大豆产量相关性状QTL的关联分析及候选基因GmGA3ox单倍型鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆[Glycine Max (L.) Merr.]是重要的粮食和经济作物,其产量的形成与许多重要的农艺性状和经济性状直接或间接相关,如开花期、成熟期、产量组分以及光合性能等。这些性状均属复杂的数量性状,应用传统育种方法进行遗传改良已经越来越难。随着生物技术的发展,利用分子育种技术培育高产大豆品种成为现代大豆育种计划的主要内容之一。通过鉴定大豆基因组中与大豆产量相关性状紧密关联的功能位点或单倍型,开发新的功能标记对目标性状进行分子标记辅助选择,或利用大豆产量相关功能基因进行转基因育种,可大大提高大豆高产育种效率,达到定向选育的目的。
     为了发掘大豆基因组中控制大豆产量相关性状的功能基因/QTL,本研究在大豆产量性状一致性QTL候选区域内利用SSR等标记进一步对产量性状QTL进行了关联定位,并对大豆产量、产量组分及光合相关性状进行了基于SNPs及单倍型的全基因组关联分析。在此基础上,结合大豆基因组序列信息,利用生物信息学方法筛选与大豆产量相关的候选基因,通过候选基因关联分析策略验证其功能、鉴定出优异单倍型,为大豆高产分子育种提供有效的依据。主要结果如下:
     1.利用关联分析方法在大豆产量性状QTL候选区域内对大豆产量性状QTL进行了关联定位。结果表明,产量相关性状在196份栽培豆组成的自然群体内存在广泛的表型变异;除了百粒重与花期、株高间相关不显著外,其余性状间均存在极显著相关;染色体6、7、19上共线性或非共线性位点组合均存在一定程度的LD,并且LD衰减速率较快;基于MLM模型,在5个环境中共检测到40个标记位点与产量相关性状显著关联,其中有26个标记位点在所有环境中均能被稳定检测到,7个标记位点在所有环境中同时与2个或2个以上产量性状共关联;稳定关联的标记位点等位变异数目差异较大,而且不同等位变异对表型的效应差异也较显著,在高产育种中可利用不同位点的优异等位变异进行优良性状聚合育种。位于染色体7上的Satt150在5个环境中均被稳定检测到与产量及其他相关性状存在显著关联,并且与国内外多次报道的主效QTL位点一致。基于连锁不平衡的原理,将大豆产量性状QTL进一步缩小到Satt150两侧标记518kb区间内(GMES2109-Satt316),为下一步进行产量相关候选基因的筛选和功能标记辅助育种奠定了基础。
     2.为了进一步发掘大豆基因组内与产量及产量组分存在关联的功能区域,本研究以191份栽培豆为研究群体,通过2年5环境试验,利用1536个SNPs和209个单倍型,对大豆产量及产量组分进行了全基因组关联分析。研究结果表明,191份栽培豆组成的自然群体内存在广泛的表型变异和遗传多样性;利用1142个SNPs(最小等位基因频率大于10%)将该群体聚为两个亚群,个体间不存在或仅存在较弱的亲缘关系,群体内位点间LD衰减距离大约为500kb。全基因组关联分析共检测到19个SNPs和5个单倍型在3个或3个以上环境中与单株荚数、单株粒数、百粒重和产量存在显著关联,部分显著关联的位点位于前人利用连锁分析检测到的QTL内或与其紧密相邻。在显著关联的位点中,检测到9个标记位点与2个以上不同的产量性状同时关联;稳定检测到4个SNPs和1个单倍型位点在所有环境中均与百粒重存在显著关联,并且各位点等位变异所对应的百粒重均值差异极显著,优良等位变异与较差等位变异间的百粒重均值差异达4g。这些位点均有助于更好地揭示大豆产量及产量组分的遗传机制,为将来通过分子育种技术改良大豆产量,实现高产稳产奠定了基础。
     3.根据大豆产量性状QTL候选区域关联定位及全基因组关联分析结果,结合大豆基因组序列信息,利用生物信息学手段,在染色体7上筛选到大豆产量相关的候选基因GmGA3ox.通过对191份栽培豆中的GmGA3ox序列进行多态性分析,共检测到的16个SNPs和4个Indel(最小等位基因频率大于10%),并且存在5个明显的单倍型域。关联分析共检测到5个SNP/Indel在3个以上环境与产量间存在显著关联,其中有2个多态性位点在所有环境中均被检测到与产量显著关联。在3个以上环境中,共检测到1个单倍型(GmGA3ox_H4)与百粒重存在显著关联,2个单倍型(GmGA3ox_H4、GmGA3ox_H5)与产量显著关联。其中,GmGA3ox_H4在所有环境中均被检测到与百粒重存在显著关联,对百粒重的表型变异解释率达9.67%,最优单倍型与最差单倍型间百粒重差异达4g;GmGA3ox_H5则在所有环境中均与产量显著关联,对产量的表型变异解释率达20.19%,最优单倍型与最差单倍型产量差异达1倍;序列结构分析发现GmGA3ox_H4和GmGA3ox_H5均位于3’非编码区内,可能参与mRNA的转录后调控,引起GA代谢途径及相关代谢通路的变化,从而引起大豆百粒重及产量的改变。
     4.对叶绿素含量(CCI)、叶绿素荧光参数(JlP-test参数)及光合速率(PN)进行的全基因组关联分析结果表明,2009年和2010年研究(光合速率为2008年)中,共检测到47个SNPs、11个单倍型与CCI显著关联,30个SNPs、8个单倍型与Fv/Fm显著关联,33个SNPs、5个单倍型与ABS/RC显著关联,25个SNPs、5个单倍型与ETo/TRo存在显著关联,20个SNPs、7个单倍型与PIABS存在显著关联,15个SNPs、2个单倍型与PN显著关联。在所有检测到的位点中,共检测到26个SNPs位点同时与2个或2个以上的性状存在显著关联。其中,4个与JIP-test参数关联的位点同时与PN共关联;12个SNPs和2个单倍型与大豆产量或产量组分共关联。共稳定检测到8个SNPs和2个单倍型在两年中均与相应的光合性状存在显著关联,稳定关联的SNP及单倍型的等位变异对光合性状的表型效应差异均达极显著水平,在大豆分子育种中,利用这些稳定关联的位点的优异等位变异进行MAS,可能会达到同步改良大豆光合性能和提高产量的效果。
Soybean [Glycine max (L.) Merr.] is an important food and cash crop. Seed yield of soybean is directly or indirectly determined by many agronomic and economical traits, such as plant height, flowering time, maturity, yield components and photosynthetic performance. These traits are controlled in a complex manner by quantitative trait loci (QTLs), and environmental variations can trigger and modify the actions of related genes. In soybean, it is becoming more difficult to improve yield using traditional breeding methods. The development of genomics has provided alternative tools to improve breeding efficiency in plant breeding programs. Use of molecular breeding techniques to breed high-yielding soybean varieties has become one of the main objectives in soybean modern breeding programs. Using the functional markers located in or closely linked to the gene or QTL underlying the target trait in marker-assisted selection (MAS), or use of functional genes in transgenic breeding, can greatly increase breeding efficiency and directionally improve soybean yield.
     In present study, in order to identify the causal polymorphisms underlying the soybean yield-related traits, association analysis between SSR markers and soybean yield-related traits was conducted in candidate regions of major QTLs of soybean yield-related traits. Then genome-wide association analysis was performed in different environments to identify SNPs and haplotypes underlying soybean yield, yield components, and photosynthesis-related traits,. On this basis, combined soybean genomic information with bioinformatics, yield-related candidate gene was screened, and thus, candidate-gene association analysis was conducted to identified the polymorphisms and haplotypes in the yield-related candidate gene. The main results of this study are as follows:
     Using80SSR/EST-SSR/DT1markers, we conducted fine mapping of soybean yield-related traits based on the association analysis across five different environments in the candidate regions of major QTLs of soybean yield-related traits. The results showed that there was extensive phenotypic variation in196soybean landraces. Except for seed weight, days to flowering and plant height, the other traits were significantly related. The analysis indicated that there was extensive linkage disequilibrium intra-chromosome or inter-chromosome among chromosome6,7and19, and that the LD decayed rapidly in our studied population. Based MLM model, we detected40markers significantly associated with yield-related traits across five environments. Of which,26loci can be detected in all environments.7loci were co-associated with two or more different traits in all environments. The locus of Satt150on chromosome7was detected in all environments associated with soybean yield and other related traits. Moreover, this locus was detected repeatedly associated with soybean yield and related traits in previous reports. Based on the principle of linkage disequilibrium, the QTL underlying the soybean yield traits was fine mapped in the interval of518kb between the flanking markers on both sides of Satt150(GMES2109-Satt316).
     In order to identify the causal polymorphisms underlying soybean yield and yield components, in this study, we further evaluated a group of191soybean landraces in five different environments using1536single-nucleotide polymorphisms and209haplotypes. The analysis revealed that there was abundant phenotypic and genetic diversity in the studied population. The191soybean landraces could be divided into two subpopulations using1142SNPs with minor allele frequency of≥10%. No or weak relatedness was detected between pair-wise accessions within this population. The average decay distance of linkage disequilibrium intra-chromosome was estimated at approximately500kb. Genome-wide association analysis based on a unified mixed model approach identified19SNPs and5haplotypes associated with number of pods per plant, number of seeds per plant,100-seed weight, and seed yield in three or more different environments. Nine markers were co-associated with two or more different traits. Many markers were located in or close to quantitative trait loci mapped by linkage analysis in previous reports. The SNPs and haplotypes identified in this study will help to further understand the genetic basis of soybean yield and its components. This information lays the foundation for high-yield molecular breeding of soybean.
     According to the results of fine mapping for QTLs underlying soybean yield-related traits in the candidate regions of major QTLs of soybean yield-related traits and the genome-wide association analysis, using the soybean genomic sequence information and bioinformatics tools, we screened a candidate gene GmGA3ox on chromosome7, which may be associated with soybean yield-related traits. The sequence polymorphism analysis of GmGA3ox in191soybean landraces identified a total of16SNPs and4Indels (with minor allele frequency of≥10%), and these loci consisted five distinct haplotype blocks. Candidate-gene association analysis showed that5SNP/Indels were associated with seed yield in three or more environments. Of which,2loci were associated with seed yield in all environments. In present study, one and two haplotypes were significantly associated with100-seed weight and seed yield in three or more environments, respectively. Of which, GmGA3ox_H4was identified in all environments significantly associated with100-seed weight, with contribution rate of9.67%, the difference of seed weight between the optimal haplotype and worst haplotype was about4g. GmGA3ox_H5was significantly associated with the seed yield in all environments with contribution rate of20.19%. The yields of the optimal haplotype of GmGA3ox_H5were more than1fold to the worst haplotype. Sequence analysis suggested that GmGA3ox_H4and GmGA3ox_H5were located in the the3'non-coding region, and might be involved in mRNA post-transcriptional regulation. This will lead to a series of changes in metabolic pathways of GA, and results in differences in seed weight and seed yield within the studied population.
     Based on MLM, genome-wide association analysis was conducted to detect the genetic polymorphisms for chlorophyll content (CCI), chlorophyll fluorescence parameters (JIP-test parameter) and the photosynthetic rate (PN).In present study,123SNPs and22haplotypes were detected significantly associated with photosynthesis-related traits. Of which,47SNPs and11haplotypes were associated with CCI,30SNPs and8haplotypes were associated with Fv/Fm,33SNPs and5haplotypes were associated with ABS/RC,25SNPs and5haplotypes were associated with ETo/TRo,20SNPs and7haplotypes were associated with PIABS.15SNPs and2haplotypes were associated with PN in2008. Among all detected loci,26SNPs were co-associated with two or more traits or parameters. Of which,4loci associated with the JIP-test parameters were identified co-associated with PN,12SNPs and2haplotypes were co-associated with soybean yield or yield components.8 SNPs and2haplotype were detected stably associated with two or more different traits or parameters in two years. Use of these stablely associated loci in soybean molecule breeding, will improve photosynthetic performance and increase soybean yield synchronously.
引文
Agrama H., Eizenga G., Yan W. (2007) Association mapping of yield and its components in rice cultivars. Molecular Breeding 19:341-356.
    Alpert K.B., Tanksley S.D. (1996) High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2:A major fruit weight quantitative trait locus in tomato. Proceedings of the National Academy of Sciences of the United States of America 93:15503-15507.
    Andersen J.R., Lubberstedt T. (2003) Functional markers in plants. Trends in Plant Science 8:554-560.
    Appleford N.E.J., Evans D.J., Lenton J.R., Gaskin P., Croker S.J., Devos K.M., Phillips A.L., Hedden P. (2006) Function and transcript analysis of gibberellin-biosynthetic enzymes in wheat. Planta 223:568-582.
    Ashikari M., Sakakibara H., Lin S., Yamamoto T., Takashi T., Nishimura A., Angeles E.R., Qian Q., Kitano H., Matsuoka M.(2005)Cytokinin oxidase regulates rice grain production. Science 309:741.
    Ashley D., Boerma H. (1989) Canopy photosynthesis and its association with seed yield in advanced generations of a soybean cross. Crop Science 29:1042.
    Atwell S., Huang Y, Vilhj"(?)lmsson B., Willems G, Horton M., Li Y, Meng D., Platt A., Tarone A., Hu T. (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465:627-631.
    Barrett J., Fry B., Maller J., Daly M. (2005) Haploview:analysis and visualization of LD and haplotype maps. Bioinformatics 21:263-265.
    Bel6 A., Zheng P., Luck S., Shen B., Meyer D., Li B., Tingey S., Rafalski A. (2008) Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Molecular Genetics and Genomics 279:1-10.
    Bernardo R. (2002) Breeding for quantitative traits in plants. Stemma Press. Woodbury, MN.
    Bernardo R. (2003) Parental selection, number of breeding populations, and size of each population in inbred development.Theoretical and Applied Genetics 107:1252-1256.
    Bernardo R., Yu J. (2007) Prospects for genomewide selection for quantitative traits in maize. Crop Science 47:1082-1090.
    Bernardo R.C. (2006) Usefulness of gene information in marker-assisted recurrent selection:A simulation appraisal. Crop Science 46:614-621
    Blanc G, Wolfe K.H. (2004) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16:1667-1678.
    Blott S., Kim J.-J., Moisio S., Schmidt-Kuntzel A., Cornet A., Berzi P., Cambisano N., Ford C., Grisart B., Johnson D., Karim L., Simon P., Snell R., Spelman R., Wong J., Vilkki J., Georges M., Farnir F., Coppieters W. (2003) Molecular Dissection of a Quantitative Trait Locus:A phenylalanine-to-tyrosine substitution in the transmembrane domain of the bovine growth hormone receptor is associated with a major effect on milk yield and composition. Genetics 163:253-266.
    Boerma H., Ashley D. (1988) Canopy photosynthesis and seed-fill duration in recently developed soybean cultivars and selected plant introductions. Crop Science 28:137.
    Bradbury P., Zhang Z., Kroon D., Casstevens T., Ramdoss Y., Buckler E. (2007) TASSEL:software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633.
    Butcher L.M., Meaburn E., Liu L., Fernandes C., Hill L., Al-Chalabi A., Plomin R., Schalkwyk L., Craig I.W. (2004) Genotyping pooled DNA on microarrays:a systematic genome screen of thousands of SNPs in large samples to detect QTL for complex traits. Behavior Genetics 34:549-555.
    Buttery B.R. (1972) Some differences between soybean cultivars observed by growth analysis. Canadian journal of plant science:Revue canadienne de phytotechnie 52:13.
    Caldwell K.S., Russell J., Langridge P., Powell W. (2006) Extreme population-dependent linkage disequilibrium detected in an inbreeding plant species, Hordeum vulgare. Genetics 172:557-567.
    Cardle L., Ramsay L., Milbourne D., Macaulay M., Marshall D., Waugh R. (2000) Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics 156:847-854.
    Cardon L., Bell J. (2001) Association study designs for complex diseases. Nature Reviews Genetics 2:91-99.
    Chen Y., Zein I., Brenner E.A., Andersen J.R., Landbeck M., Ouzunova M., L-1bberstedt T. (2010) Polymorphisms in monolignol biosynthetic genes are associated with biomass yield and agronomic traits in European maize (Zea mays L.). BMC Plant Biology 10:12.
    Cheng H., Yu O., Yu D. (2008) Polymorphisms of IFS1 and IFS2 gene are associated with isoflavone concentrations in soybean seeds. Plant Science 175:505-512.
    Ching A., Caldwell K., Jung M., Dolan M., Smith O., Tingey S., Morgante M., Rafalski A. (2002) SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genetics 3:19.
    Choi I., Hyten D., Matukumalli L., Song Q., Chaky J., Quigley C., Chase K., Lark K., Reiter R., Yoon M. (2007) A soybean transcript map:gene distribution, haplotype and single-nucleotide polymorphism analysis. Genetics 176:685-696.
    Christy A., Porter C. (1982) Canopy photosynthesis and yield in soybean. Photosynthesis 2:499-511.
    Clark A.G. (2003) Finding genes underlying risk of complex disease by linkage disequilibrium mapping. Current Opinion in Genetics & Development 13:296-302.
    Concibido, Concibido V., La V., Vallee B.L., McLaird, Mclaird P., Pineda, Pineda N., Meyer, Meyer J., Hummel, Hummel L., Yang, Yang J., Wu, Wu K., Delannay, Delannay X. (2003) Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultivars.Theoretical and Applied Genetics 106:575-582.
    Cregan P., Jarvik T., Bush A., Shoemaker R., Lark K., Kahler A., Kaya N., VanToai T., Lohnes D., Chung J. (1999) An integrated genetic linkage map of the soybean genome. Crop Science: 1464-1490.
    Csanadi G, Vollmann J., Stift G, Lelley T. (2001) Seed quality QTL identified in a molecular map of early maturing soybean. Theoretical and Applied Genetics 103:912-919.
    Csanadi G, Vollmann J., Stift G, Lelley T. (2001) Seed quality QTL identified in a molecular map of early maturing soybean. Theoretical and Applied Genetics 103:912-919.
    Cui S., He X., Fu S., Meng Q., Gai J., Yu D. (2008) Genetic dissection of the relationship of apparent biological yield and apparent harvest index with seed yield and yield related traits in soybean. Australian Journal of Agricultural Research 59:86-93.
    Daly M., Rioux J., Schaffner S.,Hudson T., Lander E. (2001) High-resolution haplotype structure in the human genome. Nature genetics 29:229-232
    Davies P.J. (1995) Plant hormones:physiology, biochemistry and molecular biology Kluwer Academic Publishers.
    Davies P.J. (2010) The plant hormones:their nature, occurrence, and functions. Plant hormones:1-15.
    Devlin B., Roeder K. (1999) Genomic control for association studies. Biometrics 55:997-1004.
    Doebley J. (1997) The evolution of apical dominance in maize. Nature 386:485.
    Ehrenreich I., Hanzawa Y, Chou L., Roe J., Kover P., Purugganan M. (2009) Candidate gene association mapping of arabidopsis flowering time. Genetics.109.105189.
    El-Assal S.E.D., Alonso-Blanco C., Peeters A.J.M., Raz V., Koornneef M. (2001) A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nature Genetics 29:435-440.
    Ersoz E., Yu J., Buckler E. (2007) Applications of linkage disequilibrium and association mapping in crop plants. Genomics-assisted crop improvement:97-119.
    Evanno G., Regnaut S., Goudet J. (2005) Detecting the number of clusters of individuals using the software STRUCTURE:a simulation study. Molecular Ecology 14:2611-2620.
    Falush D., Stephens M., Pritchard J.K. (2003) Inference of population structure using multilocus genotype data:linked loci and correlated allele frequencies. Genetics 164:1567-1587.
    Fehr W., Caviness C.E. (1977) Stages of soybean development Iowa State University of Science and Technology. Agricultural and Home Economics Experiment Station. Ames, IA, USA.
    Flint-Garcia S., Thomsberry J., ES B.I. (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357-374.
    Flint-Garcia S.A. (2005) Maize association population:a high-resolution platform for quantitative trait locus dissection. Plant Journal 44:1054.
    Frary A., Nesbitt T.C., Frary A., Grandillo S., Knaap E.v.d., Cong B., Liu J., Meller J., Elber R, Alpert K.B., Tanksley S.D.(2000)fw2.2:A quantitative trait locus key to the evolution of tomato fruit size. Science 289:85-88.
    Fulton T., Beck-Bunn T., Emmatty D., Eshed Y., Lopez J., Petiard V., Uhlig J., Zamir D., Tanksley S. (1997) QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTL found in other wild species. Theoretical and Applied Genetics 95:881-894.
    Funatsuki H., Kawaguchi K., Matsuba S., Sato Y., Ishimoto M. (2005) Mapping of QTL associated with chilling tolerance during reproductive growth in soybean. Theoretical and Applied Genetics 111:851-861.
    Garner C., Slatkin M. (2003) On selecting markers for association studies:patterns of linkage disequilibrium between two and three diallelic loci. Genetic Epidemiology 24:57-67.
    Garris A.J., McCouch S.R., Kresovich S.(2003)Population structure and its effect on haplotype diversity and linkage disequilibrium surrounding the xa5 locus of rice (Oryza sativa L.). Genetics 165:759-769.
    Glazier A.M., Nadeau J.H., Aitman T.J. (2002) Finding genes that underlie complex traits. Science 298:2345-2349.
    Goldstein B.J. (2001) Protein-tyrosine phosphatase 1B (PTP1B):a novel therapeutic target for type 2 diabetes mellitus, obesity and related states of insulin resistance. Current Drug Targets-Immune, Endocrine; Metabolic Disorders 1:265-275.
    Goldstein D.B., Ahmadi K.R., Weale M.E., Wood N.W. (2003) Genome scans and candidate gene approaches in the study of common diseases and variable drug responses. Trends in Genetics 19:615-622.
    Grodzicker T., Anderson C., Sharp P.A., Sambrook J. (1974) Conditional lethal mutants of adenovirus 2-Simian Virus 40 hybrids I. host range mutants of Ad2+ND1. J. Virol.13:1237-1244.
    Gupta P., Rustgi S., Kulwal P. (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Molecular Biology 57:461-485.
    Gupta P.K., Varshney R.K., Prasad. M. (2002) Molecular markers:principles and methodology. In:Jain S M. Molecular Techniques in Crop Improvement. Kluwer Academic Publishers:9-54.
    Guzman P.S., Diers B.W., Neece D.J., St. Martin S.K., LeRoy A.R., Grau C.R., Hughes T.J., Nelson R.L. (2007) QTL associated with yield in three backcross-derived populations of soybean. Crop Science 47:111-122.
    Halldorsson B.V., Bafna V., Lippert R., Schwartz R., De La Vega F.M., Clark A.G., Istrail S. (2004) Optimal haplotype block-free selection of tagging SNPs for genome-wide association studies. Genome Research 14:1633-1640.
    Hardy O., Vekemans X. (2002) SPAGeDi:a versatile computer program to analyse spatial genetic structure at the individual or population levels. Molecular Ecology Notes 2:618-620.
    Harjes C.E., Rocheford T.R., Bai L., Brutnell T.P., Kandianis C.B., Sowinski S.G, Stapleton A.E., Vallabhaneni R., Williams M., Wurtzel E.T., Yan J., Buckler E.S.(2008)Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319:330-333.
    Harrison S., Boerma H., Ashley D. (1981) Heritability of canopy-apparent photosynthesis and its relationship to seed yield in soybeans. Crop Science 21:222.
    Hermans C., Smeyers M., Rodriguez R., Eyletters M., Strasser R., Delhaye J. (2003) Quality assessment of urban trees:a comparative study of physiological characterisation, airborne imaging and on site fluorescence monitoring by the OJIP-test. Journal of plant physiology 160:81-90.
    Hirschhom J., Daly M. (2005) Genome-wide association studies for common diseases and complex traits. Nature Reviews Genetics 6:95-108.
    Hoeck J.A., Fehr W.R., Shoemaker R.C., Welke GA., Johnson S.L., Cianzio S.R. (2003) Molecular marker analysis of seed size in soybean. Crop Science 43:68-74.
    Holland J.B., Nyquist W.E., Cervantes-Mart--anez C.T. (2003) Estimating and interpreting heritability for plant breeding:An update. Plant breeding reviews 22:9-112.
    Huang X., Wei X., Sang T.,Zhao Q., Feng Q., Zhao Y, Li C., Zhu C., Lu T., Zhang Z., Li M., Fan D., Guo Y, Wang A., Wang L., Deng L., Li W., Lu Y, Weng Q., Liu K., Huang T., Zhou T., Jing Y, Li W, Lin Z., Buckler E.S., Qian Q., Zhang Q.-F., Li J., Han B. (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genetics 42:961-967.
    Hwang T.Y., Sayama T., Takahashi M., Takada Y, Nakamoto Y, Funatsuki H., Hisano H., Sasamoto S., Sato S., Tabata S. (2009) High-density integrated linkage map based on SSR markers in soybean. DNA Research:213-225.
    Hyten D., Choi I., Song Q., Specht J., Carter Jr T., Shoemaker R., Hwang E., Matukumalli L., Cregan P. (2010) A high density integrated genetic linkage map of soybean and the development of a 1536 universal soy linkage panel for quantitative trait locus mapping Crop Science 50:960-968.
    Hyten D., Song Q., Zhu Y, Choi I., Nelson R., Costa J., Specht J., Shoemaker R., Cregan P. (2006) Impacts of genetic bottlenecks on soybean genome diversity. Proceedings of the National Academy of Sciences 103:16666.
    Hyten D.L., Choi I.-Y., Song Q., Shoemaker R.C., Nelson R.L., Costa J.M., Specht J.E., Cregan P.B. (2007) Highly variable patterns of linkage disequilibrium in multiple soybean populations. Genetics 175:1937-1944.
    Hyten D.L., Pantalone V.R., Sams C.E., Saxton A.M., Landau-Ellis D., Stefaniak T.R., Schmidt M.E. (2004) Seed quality QTL in a prominent soybean population. Theoretical and Applied Genetics 109:552-561.
    Itoh H., Ueguchi-Tanaka., Kawaide H., Chen X., Kamiya Y, Matsuoka M. (1999) The gene encoding tobacco gibberellin 3 hydroxylase is expressed at the site of GA action during stem elongation and flower organ development. The Plant Journal 20:15-24.
    Jennings H.S. (1917) The numerical results of diverse systems of breeding, with respect to two pairs of characters, linked or independent, with special relation to the effects of linkage. Genetics 2:97.
    Jiang C., Gao H., Zou Q. (2003) Changes of donor and acceptor side in photosystem 2 complex induced by iron deficiency in attached soybean and maize leaves. photosynthetica 41:267-271.
    Johnson R. (2004) Marker-Assisted Selection. Plant Breeding Review 24:293-309.
    Jun T.-H., Van K., Kim M., Lee S.-H., Walker D. (2008) Association analysis using SSR markers to find QTL for seed protein content in soybean. Euphytica 162:179-191.
    Jung M., Ching A., Bhattramakki D., Dolan M., Tingey S., Morgante M., Rafalski A. (2004) Linkage disequilibrium and sequence diversity in a 500-kbp region around the adhl locus in elite maize germplasm. Theoretical andApplied Genetics 109:681-689.
    Kabelka E., Diers B., Fehr W., LeRoy A., Baianu I., You T., Neece D., Nelson R. (2004) Putative alleles for increased yield from soybean plant introductions. Crop Science 44:784-791.
    Karmakar P., Bhatnagar P. (1996) Genetic improvement of soybean varieties released in India from 1969 to 1993. Euphytica 90:95-103.
    Kassem M., Shultz J., Meksem K., Cho Y, Wood A., Iqbal M., Lightfoot D. (2006) An updated 'Essex' by 'Forrest' linkage map and first composite interval map of QTL underlying six soybean traits. Theoretical and Applied Genetics 113:1015-1026.
    Kautsky H., Hirsch A. (1931) Neue versuche zur kohlens ureassimilation. Naturwissenschaften 19:964-964.
    Keim P., Diers B.W., Olson T.C., Shoemaker R.C. (1990) RFLP mapping in soybean:association between marker loci and variation in quantitative traits. Genetics 126:735-742.
    Kim S., Plagnol V., Hu T.T., Toomajian C., Clark R.M., Ossowski S., Ecker J.R., Weigel D., Nordborg M. (2007) Recombination and linkage disequilibrium in Arabidopsis thaliana. Nature Genetics 39:1151-1155.
    Kinshita T. (1993) Report of the committee on gene symbolization, nomenclature and linkage group. Rice Genet Newl 10:7-39.
    Knowler W., Williams R, Pettitt D., Steinberg A. (1988) Gm3; 5,13,14 and type 2 diabetes mellitus:an association in American Indians with genetic admixture. American Journal of Human Genetics 43:520-526.
    Konishi S., Izawa T., Lin S.Y., Ebana K., Fukuta Y, Sasaki T., Yano M. (2006) An SNP caused loss of seed shattering during rice domestication. Science 312:1392-1398.
    Kraakman A., Martinez F., Mussiraliev B., van Eeuwijk F., Niks R. (2006) Linkage disequilibrium mapping of morphological, resistance, and other agronomically relevant traits in modern spring barley cultivars. Molecular Breeding 17:41-58.
    Kraakman A.T.W., Niks R.E., Van den Berg P.M.M.M., Stam P., Van Eeuwijk F.A. (2004) Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics 168:435-446.
    Krause G, Weis E. (1991) Chlorophyll fluorescence and photosynthesis:the basics. Annual Review of Plant Biology 42:313-349.
    Lubberstedt T., Zein I., Andersen J., Wenzel G, Krutzfeldt B., Eder J., Ouzunova M., Chun S. (2005) Development and application of functional markers in maize. Euphytica 146:101-108.
    Lai J., Li R., Xu X., Jin W., Xu M., Zhao H., Xiang Z., Song W., Ying K., Zhang M. (2010) Genome-wide patterns of genetic variation among elite maize inbred lines. Nature Genetics 42:1027-1030.
    Lam H., Xu X., Liu X., Chen W., Yang G., Wong F., Li M., He W., Qin N., Wang B.(2010)Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nature Genetics 42:1053-1059.
    Lark K., Orf J., Mansur L. (1994) Epistatic expression of quantitative trait loci (QTL) in soybean [Glycine max (L.) Merr.] determined by QTL association with RFLP alleles. Theoretical and Applied Genetics 88:486-489.
    Lee G., Wu X., Shannon J., Sleper D., Nguyen H. (2007) Soybean. Oilseeds:1-53.
    Lee S., Bailey M., Mian M., Carter Jr T., Ashley D., Hussey R., Parrott W., Boerma H. (1996a) Molecular markers associated with soybean plant height, lodging, and maturity across locations. Crop Science 36:728-734.
    Lee S., Park K., Lee H., Park E., Boerma H. (2001) Genetic mapping of QTL conditioning soybean sprout yield and quality. Theoretical and Applied Genetics 103:702-709.
    Lee S.H., Bailey M.A., Mian M.A.R., Shipe E.R., Ashley D.A., Parrott W.A., Hussey R.S., Boerma H.R. (1996b) Identification of quantitative trait loci for plant height, lodging, and maturity in a soybean population segregating for growth habit. Theoretical and Applied Genetics 92:516-523.
    Lewontin R.C. (1964) The interaction of selection and linkage. I. General considerations; heterotic models. Genetics 49:49.
    Li D., Pfeiffer T.W., Cornelius P.L.(2008a)Soybean QTL for yield and yield components associated with Glycine soja alleles. Crop Science 48:571-581.
    Li L., Paulo M.-J., Strahwald J., Liibeck J., Hofferbert H.-R., Tacke E., Junghans H., Wunder J., Draffehn A., van Eeuwijk F., Gebhardt C. (2008b) Natural DNA variation at candidate loci is associated with potato chip color, tuber starch content, yield and starch yield. Theoretical and Applied Genetics 116:1167-1181.
    Li Y., Guan R., Liu Z., Ma Y., Wang L., Li L., Lin F., Luan W., Chen P., Yan Z. (2008c) Genetic structure and diversity of cultivated soybean(Glycine max (L.) Merr.) landraces in China. Theoretical and Applied Genetics 117:857-871.
    Li Y, Li W., Zhang C., Yang L., Chang R., Gaut B., Qiu L. (2010) Genetic diversity in domesticated soybean (Glycine max) and its wild progenitor (Glycine soja) for simple sequence repeat and single nucleotide polymorphism loci. New Phytologist 188:242-253.
    Li X., W. Yan, Shen X.,Jackson A.,Moldenhauer K.,Yeater K.,McClung A.,Wu D. (2011). Mapping QTLs for improving grain yield using the USDA rice mini-core collection. Planta:1-15
    Lin S., Cianzio S., Shoemaker R. (1997) Mapping genetic loci for iron deficiency chlorosis in soybean. Molecular Breeding 3:219-229.
    Liu J., Van Eck J., Cong B., Tanksley S.D. (2002) A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proceedings of the National Academy of Sciences of the United States of America 99:13302-13306.
    Liu K., Muse S. (2005) PowerMarker:an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128.
    Lu Y, Yan J., Guimar es C, Taba S., Hao Z., Gao S., Chen S., Li J., Zhang S., Vivek B.(2009)Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theoretical and Applied Genetics 120:93-115.
    Lu Y, Zhang S., Shah T., Xie C., Hao Z., Li X., Farkhari M., Ribaut J., Cao M., Rong T. (2010) Joint linkage-linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize. Proceedings of the National Academy of Sciences 107:19585-19590.
    Luedders V.D. (1977) Genetic improvement in yield of soybeans. Crop Science 17:971-976.
    Mackay T.F.C. (2001) The genetic architechture of quantitative traits. Annual Review of Genetics 35:303-339.
    Mackill D. (2003) Applications of genomics to rice breeding. Int. Rice Res. Note 28:9-15.
    Malosetti M., van der Linden C.G., Vosman B., van Eeuwijk F.A. (2007) A mixed-model approach to association mapping using pedigree information with an illustration of resistance to phytophthora infestans in potato. Genetics 175:879-889.
    Mansur L., Lark K., Kross H., Oliveira A. (1993a) Interval mapping of quantitative trait loci for reproductive, morphological, and seed traits of soybean (.Glycine max (L). Merr.). Theoretical and Applied Genetics 86:907-913.
    Mansur L.M., Orf J., Lark K.G (1993b) Determining the linkage of quantitative trait loci to RFLP markers using extreme phenotypes of recombinant inbreds of soybean (Glycine max (L). Merr.). Theoretical and Applied Genetics 86:914-918.
    Mansur L.M., Orf J.H., Chase K., Jarvik T., Cregan P.B., Lark K.G (1996) Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Science 36:1327-1336.
    Mather K., Caicedo A., Polato N., Olsen K., McCouch S., Purugganan M. (2007) The extent of linkage disequilibrium in rice (Oryza sativa L.). Genetics 177:2223-2232.
    Maughan P.J., Maroof M.A.S., Buss GR. (1996) Molecular-marker analysis of seed-weight:genomic locations, gene action, and evidence for orthologous evolution among three legume species. Theoretical and Applied Genetics 93:574-579.
    Meuwissen T.H.E., Goddard M.E. (2004) Mapping multiple QTL using linkage disequilibrium and linkage analysis information and multitrait data. Genet. Sel. Evol.36:261-279.
    Mian M.A.R., Bailey M.A., Tamulonis J.P., Shipe E.R., Carter T.E., Parrott W.A., Ashley D.A., Hussey R.S., Boerma H.R. (1996) Molecular markers associated with seed weight in two soybean populations. Theoretical and Applied Genetics 93:1011-1016.
    Mignone F., Gissi C., Liuni S., Pesole G. (2002) Untranslated regions of mRNAs. Genome Biol 3:0004.1-0004.10.
    Mitchum M.G., Yamaguchi S., Hanada A., Kuwahara A., Yoshioka Y, Kato T., Tabata S., Kamiya Y, Sun T. (2006) Distinct and overlapping roles of two gibberellin 3 oxidases in Arabidopsis development. The Plant Journal 45:804-818.
    Mohan M., Nair S., Bhagwat A., Krishna T.G., Yano M., Bhatia C.R., Sasaki T.(1997)Genome mapping, molecular markers and marker-assisted selection in crop plants. Molecular Breeding 3:87-103.
    Morgante M., Salamini F. (2003) From plant genomics to breeding practice. Current Opinion in Biotechnology 14:214-219.
    Morrison M.J., Voldeng H.D., Cober E.R. (1999) Physiological changes from 58 years of genetic improvement of short-season soybean cultivars in Canada. Agronomy Journal 91:685-689.
    Mott R., Flint J. (2002) Simultaneous detection and fine mapping of quantitative trait loci in mice using heterogeneous stocks. Genetics 160:1609-1618.
    Murray M., Thompson W. (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research 8:4321-4326.
    Nei M., Tajima F., Tateno Y. (1983) Accuracy of estimated phylogenetic trees from molecular data. Journal of Molecular Evolution 19:153-170.
    Nordborg M., Hu T.T., Ishino Y, Jhaveri J., Toomajian C., Zheng H., Bakker E., Calabrese P., Gladstone J., Goyal R. (2005) The pattern of polymorphism in Arabidopsis thaliana. PLoS Biology 3:1289.
    Olsen K.M., Halldorsdottir S.S., Stinchcombe J.R., Weinig C., Schmitt J., Purugganan M.D. (2004) Linkage disequilibrium mapping of Arabidopsis CRY2 flowering time alleles. Genetics 167:1361-1369.
    Orf J.H., Chase K., Adler F.R., Mansur L.M., Lark K.G.(1999a)Genetics of soybean agronomic traits:II. interactions between yield quantitative trait loci in soybean. Crop Science 39:1652-1657.
    Orf J.H., Chase K., Jarvik T., Mansur L.M., Cregan P.B., Adler F.R., Lark K.G. (1999b) Genetics of soybean agronomic traits:Ⅰ. comparison of three related recombinant inbred populations. Crop Science 39:1642-1651.
    Ozga J.A., Yu J., Reinecke D.M., (2003) Pollination-, development-, and auxin-specific regulation of gibberellin 3-hydroxylase gene expression in pea fruit and seeds. Plant Physiology 131:1137-1146.
    Palaisa K.A., Morgante M., Williams M., Rafalski A. (2003) Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. Plant Cell 15:1795-1806.
    Palomeque L., Li-Jun L., Li W., Hedges B., Cober E., Rajcan I. (2009) QTL in mega-environments:Ⅰ. Universal and specific seed yield QTL detected in a population derived from a cross of high-yielding adapted to a high-yielding exotic soybean lines. Theoretical and Applied Genetics 119:417-427.
    Palomeque L., Liu L., Li W., Hedges B., Cober E., Smid M., Lukens L., Rajcan I. (2010) Validation of mega-environment universal and specific QTL associated with seed yield and agronomic traits in soybeans. Theoretical and Applied Genetics 120:997-1003.
    Paran I., Zamir D. (2003) Quantitative traits in plants:beyond the QTL. Trends in Genetics 19:303-306.
    Pathan M., Sleper D.A. (2008) Advances in soybean breeding. Genetics and genomics of soybean:113-133.
    Patterson N., Price A.L., Reich D. (2006) Population structure and eigenanalysis. PLoS Genet 2:e190.
    Powell W., Morgante M., Andre C., Hanafey M., Vogel J., Tingey S., Rafalski A. (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding 2:225-238.
    Price A., Patterson N., Plenge R., Weinblatt M., Shadick N., Reich D. (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics 38:904-909.
    Pritchard J., Stephens M., Donnelly P. (2000) Inference of population structure using multilocus genotype data. Genetics 155:945.
    Pritchard J.K., Rosenberg N.A. (1999)Use of unlinked genetic markers to detect population stratification in association studies. The American Journal of Human Genetics 65:220-228.
    Rafalski A., Morgante M. (2004) Corn and humans:recombination and linkage disequilibrium in two genomes of similar size. Trends in Genetics 20:103-111.
    Rafalski J. (2010) Association genetics in crop improvement. Current Opinion in Plant Biology 13:174-180.
    Remington D.L., Thornsberry J.M., Matsuoka Y., Wilson L.M., Whitt S.R., Doebley J., Kresovich S., Goodman M.M., Buckler E.S. (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proceedings of the National Academy of Sciences of the United States of America 98:11479-11484.
    Riefler M., Novak O., Strnad M., Schmulling T. (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. The Plant Cell Online 18:40.
    Risch N., Merikangas K. (1996) The future of genetic studies of complex human diseases. Science 273:1516-1517.
    Rostoks N., Ramsay L., MacKenzie K., Cardle L., Bhat P.R., Roose M.L., Svensson J.T., Stein N., Varshney R.K., Marshall D.F., Graner A., Close T.J., Waugh R. (2006) Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proceedings of the National Academy of Sciences 103:18656-18661.
    Sakamoto T, Morinaka Y., Ishiyama K., Kobayashi M., Itoh H., Kayano T., Iwahori S., Matsuoka M., Tanaka H. (2003) Genetic manipulation of gibberellin metabolism in transgenic rice. Nature biotechnology 21:909-913.
    Schlueter J., Dixon P., Granger C., Grant D., Clark L., Doyle J., Shoemaker R. (2004) Mining EST databases to resolve evolutionary events in major crop species. Genome 47:868-876.
    Schmutz J., Cannon S., Schlueter J., Ma J., Mitros T., Nelson W., Hyten D., Song Q., Thelen J., Cheng J. (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178-183.
    Semagn K., Bjornstad A., Ndjiondjop M. (2006) An overview of molecular marker methods for plants. African Journal of Biotechnology 5:2540-2568.
    Sharbel T.F., Haubold B., Mitchell-Olds T. (2000) Genetic isolation by distance in Arabidopsis thaliana: biogeography and postglacial colonization of Europe. Molecular Ecology 9:2109-2118.
    Shen R., Fan J., Campbell D., Chang W., Chen J., Doucet D., Yeakley J., Bibikova M., Wickham Garcia E., McBride C. (2005) High-throughput SNP genotyping on universal bead arrays. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 573:70-82.
    Simko I., Haynes K.G, Ewing E.E., Costanzo S., Christ B.J., Jones R.W. (2004) Mapping genes for resistance to Verticillium albo-atrum in tetraploid and diploid potato populations using haplotype association tests and genetic linkage analysis. Molecular Genetics and Genomics 271:522-531.
    Simko I., Haynes K.G, Jones R.W. (2006) Assessment of linkage disequilibrium in potato genome with single nucleotide polymorphism markers. Genetics 173:2237-2245.
    Smalley M.D., Fehr W.R., Cianzio S.R., Han F., Sebastian S.A., Streit L.G. (2004) Quantitative trait loci for soybean seed yield in elite and plant introduction germplasm. Crop Science 44:436-442.
    Song Q., Marek L., Shoemaker R., Lark K., Concibido V., Delannay X., Specht J.E., Cregan P. (2004) A new integrated genetic linkage map of the soybean. Theoretical and Applied Genetics 109:122-128.
    Specht J., Kumudini D. (1999) Soybean yield potential genetic and physiological perspective. Crop Science 39:1560.
    Specht J.E., Chase K., Macrander M., Graef GL., Chung J., Markwell J.P., Germann M., Orf J.H., Lark K.G (2001) Soybean response to water:A QTL analysis of drought tolerance. Crop Science 41:493-509.
    Srivastava A., Strasser R.J. (1996) Stress and stress management of land plants during a regular day. Journal of plant physiology 148:445-455.
    Stinchcombe J.R., Weinig C., Ungerer M., Olsen K.M., Mays C., Halldorsdottir S.S., Purugganan M.D., Schmitt J. (2004) A latitudinal cline in flowering time in Arabidopsis thaliana modulated by the flowering time gene FRIGIDA. Proceedings of the National Academy of Sciences of the United States of America 101:4712-4717.
    Stracke S., Haseneyer G., Veyrieras J.-B., Geiger H., Sauer S., Graner A., Piepho H.-P. (2009) Association mapping reveals gene action and interactions in the determination of flowering time in barley. Theoretical and Applied Genetics 118:259-273.
    Strasser B., Strasser R., Mathis P.(1995)Measuring fast fluorescence transients to address environmental questions:the JIP-test Kluwer Academic Publishers About CAB
    Strasser R. (1981) The grouping model of plant photosynthesis:heterogeneity of photosynthetic units in thylakoids. Photosynthesis Ⅲ. Structure and Molecular Organisation of the Photosynthetic Apparatus:727-737.
    Strasser R., Srivastava A., Tsimilli-Michael M.(2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. Probing photosynthesis:mechanisms, regulation and adaptation:445-483.
    Strasser R., Tsimilli-Michael M., Srivastava A. (2004) Analysis of the chlorophyll a fluorescence transient. Chlorophyll a fluorescence:a signature of photosynthesis:321-362.
    Stuber C.W., Polacco M., Senior M.L. (1999) Synergy of empirical breeding, marker-assisted selection, and genomics to increase crop yield potential. Crop Science 39:1571-1583.
    Subudhi P.K., Rosenow D.T., Nguyen H.T. (2000) Quantitative trait loci for the stay green trait in sorghum (Sorghum bicolor L. Moench):consistency across genetic backgrounds and environments. Theoretical and Applied Genetics 101:733-741.
    Sulpice R., Pyl E., Ishihara H., Trenkamp S., Steinfath M., Witucka-Wall H., Gibon Y, Usadel B., Poree F., Piques M. (2009) Starch as a major integrator in the regulation of plant growth. Proceedings of the National Academy of Sciences 106:10348.
    Sun J., Leakey A., Markelz C., Ort D. (2008) Stimulated photosynthesis alters sugar and amino-acid profiles, lowers osmotic potential and improves water status of soybean leaves under free-air CO2. American Society of Plant Biologists Annual Meeting Paper No P11003
    Swain S., Ross J., Reid J., Kamiya Y. (1995) Gibberellins and pea seed development. Planta 195:426-433.
    Tasma I.M., Lorenzen L.L., Green D.E., Shoemaker R.C.(2001)Mapping genetic loci for flowering time, maturity, and photoperiod insensitivity in soybean. Molecular Breeding 8:25-35.
    Tenaillon M.I., Sawkins M.C., Anderson L.K., Stack S.M., Doebley J., Gaut B.S. (2002) Patterns of diversity and recombination along chromosome 1 of maize (Zea mays ssp. mays L.). Genetics 162:1401-1413.
    Teng S., Qian Q., Zeng D., Kunihiro Y, Fujimoto K., Huang D., Zhu L. (2004) QTL analysis of leaf photosynthetic rate and related physiological traits in rice (Oryza sativa L.). Euphytica 135:1-7.
    Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. (1997) The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25:4876-4882.
    Thornsberry J.M., Goodman M.M., Doebley J., Kresovich S., Nielsen D., Buckler E.S. (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nature Genetics 28:286-289.
    Tian Z., Wang X., Lee R., Li Y., Specht J.E., Nelson R.L., McClean P.E., Qiu L., Ma J. (2010) Artificial selection for determinate growth habit in soybean. Proceedings of the National Academy of Sciences 107:8563.
    Tishkoff S.A., Verrelli B.C. (2003) Role of evolutionary history on haplotype block structure in the human genome:implications for disease mapping. Current Opinion in Genetics & Development 13:569-575.
    Tommasini L., Schnurbusch T, Fossati D., Mascher F., Keller B. (2007) Association mapping of stagonospora nodorum blotch resistance in modern european winter wheat varieties. Theoretical and Applied Genetics 115:697-708.
    Tran L.S.P., Mochida K. (2010) Functional genomics of soybean for improvement of productivity in adverse conditions. Functional & integrative genomics:1-16.
    van Heerden P., Strasser R., Krger G (2004) Reduction of dark chilling stress in N2-fixing soybean by nitrate as indicated by chlorophyll a fluorescence kinetics. Physiologia plantarum 121:239-249.
    van Heerden P., Tsimilli-Michael M., Krger G., Strasser R (2003) Dark chilling effects on soybean genotypes during vegetative development:parallel studies of CO2 assimilation, chlorophyll a fluorescence kinetics OJIP and nitrogen fixation. Physiologia plantarum 117:476-491.
    Van Inghelandt D., Melchinger A., Lebreton C., Stich B. (2010) Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theoretical and Applied Genetics 120:1289-1299.
    Varshney R.K., Graner A., Sorrells M.E. (2005) Genomics-assisted breeding for crop improvement. Trends in Plant Science 10:621-630.
    Vieira A.J.D., Oliveira D.A.d., Soares T.C.B., Schuster I., Piovesan N.D., Martinez C.A., Barros E.G.d., Moreira M.A. (2006) Use of the QTL approach to the study of soybean trait relationships in two populations of recombinant inbred lines at the F7 and F8 generations. Brazilian Journal of Plant Physiology 18:281-290.
    Voldeng H., Cober E., Hume D., Gillard C., Morrison M. (1997) Fifty-eight years of genetic improvement of short-season soybean cultivars in Canada. Crop Science 37:428-431.
    Wang D., Graef G.L., Procopiuk A.M., Diers B.W. (2004) Identification of putative QTL that underlie yield in interspecific soybean backcross populations.Theoretical and Applied Genetics 108:458-467.
    Wang D.G, Fan J.-B., Siao C.-J., Berno A., Young P., Sapolsky R., Ghandour G, Perkins N., Winchester E., Spencer J., Kruglyak L., Stein L., Hsie L., Topaloglou T., Hubbell E., Robinson E., Mittmann M., Morris M.S., Shen N., Kilburn D., Rioux J., Nusbaum C., Rozen S., Hudson T.J., Lipshutz R., Chee M., Lander E.S. (1998) Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the Human Genome. Science 280:1077-1082.
    Wang J., McClean P., Lee R., Goos R., Helms T.(2008 Association mapping of iron deficiency chlorosis loci in soybean (Glycine max L. Merr.) advanced breeding lines. Theoretical and Applied Genetics 116:777-787.
    Weber A., Clark R.M., Vaughn L., de Jesus S(?)nchez-Gonzalez J., Yu J., Yandell B.S., Bradbury P., Doebley J. (2007) Major regulatory genes in maize contribute to standing variation in teosinte (Zea mays ssp. parviglumis). Genetics 177:2349.
    Wilcox J.R. (2001) Sixty years of improvement in publicly developed elite soybean lines. Crop Science 41:1711-1716.
    Williams J.GK., Kubelik A.R., Livak K.J., Rafalski J.A., Tingey S.V. (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nuclutide. Acids Research. 18:6531-6535.
    Wilson L.M., Whitt S.R., Ibanez A.M., Rocheford T.R., Goodman M.M., Buckler E.S., IV. (2004) Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell 16:2719-2733.
    Wu R., Ma C.-X., Casella G. (2002) Joint linkage and linkage disequilibrium mapping of quantitative trait loci in natural populations. Genetics 160:779-792.
    Wu R., Zeng Z.B. (2001) Joint linkage and linkage disequilibrium mapping in natural populations. Genetics 157:899-909.
    Xu W. (2000) Molecular mapping of QTL conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). Genome 43:461.
    Xue W., Xing Y, Weng X., Zhao Y, Tang W., Wang L., Zhou H., Yu S., Xu C., Li X. (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature Genetics 40:761-767.
    Yamada Y, Nishida T., Ichihara S., Sawabe M., Fuku N., Nishigaki Y, Aoyagi Y, Tanaka M., Fujiwara Y, Yoshida H., Shinkai S., Satoh K., Kato K., Fujimaki T., Yokoi K., Oguri M., Yoshida T., Watanabe S., Nozawa Y, Hasegawa A., Kojima T., Han B.G., Ahn Y, Lee M., Shin D.J., Lee J.H., Jang Y (2011) Association of a polymorphism of BTN2A1 with myocardial infarction in East Asian populations. Atherosclerosis 215:145-152
    Yamaguchi S., Smith M.W., Brown R.GS., Kamiya Y., Sun T. (1998) Phytochrome regulation and differential expression of gibberellin 3-hydroxylase genes in germinating Arabidopsis seeds. Plant Cell 10:2115-2126.
    Yamanaka N., Nagamura Y, Tsubokura Y., Yamamoto K., Takahashi R., Kouchi H., Yano M., Sasaki T., Harada K. (2000) Quantitative trait locus analysis of flowering time in soybean using a RFLP linkage map. Breeding science 50:109-115
    Yamanaka N., Ninomiya S., Hoshi M., Tsubokura Y., Yano M., Nagamura Y, Sasaki T., Harada K. (2001) An informative linkage map of soybean reveals QTL for flowering time, leaflet morphology and regions of segregation distortion. DNA research 8:61-72.
    Yan J., Kandianis C.B., Harjes C.E., Bai L., Kim E.-H., Yang X., Skinner D.J., Fu Z., Mitchell S., Li Q., Fernandez M.GS., Zaharieva M., Babu R., Fu Y, Palacios N., Li J., DellaPenna D., Brutnell T., Buckler E.S., Warburton M.L., Rocheford T. (2010) Rare genetic variation at Zea mays crtRBl increases [beta]-carotene in maize grain. Nature Genetics 42:322-327.
    Yan J., Shah T., Warburton M., Buckler E., McMullen M., Crouch J. (2009a) Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PloS one 4:e8451.
    Yan W., Li Y, Agrama H., Luo D., Gao F., Lu X., Ren G (2009b) Association mapping of stigma and spikelet characteristics in rice (Oryza sativa L.). Molecular Breeding 24:277-292.
    Yang D.L., Jing R.L., Chang X.P., Li W. (2007) Quantitative trait loci mapping for chlorophyll fluorescence and associated traits in wheat (Triticum aestivum). Journal of Integrative Plant Biology 49:646-654.
    Yang X., Yan J., Shah T., Warburton M., Li Q., Li L., Gao Y., Chai Y, Fu Z., Zhou Y. (2010) Genetic analysis and characterization of a new maize association mapping panel for quantitative trait loci dissection. Theoretical and Applied Genetics 121:417-431.
    Yang Y, Zhang J., Hoh J., Matsuda F., Xu P., Lathrop M., Ott J. (2003) Efficiency of single-nucleotide polymorphism haplotype estimation from pooled DNA. Proceedings of the National Academy of Sciences of the United States of America 100:7225-7230.
    Yano M., Katayose Y, Ashikari M., Yamanouchi U., Monna L., Fuse T., Baba T., Yamamoto K., Umehara Y, Nagamura Y, Sasaki T. (2000) Hdl, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473-2484.
    Yao J., Wang L., Liu L., Zhao C., Zheng Y. (2009) Association mapping of agronomic traits on chromosome 2A of wheat. Genetica 137:67-75.
    Yin Z., Meng F., Song H., He X., Xu X., Yu D. (2010) Mapping quantitative trait loci associated with chlorophyll a fluorescence parameters in soybean (Glycine max (L.) Merr.). Planta 231:875-885.
    Yu J., Buckler E.S. (2006) Genetic association mapping and genome organization of maize. Current Opinion in Biotechnology 17:155-160.
    Yu J., Holland J B.., McMullen M.D., Buckler E.S. (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539-551.
    Yu J., Pressoir G, Briggs W.H., Vroh Bi I., Yamasaki M., Doebley J.F., McMullen M.D., Gaut B.S., Nielsen D.M., Holland J.B., Kresovich S., Buckler E.S. (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics 38:203-208.
    Yuan J., Njiti V.N., Meksem K., Iqbal M.J., Triwitayakorn K., Kassem M.A., Davis G.T., Schmidt M.E., Lightfoot D.A. (2002) Quantitative trait loci in two soybean recombinant inbred line populations segregating for yield and disease resistance. Crop Science 42:271-277.
    Zarkower D., Wickens M. (1988) A functionally redundant downstream sequence in SV40 late pre-mRNA is required for mRNA 3'-end formation and for assembly of a precleavage complex in vitro. Journal of Biological Chemistry 263:5780.
    Zhang W.K., Wang Y.J., Luo GZ., Zhang J.S., He C.Y., Wu X.L., Gai J.Y., Chen S.Y. (2004) QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers.Theoretical and Applied Genetics 108:1131-1139.
    Zhang Y, Jiang B., Zhu J., Liu J.S. (2011) Bayesian models for detecting epistatic interactions from genetic data. Ann Hum Genet 75:183-93.
    Zhao K., Aranzana M., Kim S., Lister C., Shindo C., Tang C., Toomajian C., Zheng H., Dean C., Marjoram P. (2007) An Arabidopsis example of association mapping in structured samples. PLoS Genet 3:e4.
    Zhao X.-Q., Xu J.-L., Zhao M., Lafitte R., Zhu L.-H., Fu B.-Y, Gao Y.-M., Li Z.-K. (2008) QTL affecting morph-physiological traits related to drought tolerance detected in overlapping introgression lines of rice (Oryza sativa L.). Plant Science 174:618-625.
    Zhu C., Gore M., Buckler E.S., Yu J. (2008) Status and prospects of association mapping in plants. The Plant Genome 1:5-20.
    Zhu Y.L., Song Q.J., Hyten D.L., Van Tassell C.P., Matukumalli L.K., Grimm D.R., Hyatt S.M., Fickus E.W., Young N.D., Cregan P.B. (2003) Single-nucleotide polymorphisms in soybean. Genetics 163:1123-1134.
    曹卫东,贾继增,金继运.(2004)不同供氮水平下小麦苗期叶绿素含量的QTL及互作研究.植物营养与肥料学报10:473-478.
    陈庆山,张忠臣,刘春燕,辛大伟,单大鹏,邱红梅,单彩云.(2007)大豆主要农艺性状的QTL分析.中国农业科学40:41-47.
    崔世友,喻德跃.(2007)大豆光合性状QTL的初步定位.大豆科学26:6-10.
    崔章林.(1998)中国大豆育成品种与及其系谱分析(1923-1995)中国农业出版社.
    戴冰冰卢.,王家敏,梅文瀚,王楚,钱关祥.(2003) PI3Y γ mRNA3非翻译区可能存在基因表达负调控区.中国生物化学与分子生物学报05:630-635.
    杜维广,张桂茹.(1999)大豆光合作用与产量关系的研究.大豆科学18:154-159.
    郝乃斌,杜维广.(1989)高光效大豆光合特性的研究.大豆科学8:283-287.
    李鹏民,高辉远,Strasser RJ.(2005)快速叶绿素荧光诱导动力学分析在光合作用研究中的应用.植物生理与分子生物学学报31:559-566.
    李一丹,齐东来,高继国.(2005)大豆QTL研究进展.东北农业大学学报36:95-98.
    梁燕,张坤普,赵亮,梁雪,张雯婷,孙晓琳,孟庆伟,田纪春,赵世杰.(2010)小麦苗期光合作用及其相关性状的QTL分析.作物学报36:267-275.
    马育华,盖钧镒.(1979)江淮下游地区大豆地方品种的初步研究.作物学报4:1-11.
    沈金雄,易斌,傅廷栋,杨光圣.(2003)植物数量性状基因定位研究概述.植物学通报20:257-263.
    宋启建,盖钧镒.(1996)长江中游夏大豆地方品种品质及产量等性状的典型相关与通径分析.大豆科学15:11-16.
    屠奇超.(2008)稻瘟病菌3端非翻译区和水稻胚乳基因的生物信息学分析.浙江大学.硕士学位论文.
    王荣焕,王天宇,黎裕.(2007a)关联分析在作物种质资源分子评价中的应用.植物遗传资源学报8:366-372.
    王荣焕,王天宇,黎裕.(2007b)植物基因组中的连锁不平衡.遗传29:1317-1323.
    文自翔,赵团结,郑永战,刘顺湖,王春娥,王芳,盖钧镒.(2008)中国栽培和野生大豆农艺品质性状与SSR标记的关联分析Ⅰ.群体结构及关联标记.作物学报34:1169-1178.
    吴晓雷,王永军.(2001)大豆重要农艺性状的QTL分析.遗传学报28:947-955.
    杨小红,严建兵,郑艳萍,余建明,李建生.(2007)植物数量性状关联分析研究进展.作物学报33:523-530.
    殷毓芬,张存良.(1995)冬小麦不同品种叶片光合速率与气孔导度等性状之间关系的研究.作物学报21:561-567.
    印志同.(2009)大豆光合相关性状QTL及Rubisco活化酶基因eQTL分析.南京农业大学.博士学位论文.
    张丹.(2010)大豆耐低磷相关基因GmAPt的图位克隆、关联分析及功能标记的开发.南京农业大学.博士学位论文.
    张军.(2008)我国大豆育成品种的遗传多样性,农艺性状QTL关联定位及优异变异在育种系谱内的追踪.南京农业大学.博士学位论文.
    张军,赵团结,盖钧镒.(2008)大豆育成品种农艺性状QTL与SSR标记的关联分析.作物学报34:2059-2069.
    张淑珍,杨庆凯.(2000)中美半矮秆大豆杂交早期世代农艺性状遗传变异研究.大豆科学19:320-325.
    张贤泽,马占峰,赵淑文,庞士铨.(1986)大豆不同品种光合速率与产量关系的研究.作物学报12:44-47.
    郑宝香.(2008)大豆表观光合作用遗传及其与产量关系的研究,东北农业大学.硕士学位论文.
    周蓉,陈海峰,王贤智,张晓娟,单志慧,吴学军,蔡淑平,邱德珍,周新安,吴江生.(2009)大豆产量和产量构成因子及倒伏性的QTL分析.作物学报35:821-830.
    朱保葛,柏惠侠.(2000)大豆叶片净光合速率,转化酶活性与籽粒产量的关系.大豆科学19:346-350.
    邹冬生,郑丕尧.(1990)大豆叶片光合,蒸腾等理生特性的品种间比较研究.大豆科学9:25-32.
    左示敏.(2006)水稻抗纹枯病数量基因qSB-11的精细定位、效应研究及其侯选基因分析.扬州大学.博士学位论文.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.