掺杂钛基二氧化铅电极的可控制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几十年来,电化学科学与技术凭借安全、高效、清洁等优势迅猛崛起,因而电化学工业也得到日新月异的发展。为在相关产业实现高效、优质、无污染、低能耗、低成本的目标,人们对电极材料和电化学反应器提出了更高的要求。在电化学体系中,电极处于核心地位,是影响和实现反应的关键因素。本文从掺杂不同离子(F-、Co2+、Mn2+)的Ti/PbO2电极的制备入手,采用恒电位离子共沉积法制得了性质可控的修饰电极,通过一系列测试技术,如CV、SEM、XRD、XPS等,研究改性后电极的表面形貌、晶体结构、组成、含量及电化学性能等。
     沉积电位的不同影响F在PbO2电极镀层中的掺杂量,进而影响PbO2的晶型;F的相对含量越高相应的晶体尺寸越小,表现出品体细化、表面平整化的特性;F-还具有抑制氧气析出的作用,相对含量越高,电极的析氧电位越高,应用范围越广,对废水处理等领域中有机物污染物的降解具有重要意义。
     Co的相对含量随着沉积电位的升高呈现先增后减的趋势;Co相对含量的改变进一步影响电极的表面形貌,由致密的单向生长变成多孔的三维生长;Co2+的掺杂提高了PbO2电极的析氧活性,含量最高时对应的电极的析氧电位最低,此电极对于电合成、有机物降解等工业生产的节能降耗起到重要作用。
     沉积电位对镀层中PbO2和MnO2的比例没有明显影响,但会改变沉积层的形貌和晶粒尺寸,并影响其电容性质。通过调节电镀液中乙酰丙酮的浓度,可以改变沉积层中PbO2和MnO2的比例,随着浓度的增加,PbO2的比例增加,改变了沉积层的形貌和晶粒尺寸,进而影响电容性能。在0.2 mol·L-1乙酰丙酮溶液中,沉积电位为1.45V时制得的复合电极材料的比电容高达150 F·g-1,电势窗口1.30V。电极表现出来的优良性能和高比电容与Mn2+和Pb2+的复合沉积是密不可分的,有望成功地应用于超级电容器和超级电池中。
     综上所述,与传统的Ti/PbO2电极相比,这些新型的电极材料无论在理论研究还是在实际应用方面,均有突破,并且为今后的实验工作提供有价值的参考数据,奠定了研究基础。
In recent decades, electrochemical science and technology rised rapidly because of safety, high efficiency and cleanliness, thus, the electrochemical industry also progressed with each passing day. For this reason, the requirements of materials and electrochemical reactors are stricter than before, in order to achieve high quality, non-polluting, low power and cost of the relevant industries. In the electrochemical system, the electrode in a pivotal role is the key factor on impacting and implementing reaction. A study on the preparation of Ti/PbO2 electrode doped with different ions (F-,Co2+, Mn2+) was undertaken, and the modified electrodes with controllable nature were obtained by potentiostatic ion co-deposition method. In addition, the surface morphology, crystal structure, composition, content and electrochemical properties were characterized through a series of testing technology, such as CV. SEM, XRD, XPS. etc.
     The doping content of F in the PbO2 electrode is affected by deposition potential. thereby, crystal form changes with it. The larger the F content is, the smaller the crystal grains is, the F- doping can make the electrode surface become fine and smoothing. Moreover, F- also has the action of inhibiting oxygen evolution. The larger the content of F- is. the higher the oxygen evolution potential is. Therefore, the application range of the PbO2 electrode become wider, the results have important significance for degradation of organic pollutants in the fields of wastewater treatment.
     The relative content of Co increases first and then decreases with an increasing deposition potential. Its change affects further on the surface morphology of the electrode, which transforms from dense one-way growth into porous three-dimensional growth. Doping with Co improves the oxygen evolution activity of PbO2 electrode. The highest content is corresponding to the lowest oxygen evolution potential. This electrode plays an important role in energy conservation for industrial production such as electrochemical synthesis and degradation of organic compounds.
     Deposition potential did not significantly affect on the rato of PbO2 and MnO2 in the coatings, but changes the morphology, crystal form and the nature of electrode capacitance. The ratio of the two can be changed by adjusting the concentration of diacetone in the solution.The proportion of PbO2 advanced with an increasing diacetone, which not only influences the morphology and grain size, but also improves the capacitance properties. The highest specific capacitance of the composite electrode obtained at 1.45V in the 0.2M diacetone solution is 150 F/g, and the potential window is 1.30V. It is believed that the prominent performance and high specific capacitance were related to the co-deposition of Mn2+ and Pb2+, making it ideal for supercapacitor and ultrabattery applications.
     In summary, to compare with the traditional Ti/PbO2 electrode, the new electrode materials have a breakthrough both in theory and in practical applications. R & D work of them provide valuable reference data and lay the foundation for future experimental study.
引文
[1]KARAMI H, MASOOMI B, ASADI R. Recovery of discarded sulfated lead-acid batteries by inverse charge [J]. Energy Conversion and Management,2009, 50:893-898.
    [2]MORALES J, PETKOVA G. Synthesis and characterization of lead dioxide active material for lead-acid batteries [J]. Journal of Power Sources,2006,158: 831-836.
    [3]XU W, LU T, LIU C, et al. Nanostructured Pt Ru/C as Anode Catalysts Prepared in a Pseudomicroemulsion with Ionic Surfactant for Direct Methanol Fuel Cell [J]. J. Physical. Chemistry B,2005,109:14325-14330.
    [4]CHAKRABORTY D, CHORKENDORFF I, JOHANNESSEN T. Electrochemical impedance spectroscopy study of methanol oxidation on nanoparticulate Pt Ru direct methanol fuel cell anodes:Kinetics and performance evaluation [J]. Journal of Power Sources,2006,162:1010-1022.
    [5]SUFFREDINI H B, BANDA G R S, AVACA L A. Enhanced ethanol oxidation on PbOx-containing electrode materials for fuel cell applications [J]. Journal of Power Sources,2007,171:355-362.
    [6]HOBBS B S, TSEUNG A C C. High performance platinum activated tungsten oxide fuel cell electrodes [J]. Nature,1969,222:556-558.
    [7]SHEN P K, CHEN K Y, TSEUNG A C C. Co-Deposited Pt-WO3 Electrodes [J]. Journal of Chemistry Society Faraday Discussions,1994,90:3089-3096.
    [8]JAYARAMAN S, JARAMILLO T F, BAECK S H, et al. Synthesis and Characterization of Pt-WOs as Methanol Oxidation Catalysts for Fuel Cells [J]. Journal of Physical Chemistry B 2005,109:22958-22966.
    [9]KIM C, NOH M, CHOI M, et al. Critical Size of a Nano SnO2 Electrode for Li-Secondary Battery. Chemical Materials,2005,17:3297-3301.
    [10]MUKAIBO H, MOMMA T, OSAKA T. Changes of electro-deposited Sn-Ni alloy thin film for lithium ion battery anodes during charge discharge cycling [J]. Journal of Power Sources,2005,46:457-463.
    [11]BEAUDROUET E. GUYOMARD D. Nanostructured manganese dioxides: Synthesis and properties as supercapacitor electrode materials [J]. Electrochimica Acta,2009,54:1240-1248.
    [12]GHAEMI M. ATAHERIAN F. ZOLFAGHARI A. et al. Charge storage mechanism of sonochemically prepared MnO2 as supercapacitor electrode:Effects of physisorbed water and proton conduction [J]. Electrochimica Acta,2008,53: 4607-4614.
    [13]ZHENG Y Z, DING H Y, ZHANG M L. Preparation and electrochemical properties of nickel oxide as a supercapacitor electrode material [J]. Materials Research Bulletin.2009,44:403-407.
    [14]MITRA S, LOKESH K S, SAMPATH S. Exfoliated graphite-ruthenium oxide composite electrodes for electrochemical supercapacitors [J]. Journal of Power Sources,2008,185:1544-1549.
    [15]JIANG J H, KUCERNAK A. Electrochemical supercapacitor material based on manganese oxide:preparation and characterization [J]. Electrochimica Acta,2002, 47:2381-2386.
    [16]XU C J, LI B H, DU H D, et al. Supercapacitive studies on amorphous MnO2 in mild solutions [J]. Journal of Power Sources,2008,184:691-694.
    [17]ZHANG X, YANG W S, EVANS D G. Layer-by-layer self-assembly of manganese oxide nanosheets/polyethylenimine multilayer films as electrodes for supercapacitors [J]. Journal of Power Sources,2008,184:695-700.
    [18]ZHANG H., CAO G, WANG W. et al. Influence of Microstructure on the Capacitive Performance of Polyaniline/carbon Nanotube Array Composite Electrodes [J]. Electrochimica Acta,2009.54:1153-1159.
    [19]SHARMA R K, RASTOGI1 A C, DESU S B. Manganese oxide embedded polypyrrole nanocomposites for electrochemical supercapacitor [J]. Electrochimica Acta,2008,53:7690-7695.
    [20]LEE H Y. GOODENOUGH J B. Supercapacitor Behavior with KCl Electrolyte [J]. Journal of Solid State Chemistry,1999,144:220-223.
    [21]SHARMA R K. OH H S, SHUL Y G, et al. Carbon-supported, nano-structured. manganese oxide composite electrode for electrochemical supercapacitor [J]. Journal of Power Sources.2007.173:1024-1028.
    [22]DONG X P, SHEN W H, GU J L, et al. MnO2 Embedded in Mesoporous Carbon Wall Structure for Use as Electrochemical Capacitors [J]. Journal of Physical Chemistry B.2006.110:6015-6019.
    [23]PRASAD K R, MIURA N. Electrochemically synthesized MnO2 based mixed oxides for high performance redox supercapacitors [J]. Electrochemistry Communications,2004.6:1004-1008.
    [24]FAN Z, CHEN J H. WANG M Y, et al. Preparation and characterization of manganese oxide/CNT composites as supercapacitive materials [J]. Diamond and Related Materials,2006,15:1478-1483.
    [25]CHEN X, CHEN G, YUE P L. Novel electrode system for electro-flotation of wastewater [J]. Environmental Science & Technology,2002,36:778-783.
    [26]PANIZZA M, CERISOLA G. Electrochemical oxidation as a final treatment of synthetic tannery wastewater [J]. Environmental Science & Technology,2004,38: 5470-5475.
    [27]MARTINEZ H C A., FERRO S. Electrochemical oxidation of organic pollutants for the wastewater treatment:direct and indirect processes [J]. Chemical Society Reviews,2006,35:1324-1340.
    [28]SAMET Y, ELAOUD S C. Electrochemical degradation of 4-chloroguaiacol for wastewater treatment using PbO2 anodes [J]. Journal of Hazardous Materials, 2006,138:614-619.
    [29]ANDRADE L S, RUOTOLO L A M, ROCHA R C, et al. On the performance of Fe and Fe, F doped Ti-Pt/PbO2 electrodes in the electro-oxidation of the Blue Reactive 19 dye in simulated textile wastewater [J]. Chemosphere,2007,66: 2035-2043.
    [30]LI G T, QU J H, ZHANG X W, et al. Electrochemically assisted photo-catalytic degradation of Acid Orange 7 with beta-PbO2 electrodes modified by TiO2 [J]. Water Research,2006,40:213-220.
    [31]PELEGRINI R T, FRIRE R S, DURAN N, et al. Photoassisted electrochemical degradation of organic pollutants on a DSA type oxide electrode: process test for a phenol synthetic solution and its application for the El bleach kraft mill effluent [J]. Environmental Science & Technology,2001,35:2849-2853.
    [32]ZHI J F, WANG H B, NAKASHIMA T. et al. Electrochemical Incineration of Organic Pollutants on Boron-Doped Diamond Electrode. Evidence for Direct Electrochemical Oxidation Pathway [J]. Journal of Physical Chemistry B,2003,107: 13389-13395.
    [33]BOUDENNE J L. CERCLIER O. GALEA J. et al. Electrochemical oxidation of aqueous phenol at a carbon black slurry electrode [J]. Applied Catalysis A:General,1996,143:185-202.
    [34]JEDRAL W. MERICA S G, BUNCE N J. Electrochemical oxidation of chlorinated benzenes [J]. Electrochemistry Communication.1999,1:108-110.
    [35]IOTOV P I, KALCHEVA S V. Mechanistic approach to the oxidation of phenol at a platinumgold electrode in an acid medium [J]. Journal of Electroanalytical Chemistry,1998,442:19-26.
    [36]MALULEKE M A, LINKOV V M. Partial electrochemical oxidation of phenol on ceramic based flat sheet type electromembrane reactors [J]. Separation and Purification Technology,2003,32:377-385.
    [37]LI X Y, CUI Y H, FENG Y J, et al. Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes [J]. Water Research, 2005,39:1972-1981.
    [38]ARSLAN G E, YAZICI B, ERBIL M. The effect of pH, temperature and concentration on electrooxidation of phenol [J]. Journal of Hazardous Materials B, 2005,124:37-43.
    [39]CANIZARES P. GARCIA G J, LOBATO J. et al. Modeling of Wastewater Electro-oxidation Processes Part Ⅱ. Application to Active Electrodes [J]. Industrial & Engineering Chemistry Research,2004,43:1923-1931.
    [40]WU Z, ZHOU M. Partial Degradation of Phenol by Advanced Electrochemical Oxidation Process [J]. Environmental Science & Technology,2001, 35:2698-2703.
    [41]ITAGAKI M, ONO A, WATANABE K, et al. Analysis on organic film degradation by dynamic impedance measurements [J]. Corrosion Science,2006,48: 3802-3811.
    [42]ZHOU M H. HE J R. Degradation of cationic red X-GRL by electrochemical oxidation on modified PbO2 electrode [J]. Journal of Hazardous Materials.2008.153:357-363.
    [43]FENG Y J, LI X Y. Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution [J]. Water Research,2003,37:2399-2407.
    [44]SISTIAGA M. PIERNA A R. MARZO F F,et al. Electrooxidation of phenol on amorphous Ni-40Nb-(1-x)Pt-xSn alloys [J]. Applied Surface Science,1998,133: 124-128.
    [45]MORAO A, LOPES A. GONCALVES I C. et al. Degradation of mixtures of phenols using boron doped diamond electrodes for wastewater treatment [J]. Electrochimica Acta,2004,49:1587-1595.
    [46]LEE K H, ISHIKAWA T. MCNIVEN S J, et al. Evaluation of chemical oxygen demand (COD) based on coulometric determination of electrochemical oxygen demand (EOD) using a surface oxidized copper electrode [J]. Analytical Chimica Acta,1999,398:161-171.
    [47]JOHNSON D C, FENG J, HOUK L L. Direct electrochemical degradation of organic wastes in aqueous media [J]. Electrochim. Acta,2000.46:323-330.
    [48]IBRAHIMA K, THIERRY D, RACHID H, et al. Electrical behaviour of fractal nanosized tin dioxide films prepared by electrodeposition for gas sensing applications. Microelectronics Journal,2005,36:639-643.
    [49]BATESJ R, KATHIRGAMANATHAN P, MILES R W. The influence of the electrodeposition parameters on the morphology of organo-transition metal complexes for thin film gas sensor applications [J]. Thin Solid Films,1997,299:18-24.
    [50]SHIMIZU Y. FURUTA Y. An opto-electrochemical phosphate-ion sensor using a cobalt-oxide thin-film electrode [J]. Solid State Ionics.1998,113:241-245.
    [51]LI Q W, LUO G A, SHU Y Q. Response of nanosized cobalt oxide electrodes as pH sensors [J]. Analytical Chimica Acta,2000,409:137-142.
    [52]NEKRASOV A A, IVANOV V F. GRIBKOVA O L, et al. Electrochemical and chemical synthesis of polyaniline on the surface of vacuum deposited polyaniline films [J]. Journal of Electroanalytical Chemistry,1996.412:133-137.
    [53]COMNINELLIS CH, VERCESI G P. Problem in DSA coating deposition by thermal decomposition [J]. Journal of Applied Electrochemistry,1991,21: 136-142.
    [54]LOZANO B C, COMNINELLIS CH. BATTISTI A D. Electrochemical properties of Ti/SnO2-Sb2O5 electrodes prepared by the spray pyrolysis technique [J]. Journal of Applied Electrochemistry,1996,26:683-688.
    [55]LIPP L, PLETCHER D. The preparation and characterization of tin dioxide coated titanium electrode [J]. Electrochimca Acta,1997,42:1091-1099.
    [56]FOTI G. MOUSTY C, COMNINELLIS Ch, et al. Characterization of DSA type electrodes prepared by rapid thermal decomposition of the metal precursor [J]. Electrochimica Acta,1998,44:813-818.
    [57]SHEN P K, WEI X L. Morphologic study of electrochemically formed lead dioxide [J]. Electrochimica Acta,2003,48:1743-1747.
    [58]HWANG B J, SANTHANAM R, CHANG Y W. Mechanism of Electrodeposition of PbO2 at a Pt Sheet/Rotating Disk Electrode [J]. Electroanalysis. 2002,14:363-367.
    [59]CHANG H. JOHNSON D C. Electrocatalysis of Oxygen Transfer Reaction Detection of Soluble Intermediate Products during Electrodeposition and Stripping of (3-Lead Dioxide at a gold Electrode [J]. Journal of Electrochemistry Society,1989, 136:23.
    [60]CHANG H, JOHNSON D C. Electrocatalysis of Anodic Oxygen-Transfer Reaction Chronoamperometric and Voltammetric Studies of the Nucleation and Electrodeposition of β-Lead Dioxide at a rotated Gold Disk Electrode in Acidic Media [J]. Journal of Electrochemistry Society,1989,136:17-23.
    [61]CHANG H, JOHNSON D C. Electrocatalysis of anodic oxygen-transfer reactions ultrathin fFilms of lead oxide on solid electrodes [J]. Journal of Electrochemistry Society,1990,137:3108-3114.
    [62]YEO I H, LEE Y S, JOHNSON D C. Growth of Lead Dioxide on a Gold Electrode in the Presence of Foreign Ions [J]. Electrochimica Acta,1992,37: 1811-1819.
    [63]VELICHENKO A B, GIRENKO D V, DANILOV F I. Mechanism of lead dioxide electrodeposition [J]. Journal of Electroanalysis Chemistry,1996,405: 127-133.
    [64]VELICHENKO A. B., GIRENKO D. V.. DANILOV F. I. Electrodeposition of lead dioxide at an Au electrode [J]. Electrochim. Acta,1995,40:2803-2807.
    [65]CAMPBELL S A, PETER L M. Detection of soluble intermediates during deposition and reduction of lead dioxide. Journal of Electroanalysis Chemistry,1991, 36:185-191.
    [66]TERASHIMA C, RAO T N, SARADA B V. et al. Electrochemical Oxidation of Chlorophenols at a Boron-Doped Diamond Electrode and Their Determination by High-Performance Liquid Chromatography with Amperometric Detection [J]. Analytical Chimica Acta,2002,74:895-902.
    [67]WANG J K, FARRELL J. Electrochemical Inactivation of Triclosan with Boron Doped Diamond Film Electrodes [J]. Environmental Science & Technology. 2004,38:5232-5237.
    [68]FOORD J S, EATON K, WANG H. Alison Crossley Present Interaction between co-deposited metals during stripping voltammetry at boron-doped diamond electrodes [J]. Physical Chemistry Chemical Physics.2005.7:2787-2792.
    [69]TERASHIMA C, RAO T N. SARADA B V. et al. Electrochemical Oxidation of Chlorophenols at a Boron-Doped Diamond Electrode and Their Determination by High-Performance Liquid Chromatography with Amperometric Detection [J]. Analytical Chimica Acta,2002,74:895-902.
    [70]COLLEY A L, WILLIAMS C G, D'HAENENS J, et al. Examination of the Spatially Heterogeneous Electroactivity of Boron-Doped Diamond Microarray Electrodes [J]. Analytical Chimica Acta,2006,78:2539-2548.
    [71]POLCARO A M, RICCI P C, PALMAS S, et al. Characterization of boron doped diamond electrodes during oxidation processes:Relationship between electrochemical activity and ageing time [J]. Thin Solid Films,2006,515:2073-2078.
    [72]SURYANARAYANAN V, NAKAZAWA I. The influence of electrolyte media on the deposition/dissolution of lead dioxide on boron-doped diamond electrode:A surface morphologic study [J]. Journal of Electroanalytical Chemistry, 2006,592:175-182.
    [73]CAO J L, ZHAO H Y, CAO F H, et al. The influence of F- doping on the activity of PbO2 film electrodes in oxygen evolution reaction [J]. Electrochimica Acta, 2007,52:7870-7876.
    [74]DEVILLIERS D, DINH M T, THI, LEQUEUX N, et al. Electroanalytical investigations on electrodeposited lead dioxide [J]. Journal of Electroanalytical Chemistry,2004,573:227-239.
    [75]KRISHNA K M, SHARON M, MISHRA M K. Preparation and characterization of a PbTiO3 + PbO mixed-oxide photoelectrode [J]. Journal of Electroanalytical Chemistry,1995,391:93-99.
    [76]MONAHOV B, PAVLOV D. KIRCHEV A. et al. Influence of pH of the H2SO4 solution on the phase composition of the PbO? active mass and of the PbO2 anodic layer formed during cycling of lead electrodes [J]. Journal of Power Sources. 2003.113:281-292.
    [77]SHAHRAM G, KARAMI H, MOUSAVI M F, et al. Synthesis and morphological investigation of pulsed current formed nano-structured lead dioxide [J]. Electrochemistry Communications,2005,7:1257-1264.
    [78]VATISTAS N, CRISTOFARO S. Lead dioxide coating obtained by pulsed current technique [J]. Electrochemistry Communications.2000,2:334-337.
    [79]KEROUANI N, CHELALI N, KEROUANI D. Electrochemical and kinetic behavior of the MnOX/C-beta-PbO2 electrode [J]. Journal of solid state electrode, 2003,8:34-36.
    [80]PAYNE D J. EGDELL R G. Experimental and theoretical study of the electronic structures of alpha-PbO and beta-PbO2 [J]. Journal of materials chemistry, 2007.17:267-277.
    [81]AMADELLI R, MALDOTTI A, MOLINARI A, et al. Influence of the electrode history and effects of the electrolyte composition and temperature on O2 evolution at β-PdO2 anodes in acid media [J]. Journal of Electroanalytical Chemistry, 2002,534:1-12.
    [82]WU C Z. HU S Q, LEI L Y, et al. beta-PbO2 hollow nanostructures from the complex precursor:A self-produced intermediate template route [J]. Microporous and Mesoporous Materials,2006,89:300-305.
    [83]MAHALINGAM T, VELUMANI S. RAJA M. et al. Electrosynthesis and characterization of lead oxide thin films [J]. Materials Characterization,2007.58: 817-822.
    [84]KONG J T, SHI S Y, KONG L C, et al. Preparation and characterization of PbO2 electrodes doped with different rare earth oxides [J]. Electrochimica Acta,2007, 53:2048-2054.
    [85]ALEKSANDROV A. Heat treatment of aluminum alloys [J]. Meltallurgiya, 1974,29(1):19.
    [86]FENG J, JOHNSON D C. Electrocatalysis of anodic oxygen-transfer reactions:titanium substates for pure and doped lead dioxide films [J]. J. Electrochem. Soc.,1991,138 (11):3328.
    [87]NIDOLA A. Electrode materials for oxygen evolution cobalt treated lead vs commercial lead and lead alloys [J]. Material Chem.& Phys.,1989,22(1-2):183.
    [88]张招贤,钛基二氧化铅电极的改进与应用[J]。氯碱工业,1996,第8期,22。
    [89]CHEN G H. CHEN X M. YUE P L. Electrochemical Behavior of Novel Ti/IrOx-Sb2O5-SnO2 Anodes [J]. Journal of Physical Chemistry B.2002,106: 4364-4369.
    [90]VELICHENKO A B, AMADELLI R, et al. Electrosynthesis and physicochemical properties of Fe-doped lead dioxide electrocatalysts [J]. Electrochimica Acta,2000,45:4341-4350.
    [91]VELICHENKO A B. GIRENKO D V. KOVALYOV S V, et al. Lead dioxide electrodeposition and its application:influence of fluoride and iron ions [J]. Journal of Electroanalytical Chemistry,1998.454:203-208.
    [92]CATTARIN S. FRATEUR I, GUERRERO P, et al. Electrodeposition of PbO2-CoOx composites by simultaneous oxidation of Pb2+ and Co2+ and their use as anodes for O2 evolution [J]. Electrochimica Acta,2000,45:2279-2288.
    [93]CATTARIN S, GUERRIERO P, MUSIANI M. Preparation of anodes for oxygen evolution by electrodeposition of composite Pb and Co oxides [J]. Electrochimica Acta,2001.46:4229-4234.
    [94]SHEN P K, SYED-BOKHARI J, TSEUNG A C C. The Performance of Electrochromic tungsten trioxide film doped with cobalt or nickel. J. Electrochem. Soc. September,1991,138(9):2778-2793.
    [95]BORRAS C, MONROY, A. On the initial stages of electro-oxidation of aqueous maleic acid on Bi-doped PbO2 [J]. Electroanalysis,2007,19:1628-1634.
    [96]LUBENOV L, BOJINOV M, TZVETKOFF T. Oxidation of toluene on Bi-doped PbO2 studied by electrochemical impedance spectroscopy and UV spectrophotometry [J]. Journal of Solid State Electrochemistry,2007,11:1613-1620.
    [97]TAHAR N B, SAVALL A. Electrochemical degradation of phenol in aqueous solution on bismuth doped lead dioxide:a comparison of the activities of various electrode formulations [J]. Journal of Applied Electrochemistry,1999,29: 277-283.
    [98]BORRAS C, LAREDO T, SCHARIFKER B R. Competitive electrochemical oxidation of p-chlorophenol and p-nitrophenol on Bi-doped PbO2 [J]. Electrochimica Acta.2003.48:2775-2780.
    [99]RAS A H, STADEN J F V. Electrodeposition of PbO2 and B-PbO2 on Ebonex [J]. Journal of Applied Electrochemistry,1999.29:313-319.
    [100]AI S. Y., GAO M. N., ZHANG W.. et al. Preparation of Ce-PbO2 modified electrode and its application in detection of anilines [J]. Talanta,2004,62:445-450.
    [101]GILORY D, STEVENS R. The electrodeposition of lead dioxide on Ti [J], J. Applied Electrochem.,1980(10):511-525.
    [102]VELICHENKO A B, DEVILLIERS D. Electrodeposition of fluorine-doped lead dioxide [J]. Journaol of Fluorine Chemistry,2007,128:269-276.
    [103]VELICHENKO A B, AMADELLI R, BARANOVA E A. et al. Electrodeposition of Co-doped lead dioxide and its physicochemical properties [J]. Journal of Electroanalytical Chemistry.2002,527:56-64.
    [104]SANDRO CATTARIN. ISABELLE FRATEUR. PAOLO GUERRIERO. MARCO MUSIANI. Electrodeposition of PbO2+CoOx composites by simultaneous oxidation of Pb2+ and Co2+ and their use as anodes for O2 evolution. Electrochimica Acta.2000,45:2279-2288.
    [105]SONG Y H. WEI G. XIONG R H. Structure and properties of PbO2-CeO2 anodes on stainless steel [J]. Electrochimica Acta,2007,52:7022-7027.
    [106]WEI W F, CUI X W, CHEN W X. et al. Electrochemical cyclability mechanism for MnO2 electrodes utilized as electrochemical supercapacitors [J]. Journal of Power Sources,2009,186:543-550.
    [107]TOUPIN M, BROUSSE T, BELANGER D. Influence of Microstucture on the Charge Storage Properties of Chemically Synthesized Manganese Dioxide [J]. Chemical Materials,2002,14:3946-3952.
    [108]PANG S C, ANDERSON M A, CHAPMAN T W. Novel Electrode Materials for Thin-Film Ultracapacitors:Comparison of Electrochemical Properties of Sol-Gel-Derived and Electrodeposited Manganese Dioxide [J]. Journal of Electrochemistry Society,2000.147:444-449.
    [109]HSIEH Y C, LEE K T, LIN Y P, et al. Investigation on capacity fading of aqueous MnO2·nH2O electrochemical capacitor [J]. Journal of Power Sources,2008, 177:660-664.
    [110]BEAUDROUET E, SALLE A L G L. GUYOMARD D, et al. Nanostructured Manganese Dioxides:Synthesis and Properties as Supercapacitor Electrode Materials [J]. Electrochimica Acta,2009,54:1240-1249.
    [111]CHEN G H. CHEN X M. YUE P L. Electrochemical behavior of novel Ti/IrOx-Sb2O5-SnO2 anodes [J]. Journal of Physical Chemistry B,2002,106: 4364-4369.
    [1]BONFATTI F, FERRO S. LAVEZZO F. MALACARNE M, LODI G, DE BATTISTI A. J. Electrochem. Soc.,1999,146:2175.
    [2]JOHNSON D C, FENG J, HOUK L L. Direct electrochemical degradation of organic wastes in aqueous media. Electrochim Acta,2000,46:323-30.
    [3]AMADELLI R, ARMELAO L. VELICHENKO A B, NIKOLENKO N V, GIRENKO D V. KOVALYOV S V, DANILOV F I. Electrochim. Acta,1999,45:713.
    [4]VELAYUTHAN D, Noel M. Preparation of a polypyrrole-lead dioxide composite electrode for electrochemical applications [J]. Tantala,1992,39:481-6.
    [5]OMURA K. Tetrahedron Lett.,2000,41:685.
    [6]GRUGEON-DEWAELE S, LARUELLE L, TORCHEUX L, TARASCON J M, DELAHAYE VIDAL A. Optimization of the positive anode material capacity in lead-acid cells through control of the basic lead sulfate precursor [J]. J. Electrochem Soc.,1998,145:3358-65.
    [7]VELICHENKO A B. DEVILLIERS D J. Fluorine Chem.,2007,128:269.
    [8]GILORY D, STEVENS R J. Appl. Electrochem.,1980,10:511.
    [9]CONG Y, WU Z. Electrocatalytic generation of radical intermediates over lead dioxide electrode doped with fluoride [J]. Journal of Physical Chemistry C.2007. 111:3442-3446.
    [10]LIU H -T, ZHOU W-F. Journal of Applied Electrochemistry,1997,27: 1212-1216.
    [11]KRISHNA K M, SHARON M, MISHRA M K. Preparation and characterization of a PbTiO3+PbO mixed-oxide photoelectrode [J]. Journal of Electroanalytical Chemistry,1995,391:93-99.
    [12]CATTARIN S, FRATEUR I. GUERRIERO P, et al. Electrodeposition of PbO2-CoOx composites by simultaneous oxidation of Pb2+ and Co2+ and their use as anodes for O2 evolution [J]. Electrochimica Acta.2000,45:2279-2288.
    [13]RAS A H, STADEN J F V. Electrodeposition of PbO2 and Bi-PbO2 on ebonex [J]. Journal of Applied Electrochemistry,1999,29:313-319.
    [14]AI S Y. GAO M N, ZHANG W, WANG Q J, XIE Y F, JIN L T. Preparation of Ce-PbO2 modified electrode and its application in detection of anilines [J]. Talanta. 2004,62:445-450.
    [15]WANG X, HUANG W M. LI H T, et al. Comparison between performances of PbO2 and F-doped PbO2 anodes for electrochemical degradation of aniline [J]. Chem. Res. Chinese universities,2010,26(6):991-995.
    [16]任秀斌,陆海彦,刘亚男,李伟,林海波。钛基二氧化铅电极电沉积制备过程中的立体生长机理,化学学报,2009,9。
    [17]WANGER C D, RIGGS W M, DAVIS L E, et al. Handbook of X-ray Photoelectron Spectroscopy [M]. Perkin-Elmer, Eden prairie,1978.
    [18]WU C Z, HU S Q, LEI L Y, et al. Beta-PbO2 hollow nanostructures from the complex precursor:A self-produced intermediate template route [J]. Microporous and Mesoporous Materials,2006,89:300-305.
    [19]SHAHRAM G. KARAMI H, MOUSAVI M F, et al. Synthesis and morphological investigation of pulsed current formed nano-structured lead dioxide [J]. Electrochemistry Communications,2005,7:1257-1264.
    [20]BOCCA C, BARBUCCI A, DELUCCHI M, et al. Nickel-cobalt oxide-coated electrodes:influence of the preparation technique on oxygen evolution reaction (OER) in an alkaline solution [J]. International Journal of Hydrogen Energy, 1999,24:21-26.
    [21]CASTRO E B, GERVASI C A. Electrodeposited Ni-Co-oxide electrodes: characterization and kinetics of the oxygen evolution reaction [J]. International Journal of Hydrogen Energy,2000,25:1163-1170.
    [22]AMADELLI R, ARMELAO L, VELICHENKO A B, et al. J. Electrochimica Acta,1999,45:713-720.
    [23]TREIMER S E, FENG J, SCHOLTEN M D, JOHNSON D C, et al. Comparison of Voltammetric Responses of Toluene and Xylenes at Iron(III)-Doped. Bismuth(V)-Doped, and Undoped β-Lead Dioxide Electrode Electrodes in 0.50 M H2SO4. J. Electrochem. Soc.,2001.148:E459-464.
    [24]CARR J P, HAMPSON N A. Lead dioxide electrode. Chem. Rev.,1972. 72(6):679-703.
    [1]GHASEMI S, MOUSAVI M F, SHAMSIPUR M, KARAMI H. Ultrasonics Sonochemistry,2008,15:448-455.
    [2]VELICHENKO A, AMADELLI R. BARANOVA E A, GIRENKO D V. DANILOV F I. J. Electroanalytical Chemistry,2002,527:56-64.
    [3]AI S Y, LI J Q, LI L P, PENG H Q, YANG Y, JIN L T. Chinese Journal of Chemistry,2005,23:71-75.
    [4]MARKOVI N M, GRGUR B, LUCAS C A, ROSS N. Faraday Transactions, 1998,94:3373-3379.
    [5]CASELLAI G, GATTA M. Journal of Electroanalytical Chemistry,2002,534: 31-38.
    [6]CATTARIN S, FRATEUR I. GUERRIERO, MUSIANI M. Electrochimica Acta,2000,45:2279-2288.
    [7]CATTARIN S, GUERRIERO P. MUSIANI M. Electrochimica Acta,2001,46: 4229-4234.
    [8]VELICHENKO A B, AMADELLI R, ZUCCHINI G L, GIRENKO D V, DANILOV F I. Electrochimica Acta,2000,45:4341-4350.
    [9]GERVASI C A, VILCHE J R, ALVAREZ E. Electrochimica Acta,1996,41: 455-461.
    [10]BOCCA C, BARBUCCI A, DELUCCHI M, CERISOLA G. International Journal of Hydrogen Energy,1999,24:21-26.
    [11]CASTRO E B, GERVASI C A. International Journal of Hydrogen Energy. 2000.25:1163-1170.
    [12]BARBERO C, PLANES G A, MIRAS M C. Electrochemistry Communications.2001.3:113-116.
    [13]WU G, LI N, ZHOU D R, MITSUO K, XU B Q. Journal of Solid State Chemistry,2004,177:3682-3692.
    [14]MUSIANI M, GUERRIERO P. Electrochimica Acta,1998,44:1499-1507.
    [15]CASELLATO U. CATTARIN S, GUERRIERO P, MUSIANI M M. Chemical Materisals.1997.9:960-966.
    [16]HUE F, MUSIAN M, NOGUEIRA R P. Electrochim Acta,2003,48: 3981-3989.
    [17]PAYNE D J. EGDELL R G. Journal of materials chemistry,2007,17: 267-277.
    [18]MOHD Y, PLETCHER D. Electrochimica Acta,2006,52:786-793.
    [19]CATTARIN S. MUSIANI M. Electrochim Acta,2007,52:2796-2805.
    [20]CHANG H, JOHNSON D C. Journal of Electrochemistry Society,1989, 136:23-29.
    [1]KOTZ R, CARLEN M. Electrochim. Acta,2000,45:2483.
    [2]CONWAY B E. J. Electrochem. Soc.,1991,138:1539-1548.
    [3]ZHENG J P, HUANG J, JOW T R. J. Electrochem. Soc.,1997,144:2026.
    [4]ISHIKAWA M, MORITA M, IHARAM, MATSUDA Y. J. Electrochem. Soc., 1994,141:1730.
    [5]TRASATTI S, KURZWEIL P. Platinum Met. Rev.,1994,38:46-56.
    [6]SARANGAPANI S, TILAK B V, CHEN C P. J. Electrochem. Soc.,1996,143: 3791-3799.
    [7]SHARMA R K, RASTOGI A C, DESU S B. Electrochimica Acta,2008,53: 7690-7695.
    [8]LEE H Y, et al. Journal of Solid State Chemistry,1999,144:220-223.
    [9]SHARMA R K, SHUL Y G, KIM H, et al. Journal of Power Sources,2007, 173:1024-1028.
    [10]ZHAO D D, BAO S J, ZHOU W J, LI H L. Electrochem. Commun.,2007,9: 869-874.
    [11]OKAJIMA K, IKEDA A, KAMOSHITA K, SUDOH M. Electrochim Acta. 2005,51:972-977.
    [12]XU C J, LI B H, DU H D. KANG F Y, ZENG Y Q. Journal of Power Sources,2008,184:691-694.
    [13]CHEN G H, CHEN X M, YUE P L. Journal of Physical Chemistry B.2002. 106:4364-4369.
    [14]KATAKABE T, KANEKO T, WATANABE M. FUKUSHIMA T, AID A T. J. Electrochem. Soc.,2005,152:A1913-1916.
    [15]BARBIERI O, HAHN M, HERZOG A, KOTZ R. Carbon,2005,43: 1303-10.
    [16]WU M S, HUANG Y A, YANG C H, JOW J J. Int. J. Hydrogen Energy, 2007,32:4153-9.
    [17]YANG X H, WANG Y G, XIONG H M, XIA Y Y. Electrochim Acta,2007, 53:752-7.
    [18]KIM I H, KIM K B. J. Electrochem Soc.,2006.153:A383-9.
    [19]HAM D J, GANESAN R. LEE J S. Int. J. Hydrogen Energy,2008,33: 6865-72.
    [20]CHOI D, BLOMGREN G E, KUMTA P N. Adv. Mater.,2006.18:1178-82.
    [21]CASTRO E B, REAL S G, DICK L F P. Int. J. Hydrogen Energy,2004,29: 255-61.
    [22]BROUSSE T, TOUPIN M, BE'LANGER D. J. Electrochem Soc.,2004,151: A614-22.
    [23]SHEN P K, WEI X L. Electrochimica Acta,2003.48:1743-1747.
    [24]TOUPIN M, BROUSSE T, BELANGER D. Chemical Materials,2002,14: 3946-3952.
    [25]MACHEFAUX E, BROUSSE T, B'ELANGER D. Journal of Power Sources,2007,165:651-655.
    [26]LEE M T. HUANG C H, TSAI W T. Materials Chemistry and Physics,2008, 108:124-131.
    [27]WANGER C D. RIGGS W M, DAVIS L E, MOULDER J F, MUILENBERG G E. Handbook of X-ray photoelectron spectroscopy [M]. Perkin-Elmer:Eden prairie,1978.
    [28]WU C Z, HU S Q, LEI L Y, YIN P. LI T W, XIE Y. [J]. Microporous and Mesoporous Materials,2006,89:300-305.
    [29]LAFORGUE A, SIMON P, SARRAZIN C, FAUVARQUE J F. J. Power Sources,1999,80:142-148.
    [30]CATTARIN S. MUSIANI M. [J]. Electrochim Acta,2007.52:2796-2805.
    [31]GHASEMI S, MOUSAVI M F. [J]. Electrochima Acta,2006,52: 1596-1602.
    [32]DEVARAJ S, MUNICHANDRAIAH N. J. Electrochem Soc.,2007,154:(2) A80-A88.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.