人工磁导体结构的研究及在天线中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,人工磁导体作为当前微波毫米波领域研究的热点之一,得到了学术界的广泛关注。该结构具有结构简单,容易制备的特点,主要用于提高射频部件的性能。本论文研究了人工磁导体结构在微带天线单元和阵列中的应用。
     本论文首先从人工磁导体基本特性的研究入手,给出人工磁导体的反射相位带隙以及电磁带隙结构阻带带隙的分析方法,并由此设计出所需要频段的人工磁导体。其次将人工磁导体结构应用于微带天线单元及其阵列的设计中。在单元设计研究方面,将AMC替代原来微带天线单元的地板,仿真结果表明人工磁导体结构的加载对提高天线的增益及带宽效果明显,与相同介质基板情况下的天线单元相比,带宽增加了250%,增益提高了1.41dB;在此基础上,本文针对加载人工磁导体的2×2微带天线阵列的三种情况进行讨论和分析,这三种情况分别是:(1)AMC结构仅加载至微带贴片下方,馈线下方不加载AMC结构;(2)微带贴片及馈线下方均加载AMC结构;(3)AMC结构仅加载至微带贴片下方,同时馈线下方金属地板被抬高。通过AMC结构的加载,三种情况的带宽及增益均有明显增大。仿真结果显示,三个阵列天线的相对带宽均大于17.64%,由于馈线下方AMC结构的加载,使得实例2的相对带宽达到20.04%;三个阵列天线的最高增益均大于14dBi,由于馈线下方地板的抬高,使得实例3的馈线损耗明显降低,增益最大值达到15.29dBi;同时与实例1、实例2相比,实例3的方向图的对称性最好。最后,对性能最好的实例3进行加工和实测。天线实物测试的回波损耗工作频带相对带宽为20.45%,驻波频带内增益最大值为15.95dBi。
In recent years, the artificial magnetic conductor (AMC) structure as one of hot topics has been investigated in the research area of microwave and millimeter wave technology. The structure is simple and easily manufactured, which is mainly used to improve the performances of RF components. In this thesis, the applications of the AMC structure on the microstrip antenna have been presented.
     Firstly, the method analyzing the reflected phase band-gap of the AMC structure has been presented. Furthermore, focusing on the Electromagnetic band-gap (EBG), one structure of AMC, the investigations of its stop-band have also been given. Secondly, the applications of AMC structure to microstrip patch antenna and antenna array are researched in this thesis. For the application of microstrip antenna element, the AMC structure has been used to instead the ground plane of the antenna. With this modification, the high-gain and wide-band antenna element is achieved. Compared with the conventional patch antenna using the same thickness dielectric substrate, the simulated results of this novel patch element show that the bandwidth is increased by 250%, and the gain is increased by 1.41 dB. Further, three cases of 2X2 antenna array utilizing the AMC are discussed. The three cases are listed:case 1 is the AMC only insteading the ground plane of the antenna elements of 2×2 array; case 2 is the AMC structure insteading the ground plane of the 2×2 array; case 3 is the AMC only insteading the ground plane of antenna elements, however, the ground plane of feeding network has been elevated. The VSWR, radiation patterns and gains of three cases are compared. Among them, the best one has been fabricated and tested. The measured results show approximately 20.45% relative bandwidth and the maximum gain in the frequency working band is 15.95dBi.
引文
[1]闫敦豹.人工磁导体结构及其应用研究[D],长沙:国防科学技术大学,2006.
    [2]钟顺时.微带天线理论与应用[M],西安电子科技大学出版社,1991.
    [3]林昌禄.近代天线设计[M],人民邮电出版社,1900.
    [4]张钧,刘克诚,张贤铎,赫崇骏.微带天线理论与工程[M],北京:国防工业出版社,1988.
    [5]H.Mosallaei and K.Sarabandi. Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate. IEEE Trans. on Antennas and Propagation, vol.52, no.9, pp. 2403-2414,2004.
    [6]Y.E.Erdemli, K.Sertel, R.A.Gilbert, D.E.Wright, J.L.Volakis. Frequency-selective surfaces to enhance performance of broad-band reconfigurable arrays. IEEE Trans. on Antennas and Propagation, vol.50,no.12, pp.1716-1724,2002.
    [7]S.Wang, A.Feresidis, GGoussetis, J.C.Vardaxoglou. Low profile resonant cavity antenna with artificial magnetic conductor groundplane. IEE Electron. Lett., vol.40, no.7, pp. 405-406,2004.
    [8]H.Chu, Y.X.Guo, F.Lin, X.Q.Shi. Wideband 60GHz on-chip antenna with an artificial magnetic conductor. Radio-Frequency Integration Technology, pp.307-310,2009.
    [9]Alireza Foroozesh and Lotfollah Shafai. Application of combined electric-and magnetic-conductor ground planes for antenna performance enhancement. Can. J. Elect. Comput. Eng., vol.33, no.2,2008.
    [10]D Sievenpiper, Lijun Zhang, R.F.Jimenez Broas, et al. High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans. MTT.,47(11):2059-2074,1999.
    [11]George Goussetis, Alexandros P. Feresidis, John (Yiannis) C. Vardaxoglou. Tailoring the AMC and EBG characteristics of periodic metallic arrays printed on grounded dielectric substrate. IEEE Trans. on Antennas and Propagation, vol.54, no.1,2006.
    [12]C.R.Simovski, P.de Maagt, S.A.Trityakov, M.Paquay, A.A.Sochava. Angular stabilization of resonant frequency of artificial magnetic conductors for TE-incidence. Electronics Letters., 40(2):959-961,2004.
    [13]L.C.Kretly and A.M.P.A.Silava. The influence of the height variation on the frequency bandgap in an AMC, artificial magnetic conductor, for wireless applications:an EM experimental design approach. Proc. SBMO/IEEE MTT-S,2003.
    [14]Y.Zhang, J.von Hagen, M.Younis, C.Fischer, W.Wiesbeck. Planar artificial magnetic conductors and patch antennas. IEEE Trans. on Antennas and Propagation,51(10):2704-2712, 2003.
    [15]A.Monorchio, GManara ang.L.Lanuzza. System of artificial magnetic conductors by using multilayered frequency selective surfaces. IEEE Antennas and Wireless Propagation Letters.1:196-199,2002.
    [16]R.E.Diaz and J.T.Aberle. TM mode analysis of a Sievenpiper high-impedance reactive surface. IEEE AP-S International Symposium, pp:327-330,2000.
    [17]F.Yang, and Y.Rahmat-Samii.Reflection phase characterization of the EBG ground plane for low profile wire antenna applications. IEEE Trans, on Antennas and Propagation, 51(10):2691-2703,2003.
    [18]R.J.King, D.V.Thiel and K.S.Park. The synthesis of surface reactances using an artificial dielectric. IEEE Trans. on Antennas and Propagation,31 (5):471-476,1983.
    [19]D.Sievenpiper, L.Zhang, R.F.J.Broas, N.Alexopoulos, E.Yablonovitch. High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans. Microw. Theory Tech., vol.47, no.11, pp.2059-2073,1999.
    [20]Dan Sievenpiper. High-impedance electromagnetic surface with a forbidden frequency band. IEEE Trans. Microwave Theory and Tech..,47(11):2059-2074,1999.
    [21]S.Tse, B.S.Izquierdo, J.C.Batchelor, R.J.Langley. Reduced sized cells for electromagnetic bandgap structures. Electronics Letters.39(24):1699-1701,2003.
    [22]Alireza Foroozesh and Lotfollsh Shafai. Investigation into the application of artificial magnetic conductors to bandwidth broadening, gain enhancement and beam shaping of low profile and conventional monopole antennas. IEEE Trans. on Antennas and Propagation, 59(1):4-20,2011.
    [23]R.Diaz, V.Sanchea, E.Caswell and A.Miller. Magnetic loading of artificial magnetic conductors for bandwidth enhancement. IEEE AP-S International Symposium, pp: 431-434,2003.
    [24]W.McKinzie and S.Rogers. A multi-band artificial magnetic conductor comprised of multiple FSS layers. IEEE AP-S International Symposium, pp:423-426,2003.
    [25]F.Yang, and Y.Rahmat-Samii. Microstrip antennas integrated with electromagnetic band-gap structures:a low mutual coupling design for array applications. IEEE Trans. on Antenna and Propagation,59(1):2936-2046,2003.
    [26]F.Yang, and Y.Rahmat-Samii. A low profile circularly polarized curl antenna over electromagnetic bandgap surface. Microwave and Optical Technology Letters, vol.31, no 3,pp:165-168,2001.
    [27]F.Yang, C.S.Kee, Y.Rahmat-Samii. Step-like structure and EBG structures to improve the performance of patch antenna on high dielectric substrate. IEEE AP-S International Symposium, pp:482-485,2001.
    [28]F.Yang and Y.Rahmat-Samii. Applications of electromagnetic band-gap (EBG) structures in microwave antenna designs. International Conference on Microwave and Millimeter Wave Technology, pp:528-531,2002.
    [29]Li Yang, Mingyan Fan, Fanglu Chen, Jingzhao She, Zhenhe Feng. A novel compact Electromagnetic-Bandgap (EBG) Structure and its applications for microwave circuits. IEEE Trans. Microwave Theory and Tech.,53(1):183-190,2005.
    [30]胡荣,张雪霞.PBG结构特性的研究及其在天线中的应用[J],电子学报,2003,31(12):1765-1770.
    [31]Z.Iluz, R.Shavit, R.Bauer. Microstrip antenna phased array with electromagnetic bandgap substrate. IEEE Trans. on Antennas and Propagation,52(6):1446-1453,2004.
    [32]Alireza Foroozesh and Lotfollah Shafai. Application of combined electric-and magnetic-conductor ground planes for antenna performance enhancement. Can. J. Elect. Comput. Eng., vol.33,no.2,2008.
    [33]Dalia Nashaat, Hala A. Elsadek, Esmat A. Abdallah, Magdy F. Iskander, Hadia M. El Hennawy. Ultrawide bandwidth 2×2 microstrip patch array antenna using Electromagnetic Band-Gap Structure (EBG). IEEE Trans. on Antennas and Propagation, vol.59, no.5,2011.
    [34]龙泉.电磁带隙结构小型化的研究和它在天线中的应用[D],成都:电子科技大学,2008.
    [35]程海荣.电磁带隙结构小型化设计及其在微带天线中的应用[D],西安:西安电子科技大学,2010.
    [36]杨汶汶.频率选择表面和人工磁导体在微波工程中的应用研究[D],南京:东南大学,2010.
    [37]Jing Liang and Hung-Yu David Yang. Radiation characteristics of a microstrip patch over an Electromagnetic Bandgap surface. IEEE Trans. on Antennas and Propagation, vol.55, no.6, 2007.
    [38]Min Qiu. High-directivity patch antenna with both photonic bandgap substrate and photonic bandgap Cover. Microwave and Optical Technology Letters,30(1):41-44,2001.
    [39]张玉发,吕跃广,孙晓泉.一种基于叉型电磁带隙结构微带天线设计[J],安徽大学学报(自然科学版),2009(02).
    [40]A.P.Feresidis, G.Goussetis, S.Wang, J.C.Vardaxoglou. Artificial magnetic conductor surfaces and their application to low profile high-gain planar antennas. IEEE Trans.on Antennas and Propagation, vol.53, pp.209-215,2005.
    [41]Sievenpiper D. High-impedance electromagnetic surfaces. phD Dissertation,1999.
    [42]L.Akhoondzdeh-Asl, J.Nourini, C.Ghobadi, P.S.Hall. Influence of element shape on the bandwidth of artificial magnetic conductors. J of Electromagn. Waves and Appl., 21(7):929-946,2007.
    [43]H. Mosallaei and Y. Rahmat-Samii. Broadband characterization of complex periodic EBG structures:An FDTD/prony technique based on the split-field approach. Electromagn., vol.23, no.2, pp.135-151,2003.
    [44]R. Remski. Analysis of PBG surfaces using Ansoft HFSS. Microwave J., vol.43, no.1, pp.51-58,2000.
    [45]Ramesh Garg, Prakash Bhartia, Inder Bahl, Apisak Ittipiboon. Microstrip antenna design handbook. Artech House,2001.
    [46]梁乐,梁昌洪,陈亮,苏子剑.一种电磁带隙结构的快速分析方法[J],强激光与粒子束,2008.
    [47]Qian Y, C.Sievenpiper D.Radisic. A microstrip patch antenna using Photonic-Bandgap strucures. IEEE Trans. Microwave J.,42(1),pp:66-76,1999.
    [48]Li Yang, Mingyan Fan, Fanglu Chen, Jingzhao She, Zhenghe Feng. A novel compact Electromagnetic-Bandgap (EBG) structure and its applications for microwave circuits. IEEE Trans. on Microwave Theory and Techniques vol.53,no.1,2005.
    [49]A.S.Elmezughi, W.S.T.Rowe, R.B.Waterhouse. Edge-fed cavity backed patch antennas and arrays. IET Microw. Antennas Propag., vol3, iss4, pp:614-620,2009.
    [50]孙为昭,王昊,王惊婧,马晓峰,盛卫星.基于EBG结构的方向图可重构天线设计,全国微波毫米波会议,2011.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.