药,2003,2(4):39-40.
    [70]王建忠,郑文静,张燕之等.水稻稻瘟病的发病原因及综合防治[J].农业科技通讯,2006(8):24-25.
    [71]王家品,冯雪松,江健.杂糯间栽技术控制稻瘟病试验[J].安徽农业科学,.2008,36(26):11428-11430.
    [72]魏艳敏,周与良.红酵母属同工酶酶谱分析及其分类研究[J].菌物系统,1998,17(1): 63-67.
    [73]吴清平,杨光灿,杨再学,等.稻瘟病综合防治技术应用[J].云南农业大学学报,1998,13(1):104-107.
    [74]夏晓明.禾谷丝核菌(Rhizoctonia cerealis)对戊唑醇抗性机制的研究[D].泰安:山东农业大学,2006.
    [75]谢丙炎,朱国仁,吴新平,等.辣椒疫霉产毒缺陷与抗药性突变体的筛选及其遗传特性[J].植物保护学报,2000,27(3):243-248.
    [76]谢雪梅,肖晓华,刘春,等.油-稻免耕抛栽水稻病虫害发生特点及防治对策[J].南方农业,2007,1(6):30-33.
    [77]谢庆武,肖桂秋,黄敏萍.以靛酚乙酸酯为底物的酯酶同工酶显色方法的研究[J].生物学杂志,2010,27(2):91-92,95.
    [78]徐敬友,陆家云,方钟达.六种疫酶菌体可溶性蛋白和酯酶的聚丙烯酰胺凝胶平板电泳研究[J].真菌学报,1993,(12):54-64.
    [79]徐作珽,李林,于建垒,等.蔬菜灰霉病菌对速克灵抗药性变异研究[J].山东农业科学,1999,(2):30-33.
    [80]阎秀琴.我国植物病原菌抗药性的研究进展[J].农药,2001,20(12):4-6.
    [81]杨惠杰,郑九如,林文彬等.水稻对稻瘟病的抗性遗传分析[J].福建稻麦科技,1987(1):1-5.
    [82]杨荣明,周明国,叶钟音.三环唑防治稻瘟病的作用机制[J].南京农业大学学报,1998,21(2):34-37.
    [83]杨谦.植物病原菌抗药性分子生物学[M].北京:科学出版社,2003,4-77.
    [84]易茜茜,丁万隆,李勇,等.荆芥茎枯病拮抗木霉菌筛选及其田间防效评价[J].华北农学报,2009,24(B12):240-242.
    [85]袁洁,杨学辉.贵州省稻瘟病菌对三环唑和富士一号的敏感性研究[J].贵州农业科学.2003,31(6):37.
    [86]袁洁,杨学辉,何海永.贵州省稻瘟病菌对稻瘟灵的抗药性研究[J].植物保护,2006,32(1):66-68.
    [87]袁善奎,刘西莉,刘亮,等.马铃薯晚疫病菌对烯酰吗啉的敏感性基线及其室内抗药突变体的研究[J].植物病理学报,2005,35(6):545-551.
    [88]袁善奎,赵志华,刘西莉,等.马铃薯晚疫病菌对甲霜灵和霜脲氰的敏感性检测[J].农药学学报,2005,70(3):237-241.
    [89]赵小明,吕金殿,商鸿生等.大丽轮枝菌(Verticillium dahliae)酯酶同工酶的测定[J].河北农业大学学报,1997,20(1):37-44.
    [90]赵善欢.植物化学保护[M].北京:中国农业出版社,2000:239-240,254-255.
    [91]赵赣,钱芳,曹永长,等.酯酶同工酶的一种新染色法的初步研究[J].江西农业大学学报(自然科学版)2002,24(3):380-382.
    [92]赵赣,钱芳,凌彬冰,等.酯酶同工酶的醋酸萘酯-铁氰化钾染色法的研究[J].上海交通大学学报(农业科学版)2003,21:87-90.
    [93]赵永勋,戚晓利,张丽敏实验指导教程[M]哈尔滨:哈尔滨出版社,2004:240-244.
    [94]张志良,吴光耀.植物生物化学技术与方法[M].北京:农业出版社,1988.
    [95]张正光,帮小波.稻瘟病菌对稻瘟灵抗性遗传研究[J].植物保护,1998,6:3.
    [96]张维铭.现代分子生物学手册[M].北京:科学出版社,2003,138-144.
    [97]张传清,周明国,邵振润,等.稻瘟病菌对异稻瘟净、多菌灵和三环唑的敏感性检测及抗药性变异研究[J].中国水稻科学,2004,185:455-460.
    [98]张传清,周明国.三环唑对稻瘟病再侵染的研究初探[J].农药学学报,2004,6(4):23-27.
    [99]张永杰,高俊明,韩巨才等.抗速克灵灰霉病菌菌株电导率变化及对渗透压的敏感性[J].山西农业大学学报(自然科学版)2004,24(1):34-36.
    [100]张瑞萍.黑龙江省稻瘟病菌生理小种地域性分布与品种抗瘟性研究[D]:大庆:黑龙江八一农垦大学硕士学位论文,2005.
    [101]张清丽.浅谈黑龙江省水稻稻瘟病的发生与防治[J]农业与技术,2007(3):115-116.
    [102]张淑春,高英.稻瘟病综合防治技术[J].吉林农业,2008,5:29.
    [103]张双凤,张爱民,赵钢勇,等.棉花黄枯萎病拮抗菌株的筛选及抗菌蛋白的分离纯化研究[J].华北农学报,2009,24(B12):229-232.
    [104]张蕊,李术娜,李朝玉,等.黄瓜灰霉病产芽孢拮抗细菌的分离筛选与L—72菌株的鉴定[J].华北农学报,2010,25(4):191-195.
    [105]郑小波.疫霉菌及其研究技术[M].北京:中国农业出版社,1997
    [106]周明国,叶钟音,刘经芬.杀菌剂抗性研究进展[J].南京农业大学学报.1994,17(3):33-41.
    [107]周明国.病原物抗药性[A].中国农业百科全书·植物病理学卷[M].北京:中 国农业出版社,1996:48-49.
    [108]周明国Hollomon D.W Ncurospora crassa对三唑醇的抗药性分子机制研究[J].植物病理学报,1997,17(3):175-180.
    [109]周明国.植物病原菌抗药性.见:周明国主编,植物病害化学防治研究[M].北京:中国农业科技出版社,1998,(1):50-61.
    [110]周明国,王建新.禾谷镰孢菌对多菌灵的敏感性基线及抗药性菌株生物学性质研究[J].植物病理学报,2001,31(4):365-370.
    [111]周光召.面向21世纪的科技进步与社会经济发展[M].北京:中国科技出版社,1999.
    [112]朱广廉,杨中汉.SDS-聚丙烯酰胺电泳法测定蛋白质的分子量[J].植物生理学通讯,1982,(2):43-47.
    [113]朱光时,朱昌稳,丁卫东,等.平圩区稻瘟病发生特点与控制技术研究[J].安徽农业科学,1999(2):43-44,89.
    [114]Baker B,Zambryski P,Staskawicz B.Crop Science,1997,276:726-733.
    [115]Brent KJ,Hollomon D W,Managing Resistance to Agrochemicals[M]. Washington DC:American Chmical Society,1990:303-319.
    [116]Brent K J, Hollomon D W. Fungicide resistance:the assessment of risk. UK: GCPF,1998.
    [117]CANEDO L M, PUENTS J L F, PEREZ B J, et al. IB- 96212, a novel cytotoxic macrolide produced by a marine Micromonospora.Ⅱ. Phsico- chemicalproperties and structure determination [J]. J Antibiot,2000,53(5):479.
    [118]Correll J C,Harp T L,Guerber J C,et al.Characterization of Pyricularia grisea in the United States using independent genetic and molecular markers. Phytopathology, 2000,90:1396-1404.
    [119]Chang T T, Ko W H. Resistance to fungicides and antibiotics in Phytophthora
    parasitica:genetic natul℃ and use in hybrid determination[J]. Phytopathology,1990,
    80:1414-1421.
    [120]Davidase L C.Bcozimidazoec Yungicidc, Mcchanism of action and biologicalimpace Ann Rcv phycopathology,1986,24:43-65.
    [121]Davidase LC.Biochemical basis of resistance to phenylamide fungicide[A].Green MB, Lebaron H M. Moberg W K.Managing Resistance to Agrochemicals[C]. Washington DC:American Chemical Society,1990.
    [122]Diriwachter G,Sozzi D, Ney C, et al.Cross-resistance in Phytophthora infestans and Plasmopara viticola against different phenylamides and unrelated fungicides[J].Crop Protection,1987,64:250-255.
    [123]Elliott T J. Breeding st rategies in A garicus bisporus [J].Musheroom Sci, 1978,10(1):73-81.
    [124]Fry W E and Milgroom M G. Population biology and management of fungicide resistance [J]. In:Managing Resistance to Agrochemicals, Green, MB, Lebanon, H M and Moberg, W K eds. American Chemical Society, Washington DC,1990, 275-285.
    [125]Gaikwad A P,Nimbalkar C A.Phytotoxicity of copper fungicides to guava fruits [J]. Journal of Environmental Biology.2005,26:1,155-156.
    [126]Georgopoulos S G, Skylakakis G. Genetics variation in fungi and fungicide resistance[J].1986,5:299-305.
    [127]Gisi U, Staehle-Csech U, Fungicide Resistance in North America[M]. St Paul, Minnesota:Anerican Phytopathological Society,1988,101-106.
    [128]GILLESPIE D E, BRADY S F, BETTERMANN A D, et al. Isolation of anti-biotics turbomycin A and B from a metagenome library of soil microbial DNA [J]. Appl Environ Microbiol,2002,68:4301-4306.
    [129]Horsfall,J.G Fungicides and Their Action[J]. Chronica Bo- tanica,1945.123-131.
    [130]Ishizaki H.Effects of Isoprothiolane on Pyricularia oryzae[J]. Ann Phytopathol Soc Jpn.1983,49:471-480.
    [131]IshiiH. Antibiotics[J].ICGEB Practical Pourse'1993Proceedongs,1993,48-52.
    [132]Katagiri M, Uesugi Y_Similarities between the fungicidal actions of isoprothidane and organophorous thiolate fungicides[J]. Phytopathology, 1976,67:1415-1417.
    [133]Katagiri M. et al Development of resistance to organophosphorus fungicides in the field [J]. Pesticide Sci.,1980,5:417-421.
    [134]Kumar J,Nelson R J,Zeigler R S.Population structure and dynamics of Magnaporthe grisea in the Indian Himalayas[J].Genetics,1999,152:971-984.
    [135]Kuninaga, S. Yokosawa, R. A comparis on of DNA base composition among anastomosis group in Rhizoctonia solani Kuhn [J]. Ann. Phytopath. Soc. Japan, 1980,46:150-158.
    [136]Koller W. Target site of fungicide action.1992,43-68, CRC Press, USA
    [137]Li S F, Zhao J L, M DEY R, et al. Isozyme Variation of Nile Tilapia Oreochro mis niloticus in China [J]. AsianFisheries Science,2001 (14):411-416.
    [138]Leung H, Tage M.Magnaporthe grisea (pyricularia species), the blast fungus. Advances in Plant Pathology,1988,2, ISBN.
    [139]Lyr H. Modern selective fungicides[M]. Germany:VEB Gustav Fischer Verlag, 1987.
    [140]Miura H.Mode of occuance of kasugamycin resistant rice fungus[J]. Ann, Phytothology. Soc,1971,41:117-123.
    [141]Miura H.Mode of occurance of Kasagamycin resistant rice blast fungus[J].Ann Phytopathol Sac Jpn,1976,40:144-151.
    [142]Miura H. Ecological studies on the antibiotics resistant rice blast fungus [J]. Ann Phytopath Soc Jpn,1994,60(3):272-274.
    [143]Ogamoto H.Chemical control of rice blast disease[J].Proc Symp at IRRI,1963, 399-407.
    [144]Ou S H.Rice Disease(2ndedn)[M].Kew U K:Common-wealth Mycological Institute,1985,380.
    [145]Raper C A, RaperJ, R E Miller. Genetic analys is of the life cycle of Agaricus brunnescens[J]. Mycologia,1972,74:93-102.
    [146]Royse D J, May B. Use of isozyme variation to identify genotypic classes of Agaricus brunnescens [J]. Mycologia,1982,14:93-102.
    [147]Staub T and Sozzi D. Fungicide resistance:a continuing challenge[J]. Plant Disease,1984,68:1026-1031.
    [148]Shen Y., et al. An International Symposium on Rice Blast Disease [J]. University of wisconsin-Madison,2003,5,60-61
    [149]Sheir Neiss, Lai MH Morris N R.Cell 1978,15,639-649.
    [150]TagaM, NakagawaH, Tsuda M et al. lndenfication ofthree difrentloci controlling kasugamycin resistance in Byricularia oryzae [J]. Phytopathology,1979,69:463-466.
    [151]Taga M. Fungicide sensitivity and genetics of IBP-resistant mutants in Pyricularia oryzae [J]. Phytopathology,1982,72:905-908.
    [152]Thieron M. Pontzan R, Kurahashi Y. Carpropand:a rice fungicide with two modeds of action [J]. Phytopathology,1998.3(51):257-278.
    [153]Tsu J G, Taked A T,et al. Carpropamid, an anti-rice blast fungicide, inhibits scytalone dehydratase activity and appressorial penetration in Colletotrichum lagenarium[J]. Pesticide Biochemistry and Physiology,1997.57:211-219.
    [154]Ueya M A,Tsud A M,et al. Formation of the perfect state in culture of pyricularia from some graminaceous plants (Preliminary report) [J]. Trans Mycol Soc Japanese.1975,16:420-422.
    [155]Uesugi Y.Fungicide resistance in Crop Protectioned [A].By JDekker,SG Geogopoulous.Center for agricultural publishing and documentation [C]. Wagningen, 1982.
    [156]Narayanasamy P, Viswlmathan R. Occurrence of resistance in rice pathogens to fungicide [J]. Indian Journal of Mycology and Pathogen,1991,21(1):63-65.
    [157]Woloshuk C P, Wolkow P M et al. The Effect of 3 Fungicides, Specific for the control Rice Blast Disease, on the Growth and Melanin biosynthesis by Pyricularia oryzae Cav[J]. Pestic. Sci.1981,12,86-90.
    [158]Yamagu C Y. Fungicides for control rice blast diseases [J]. Pestic. Sci.1982,7: 307-316.
    [159]Yamagu C T.Resistant strains of rice blast fungus against fungicides in Japanese[J],Japanese Agricultural Research,1988,21 (4):257-263.
    [160]M G Zhou. Oranophosphorus compounds [J]. ICGEB Practical Course'1993 Proceedings,1993,11-22.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.