酶促合成半乳糖配体修饰脂质体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脂质体是一种由磷脂双分子层构成的具有水相内核的封闭囊泡。脂质体具有良好的生理相容性,可赋予药物良好的靶向性能,改变药物分布规律,提高药物的疗效和治疗指数,是抗肿瘤药物的理想传输载体。通过表面修饰可以改变脂质体的性质和生物学行为:在脂质体表面修饰特异性的配基(如抗体、多肽、叶酸、糖基),能使脂质体具有主动靶向的特性。
     受体介导系统(receptor-mediated endocytosis systems, RME systems)是指针对肝细胞膜上的不同受体,对药物或载体进行修饰,利用配体与肝细胞受体的高特异性,高选择性和高亲和性,将药物导向到肝细胞内发挥药理作用的给药系统。去唾液酸糖蛋白受体(asialoglycoprotein receptor, ASGPR)是肝细胞膜上表达丰富的一种内吞性受体,存在于肝脏实质细胞朝向窦状隙一侧的细胞膜上。哺乳动物肝细胞表面特异存在的ASGPR,能专一识别末端带有半乳糖残基或N-乙酰半乳糖胺基的糖链,并能与之特异性结合,通过肝细胞内吞作用,可将其配体运送至溶酶体内进行降解。利用ASGPR能选择性吞噬异源性复合物的特性,以该受体为靶点,可将药物特异性导入肝细胞治疗乙型肝炎和高血脂等疾病,或直接导入肝癌细胞治疗原发性肝癌。
     甘草次酸(glycyrrhetinic acid, GA)是甘草酸的苷元,口服后经水解或β-葡萄糖醛酸酶分解而成。甘草次酸的溶解度极小,口服几乎不吸收,普通注射剂的生物利用度低。已知甘草次酸具有明显的抗炎、抗病毒、抗肿瘤和防癌作用,临床上常用来治疗慢性肝炎及肝癌等。此外,研究还发现GA有提高内耳听力抗缺氧、抗乙酰胆碱脂酶、抗心律失常的作用,并具有抗HIV活性。同时在肝脏病的应用研究中也取得了突破,GA的保肝及抑制肝癌的基本机理是通过对肝细胞的吸附能力对抗肝毒性化合物。但是,该类药物长期服用可引起类醛固酮增多症,其特征是钠潴留、钾排泄增多,从而导致水肿、高血压、四肢瘫痪和低血钾症等。为了降低上述毒副作用以及改善甘草次酸的溶解性、吸收性等,本实验将其制备成脂质体,可以增加其水溶性,并使其具有一定的靶向性。
     本课题选择中药抗癌有效成分甘草次酸为模型药物,以半乳糖作为靶向头基,制备了ASGPR介导的主动靶向脂质体。通过配体与肝脏表面去唾液酸糖蛋白受体的相互作用,可介导脂质体靶向至肝癌细胞,实现对肝癌细胞的主动靶向。
     首先用酶促合成法合成了脂质体肝靶向载体N-十八烷基-4-[(D-吡喃半乳糖基)氧基]-2,3,5,6-四羟基己酰胺,目前该酰化主要采用化学法,存在区域选择性差、反应步骤复杂、环境不友好等诸多问题。本论文探讨了酶促酰胺化反应的可行性,并对比研究了不同反应介质、不同脂肪酶催化反应的影响规律,建立了可用于高效、高区域选择性地合成N-十八烷基-4-[(D-吡喃半乳糖基)氧基]-2,3,5,6-四羟基己酰胺的生物催化反应体系。通过TLC、IR、HPLC-MS、1H-NMR、13C-NMR、DSC等初步鉴定为目标产物,符合试验要求。
     对甘草次酸进行了处方前研究,包括建立体外甘草次酸HPLC含量测定方法、油水分配系数和包封率测定方法。GA理化性质研究表明,GA在水中难溶,溶解度仅约6.32μg/mLo其在正辛醇中易溶,脂溶性强。通过对脂质体制备方法筛选,以包封率和性状特征为指标,最终确定采用乙醇注入法制备脂质体,并通过单因素优选和正交试验,优选最佳处方。结果表明,甘草次酸的lgP值在4.69左右,是一种脂溶性极强的化合物,适合制备脂质体,采用葡聚糖凝胶法测定脂质体的包封率,游离药物与含药脂质体分离效果好,柱回收率满足要求,且简单快速。最终确定GA肝靶向脂质体的处方如下:固定N-十八烷基-4-[(D-吡喃半乳糖基)氧基]-2,3,5,6-四羟基己酰胺的比例为混合类脂的10%(摩尔比),磷脂、胆固醇、十八胺、GA以摩尔比7:5:1:2,分散介质为pH 7.4磷酸盐缓冲液(PBS) (33.23 mmol/L),制成10 mL。乙醇注入法避免使用有毒的有机溶剂,产品性能稳定,包封率>80%,粒径大小适中并符合正态分布。
     对甘草次酸肝靶向脂质体的理化性质进行系统考察,主要包括粒径、形态学、Zeta电位、体外释放度、包封率测定、稳定性考察及乙醇残留量测定等。结果表明,甘草次酸肝靶向脂质体外观呈半透明略带乳光的混悬液,色泽均匀,流动性好。通过透射电镜观察,脂质体微粒大小均匀,圆整,分散性好。脂质体样品的粒径分布范围较窄,平均粒径195 nm,呈单峰分布;用凝胶柱分离法测定包封率,测定结果在80%以上;氧化指数低,化学稳定性考察结果表明氧化程度小;放样稳定性结果表明,NOH-GA-LP在(0-4)℃条件下放置3个月仍能保持稳定;稀释稳定性表明,将其按临床用法稀释,可以保持稳定,没有药物的渗漏和沉淀。体外释放试验结果表明,具有明显的缓释作用,体外释放曲线符合Higuchi方程,乙醇残留量测定结果小于0.5%。
     进一步观察甘草次酸肝靶向脂质体的肝靶向特性,分别采用SD大鼠进行药物动力学试验和昆明种小鼠进行组织分布试验。在建立血浆和组织中药物测定方法的基础上,按一定的时间间隔目眦静脉采血,处理样品进行HPLC分析。药动学数据如下:GA溶液、GA-LP和NOH-GA-LP的t1/2分别为3.91、46.49和50.18 h;AUC(o_24)分别为1.95、12.85和15.41μg·h/mL:MRT(o-24)分别为1.75、8.18和8.11 h。GA-LP及NOH-GA-LP的平均滞留时间(MRT)分别为GA溶液的4.7及4.6倍,表明脂质体较药物溶液有明显的缓释效果。在动物体内分布研究中,以甘草次酸溶液为对照测定了脂质体经小鼠尾静脉注射后,不同时间点药物的体内分布情况。GA-LP及NOH-GA-LP对肝脏的相对靶向效率分别为甘草次酸对照溶液的2.4及4.83倍,表明半乳糖配体的引入提高了脂质体对肝脏的靶向性。
     体外药效学评价采用MTT法观察不同比例配体的脂质体对HepG2细胞的抑制作用,结果显示,细胞生长显著受抑,50μmol/L时抑制率达96%,抑制率与GA浓度呈正相关,不同比例配体的脂质体对HepG2细胞的抑制作用有显著性差异(P<0.01),含10%配体的脂质体对HepG2细胞的抑制作用最强,表明半乳糖化脂质体可以有效抑制肝癌细胞HepG2细胞生长。
     综上所述,本课题采用了酶促法进行半乳糖的修饰,生成了一个能够接载在脂质体表面的肝靶向载体。以包封率作为指标,用乙醇注入法制备了符合药典要求的、具有主动靶向作用的甘草次酸肝靶向脂质体,制备工艺稳定,粒径、包封率和渗漏率等指标皆符合要求。建立了定量测定药物浓度的HPLC法以及体内生物样品测定的HPLC法。对比研究了GA-LP与NOH-GA-LP体外释药规律,进而研究了大鼠体内药动学和小鼠体内分布规律,并对HepG2细胞的抑制作用进行了研究。通过这些研究,探讨了酶促酰化反应生成肝靶向载体的可行性,为探讨酶促修饰脂质体给药系统奠定了理论与实践基础。同时,该研究丰富了脂质体纳米粒给药系统的研究内容,该研究不仅具有较高的学术参考和借鉴,而且实验结果证实该设想具有一定的可行性,为癌症的治疗提供新思路和新手段。
Liposomes are composed of phospholipid bilayer structures that encapsulate an aqueous interior. Liposomes are promising and effective vector in tumor treatment. Liposomal antineoplastic agents are characterized by targeting tumor and controlled-release, and thus they can increase therapeutic index, improve clinical effect and reduce toxicity. Liposome properties and biological behaviors can be controlled by surface modification. Attachments of specific ligands, such as monoclonal antibody, peptides, folate and galactosyl, make liposomes own active targeting effeet to specific cells or tissues.
     It was reported that asialoglycoprotein receptors (ASGPR) were expressed plentifully on the surface of hepatoma cells, and targeting could be accomplished through introduction of galactose residues which can bind specifically to the ASGPR on hepatoma cells, into drug carriers for the treatment of liver cancers. There are large amount of ASGPR in the mammalian hepatocytes, deasialylated proteins can be bound and internalized in the cell interior. Terminal P-D-galactose or N-acetylgalactosamine residues can be recognized by ASGPR and they were considered as specially targeting ligands for drug carriers.
     Glycyrrhetinic acid is an active principal aglycone of glycyrrhizin which has been shown to be hydrolyzed by glucuronidase in intestinal bacteria after oral administration. Glycyrrhetinic acid is a lipophilic drug with a very low solubility in water (<0.01 mg/ml), which may result in its poor bioavailability. After absorption in gut, glycyrrhetinic acid is eliminated fast in plasma. Glycyrrhetinic acid has been shown to possess several beneficial pharmacological activities, such as anti-inflammatory activity, direct and indirect antiviral activity, and an antihepatitis effect. Glycyrrhetinic acid may cause sodium retention and potassium loss, which are associated with hypertension while the adverse effects of glycyrrhetinic acid seem to be dose-dependent.
     In this research, glycyrrhetinic acid was chosen as the model drug and galactose as the targeting head. Asialoglycoprotein receptor-mediated active targeting liposomes were prepared. Liposomes could be targeted to liver through the interaction between ligand and receptor on the carcinoma cells of liver. The drug delivery system actively targeting to malignant liver cells is expected to be achieved.
     Lipid materials for preparing liver targeting liposomes, such as N-octadecyl-4-[(D-galactopyranosyl)oxy]-2,3,5,6-tetrahydroxy hexanamide (NOH), were enzymic synthesized. Most of the present strategies for the amidation were focused on chemical methods, which were hampered by the low regioselectivity, the tedious reaction procedures and the environmental concerns of the process. The possibility of the enzymatic regioselective acylation was explored in this dissertation. Also, the effects of some variables on the enzymatic reaction in different media and lipases were characterized. Additionally, novel enzymatic reaction systems which could be used for highly efficient and regioselective preparation of monoesters of N-octadecyl -4-[(D-galactopyranosyl)oxy]-2,3,5,6-tetrahydroxy hexanamide have been well established. The synthetic products were determined via TLC, IR, HPLC-MS,'H-NMR,13C-NMR, DSC etc.
     The pre-prescription of glycyrrhetinic acid was carried out via three steps: establishment of glycyrrhetinic acid by HPLC analysis method, oil-water distribution coefficient and determination method of encapsulation efficiency. The study of physico-chemical property showed that glycyrrhetinic acid was a poorly water-soluble drug. Its solubility in water was only about 6.32μg/mL. It was easy to dissolve in n-octanol and had a good liposolubility. After choosing several common methods of preparation of liposomes, such as film dispersion method and ethanol injection method, encapsulation efficiency and trait characteristics as indicators, liposomes were prepared by ethanol injection technique. The lgP value of glycyrrhetinic acid was about 4.69. Gglycyrrhetinic acid was high lipophilic compounds, which adapt to preparation of liposomes. The unencapsulated glycyrrhetinic acid and liposomes were separated by sephadex gel G-50, the encapsulation efficiency was detected by HPLC. Through a single factor and orthogonal design optimization, we achieve the best formulation. Ethanol injection technique is a good process to avoid using of toxic organic solvents, and the products have shown characteristic and good stability, fit encapsulation efficiency, appropriate particle size and be in accordance with the normal distribution.
     To observe the glycyrrhetinic acid liver targeting liposomes physical and chemical properties systematically, including particle size, morphology, Zeta potential, in vitro release rate, determination of encapsulation efficiency, stability reseach, determination of alcohol residue, and so on. The appearance of glycyrrhetinic acid liver targeting liposomes was slightly translucent opalescence, color uniformity, good mobility. The morphological examination of glycyrrhetinic acid liver targeting liposomes was performed using transmission electron microscopy. The liposomes were spherical or ellipsoidal shape. The particle size and Zeta potential of the liposomes were measured. the mean partical size of 195 nm, and Zeta potential of 38.7 mv. The unencapsulated glycyrrhetinic acid and liposomes were separated by sephadex gel G-50, the encapsulation efficiency was detected by HPLC. Entrapment efficiency is over 80%. Resarch on chemical stability show that oxidation index is low. Reseach on lofting stability results show that glycyrrhetinic acid liver targeting liposomes situated at (0-4)℃place for three months to maintain stability. The stability of glycyrrhetinic acid liver targeting liposomes was better. The release kinetics in vitro obeyed Higuchi equation. the glycyrrhetinic acid liver targeting liposomes have obviously sustained effect. Alcohol residue is under 0.5%.
     Furthermore, the pharmacokinetic behavior and distribution of glycyrrhetinic acid liver targeting liposomes were studied. Both the two formulations and free glycyrrhetinic acid were administered via tail vein. Glycyrrhetinic acid was separated from the plasma component by solvent extract. The plasma concentration and tissue distribution of the drug was determined by HPLC. Pharmacokinetic parameters of rats were as follow:t1/2 of GA, GA-LP and NOH-GA-LP were 3.91,46.49 and 50.18 h, respectively; AUC(0-24) of them were 1.95,12.85 and 15.41μg-h/mL, respectively; MRT(0-24) of them were 1.75,8.18 and 8.11 h, respectively. HPLC was employed to exmaine the tissue distribution of mice at diffetent times after liposomes were injected into their tail veins. Compared with glycyrrhetinic acid control solution, the relative targeting efficiencies of liver of glycyrrhetinic acid, GA-LP and NOH-GA-LP were 2.4 and 4.83 respectively, which indicated that the efficiency of liver targeting was improved when galactose ligand was introduced to liposomes.
     HepG2 cells were cultured in vitro, and the tumor cell inhibition test was conducted with MTT assay. The result showed that 10 %NOH-GA-LP was significantly more suppressive than the 5%NOH-GA-LP. There was significantly different between the 5%NOH-GA-LP and 10%NOH-GA-LP with MTT assay. HepG2 cells were suppressed when galactose ligand was introduced to liposomes.
     In conclusion, glycyrrhetinic acid active targeting liposomes were successfully prepared by using ethanol injection method and the method is repeatable with satisfactory results. Physical and chemical stability, particle size, encapsulation efficiency and the leakage rate of the products meet the requirements and so on. Glycyrrhetinic acid in NOH-GA-LP and in biological material was detemrination by HPLC. A good theoretical and practical foundation was established for the exploration of the liposomes' dosage formula, characteristics and work mechanism in this research, which not only enlarged research field of liposomes but also brought new ideas and new methods to treat cancer. Further more, this research has potential value in clinic practise.
引文
[1]邓英杰.脂质体技术[M].人民卫生出版社,2007,3.
    [2]平其能.现代药剂学[M].中国医药科技出版社,2001,588-623.
    [3]Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids [J]. J Mol Biol,1965,13(1):238-252.
    [4]Haran G, Cohen R, Bar LK, et al. Transmembrane Ammonium-Sulfate Gradients in Liposomes Produce Efficient and Stable Entrapment of Amphipathic Weak Bases [J]. Biochimica Et Biophysica Acta,1993,1151(2):201-215.
    [5]Boman NL, Masin D, Mayer LD, et al. Liposomal Vincristine Which Exhibits Increased Drug Retention and Increased Circulation Longevity Cures Mice Bearing P388
    Tumors [J]. Cancer Res,1994,54(11):2830-2833.
    [6]Wagner A, Vorauer-Uhl K, Kreismayr G, et al. The crossflow injection technique-an improvement of the ethanol injection method [J]. Journal of Liposome Research,2002, 12(3):259-270.
    [7]Hwang SH, Maitani Y, Qi XR, et al. Remote loading of diclofenac, insulin and fluorescein isothiocyanate labeled insulin into liposomes by pH and acetate gradient methods [J]. Int J Pharm,1999,179(1):85-95.
    [8]Szoka F, Olson F, Heath T, et al. Preparation of unilamellar liposomes of intermediate size(0.1-0.2 μm) by a combination of reverse phase evaporation and extrusion through polycarbonate membranes [J]. BBA Biomembranes,1980,661:559-571.
    [9]Mayer L, Bally M, Cullis P. Uptake of adriamycin into large unilamellar vesicles in response to a pH gradient [J]. Biochim Biophys Acta,1986,857(1):123-126.
    [10]Woodle M.C. Sterically stabilized liposome therapeutics [J]. Adv. Drug Deliv. Rev. 1995,16:249-265.
    [11]Assil KK, Lane J, Weinreb RN. Sustained release of the antimetabolite 5-fluorouridine-5'-monophosphate by multivesicular liposomes [J]. Ophthalmic Surg. 1988,19(6):408-13.
    [12]Manju R, Deependra S, Saraf S, et al. Nanocarriers:Promising Vehicle for Bioactive Drugs[J]. Biol Pharm Bull,2006,29(9):1790-1798.
    [13]Park JW, Hong KL, Kirpotin DB, et al. Anti-HER2 immunoliposomes:Enhanced efficacy attributable to targeted delivery [J]. Clin Cancer Res,2002,8(4):1172-1181.
    [14]Matsuo H, Wakasugi M, Takanaga H, et al. Possibility of the reversal of multidrug resistance and the avoidance of side effects by liposomes modified with MRK-16, a monoclonal antibody to P-glycoprotein [J]. Jcontrol Release,2001,77(1-2):77-86.
    [15]Pagnan G, Montaldo PC, Pastorino F, et al. GD2-mediated melanoma cell targeting and cytotoxicity of liposom-entrapped fenretinide[J].Int J Cancer,1999,81(2): 268-274.
    [16]Maruyama K. In vivo targeting by liposomes [J]. Biol Pham Bull,2000,23(7): 791-799.
    [17]Kessner S, Krause A, Rothe U, et al. Investigation of the cellular uptake of E-Selectin-targeted immunoliposomes by activated human endothelial cells [J]. Bba-Biomembranes,2001,1514(2):177-190.
    [18]Moase EH, Qu W, Ishida T, et al. Anti-MUC-1 immunoliposomal doxorubicin in the treatment of murine models of metastatic breast cancer [J]. Bba-Biomembranes,2001, 1510(1-2):43-55.
    [19]Wang H, Zhao P, Liang X, et al. Folate-PEG coated cationic modified chitosan-Cholesterol liposomes for tumor-targeted drug delivery [J]. Biomaterials,2010,31(14): 4129-4138.
    [20]Chen H, Ahn R, Van den Bossche J, et al. Folate-mediated intracellular drug delivery increases the anticancer efficacy of nanoparticulate formulation of arsenic trioxide [J]. Mol Cancer Ther,2009,8(7):1955-63.
    [21]Kawano K, Onose E, Hattori Y, et al. Higher liposomal membrane fluidity enhances the in vitro antitumor activity of folate-targeted liposomal mitoxantrone [J]. Mol Pharm,2009,6(1):98-104.
    [22]Yu F, Jiang T, Zhang J, et al. Galactosylated liposomes as oligodeoxynucleotides carrier for hepatocyte-selective targeting [J]. Pharmazie,2007,62(7):528-33.
    [23]Ohno K, Sohda K, Kosaka A, et al. Galactose-containing amphiphiles prepared with a lipophilic radical initiator: association processes between liposomes triggered by enzymatic reaction [J]. Bioconjug Chem,1995,6(4):361-366.
    [24]Jiang JW, Zhang Y. Targeting delivery effect of galactose receptor-mediated c-myc antisense oligonucleotide on human hepatocellular carcinoma cell line Bel-7402[J]. Ai Zheng,2004,23(11):1288-1293.
    [25]Ishida O, Maruyama K, Tanahashi H, et al. Liposomes bearing polyethyleneglycol-coupled transferrin with intracellular targeting property to the solid tumors in vivo[J]. Pharmaceut Res,2001,18(7):1042-1048.
    [26]Iinuma H, Maruyama K, Okinaga K, et al. Intracellular targeting therapy of cisplatin-encapsulated transferrin-polyethylene glycol liposome on peritoneal dissemination of gastric cancer[J]. Int J Cancer,2002,99(1):130-137.
    [27]Dagar S, Sekosan M, Lee BS, et al. VIP receptors as molecular targets of breast cancer: implications for targeted imaging and drug delivery [J]. J Control Release,2001, 74(1-3):129-134.
    [28]Fallon RJ, Schwartz AL. Receptor-mediated delivery of drugs to hepatocytes [J]. Adv Drug Deliv Rev,1989,4(2):49-63.
    [29]Donati I, Gamini A, Vetere A, et al. Synthesis, characterization,and preliminary biological study of glycoconjugates of poly(styrene-co-maleicacid) [J]. Biomacromolecules,2002,3(4):805-812.
    [30]Wu J, Nantz MH, Zern MA. Targeting hepatocytes for drug and gene delivery: emerging novel approaches and application [J]. Front Biosci,2002,7:17-25.
    [31]Stockert RJ. The asialoglyeoProtein recePtors:relationships between strueture, function, and expression [J]. Physiol Rev,1995,75(3):591-593.
    [32]Eisenberg C, Seta N, Appel M, et al. Asialoglycoprotein receptor in human isolated hepatocytes from normal liver and its apparent increase in liver with histological alterations [J]. J Hepatol,1991,13(3):305-309.
    [33]Cho CS, Cho KY, Park IK, et al. Receptormediated delivery of all trans-retinoic acid to hepatocyte using poly(L-lactic acid) nanoparticles coated with galactose-carrying polystyrene[J]. J Control Release,2001,77(1-2):7-15.
    [34]Cho CS, Kobayashi A, Takei R, et al. Receptormediated cell modulator delivery to hepatocyte using nanoparticles coated with carbohydrate-carrying polymers[J]. Biomaterials,2001,22(1):45-51.
    [35]Yago H, KohgoY, KatoJ, et al. Detection and quantification of soluble asia-loglycoprotein receptor in human serum [J]. Hepatology,1995,21(2):383-388.
    [36]Hashida M, Akamatsu K, Nishikawa M, et al. Design of polymeric prodrugs of prostaglandin E(1) having galactose residue for hepatocyte targeting[J]. J Control Release,1999,62(1-2):253-62.
    [37]Wu DQ, Lu B, Chang C, et al. Galactosylated fluorescent labeled micelles as a liver targeting drug carrier [J]. Biomaterials,2009,30(7):1363-1371.
    [38]Kawkami S, Munakata C, Funotos S, et al. Targetd delivery of Prostaglandin El to Hepatocytes using galactoyslated liposomes[J]. J Drug Target,2000,8(3):137-142.
    [39]Kawkami S, Yamashita F, Nishikawa M, et al. Asialoglycoprotein receptor-mediated Gene transfer using novel galactosylated cationic liposomes [J]. Biochem Biophys Res Commun,1998,252:78-83.
    [40]Rariy R V, Klibanov A M. On the relationship between enzymatic enantioselectivity in organic solvents and enzyme flexibility [J]. Biocatal Biotransfor,2000,18 (5): 401-407.
    [41]Klibanov A M. Improving enzymes by using them in organic solvents [J]. Nature, 2001,409(6817):241-246.
    [42]Lee M Y, Dordick J S. Enzyme activation for nonaqueous media [J]. Curr Opin Biotech,2002,13 (4):376-384.
    [43]Klibanov A M. Enzymes that work in organic solvent [J]. Chem Technol,1986,16(6): 354-359.
    [44]Zaks A, Klibanov A M. Enzymatic catalysis in non-aqueous solvents [J]. Journal of Biological Chemistry,1988,263(7):3194-320.
    [45]Bracey E, Stenning R A, Brooker B E. Relating the microstructure of enzyme dispersions in organic solvents to their kinetic behavior [J]. Enzyme Microb Technol, 1998,22(3):147-151.
    [46]Chin J T, Wheeler S L, Klibanov A M. On protein solubility in organic solvents [J]. Biotechnol Bioeng,1994,44(1):140-147.
    [47]邹国林,朱汝蟠.酶学(第一版)[M].武汉大学出版社,1992,205-220.
    [48]Brink L E S, Tramper J. Optimization of organic solvent in multiphase biocatalysis [J]. Biotechnol Bioeng,1985,27(8):1258-1269.
    [49]Laane C, Boeren S, Vos K, et al. Rules for optimization of biocatalysis in organic solvents [J]. Biotechnol Bioeng,1987,30 (1):81-87.
    [50]Narayan V S, Klibanov A M, Are water-immiscibility and apolarity of the solvent relevant to enzyme efficiency? [J]. Biotechnol Bioeng,1993,41(3):390-393.
    [51]Chaudhary A K, Kamat S V, Beckman E J, et al. Control of subtilisin substrate specificity by solvent engineering in organic solvents and supercritical fluoroform [J]. J Am Chem Soc,1996,118(51):12891-1290.
    [52]张玉彬.生物催化的手性合成[M].化学工业出版社,2001,125-167.
    [53]黄炜,黄挤群,张东方,等.18 β-甘草次酸和甘草酸对人肝癌细胞增殖的抑制和诱导分化作用[J].中国中医药科技,2002,9(2):92.
    [54]周荣汉.中国资源学[M].北京:中国医药科技出版社,1993,92.
    [55]陈可冀,李春生,房定亚,等.抗衰老中药学[M].北京:中国古籍出版社,1989.178.
    [56]陆彬.药物新剂型与新技术[M].北京;人民卫生出版社,1998,107. [1]程立华.反义寡核苷酸肝靶向制剂的研究[D].沈阳:沈阳药科大学,2005,49,
    52.[2]吴春燕,李春秀.气相色谱法测定十八胺[J].合成润滑材料,2005,32(3):12-14.
    [3]张惟杰.复合多糖生化研究技术[M].上海:上海科学技术出版社,1987,6-7.
    [4]王思玲,苏德森.物理药剂学实验[M].沈阳:沈阳药科大学,1998,207.
    [5]路姣,孙逊,海俐,等.半乳糖化脂质体-聚阳离子-DNA复合物的肝靶向性研究[J].华西药学杂志,2007.22(3):239-241.
    [6]王绍宁,邓意辉,吴红兵,等.半乳糖化脂质体在小鼠体内肝靶向性评价[J].中国药学杂志,2006,41(14):1076-1079.
    [7]Yu F, Jiang T, Zhang J, et al. Galactosylated liposomes as oligodeoxynucleotides carrier for hepatocyte-selective targeting [J]. Pharmazie,2007,62(7):528-33.
    [8]Cecilia Diaz, Ernesto Vargas, Omar G. Cytotoxic effect induced by retinoic acid loaded into galactosyl-sphingosine containing liposomes on human hepatoma cell lines [J]. International Journal of Pharmaceutics,2006,325(1):108-115.
    [9]孙毓庆.现代色谱法及其在药物分析中的应用[M].北京:科学出版社,2005,160-378.
    [10]Klibanov AM. Improving enzymes by using them in organic solvents [J]. Nature,2001, 409(6817):241-246.
    [11]张玉彬.生物催化的手性合成[M].北京:化学工业出版社,2001,125-167.
    [1]Hauser H, Cevc G. Phospholipids handbook [M]. New York:Marcel Dekker,1993, 603-607.
    [2]国家药典委员会编.2005年版《中国药典》(二部)[S].北京:化学工业出版社,204-206.
    [3]王军,张健,韦萍.甘草次酸聚乳酸微球的制备及其性质研究[J].时珍国医国药,2009,20(4):1002-1003.
    [4]Hansen HK, Hansen SH, Krauns(?)e M, et al. Comparison of high-performance liquid chromatography and capillary electrophoresis methods for quantitative determination of glycyrrhizinic acid in pharmaceutical preparations [J]. Eur J Pharm Sci,1999,9(1): 41-46.
    [5]Russel FG, van Uum S, Tan Y, et al. Solid-phase extraction of 18beta-glycyrrhetinic acid from plasma and subsequent analysis by high-performance liquid chromatography [J]. J Chromatogr B Biomed Sci Appl,1998,710(1-2):223-226.
    [6]刘迎春,宋学君,王国清.RP-HPLC法测定玄麦甘桔颗粒中GA含量[J].沈阳药科大学学报,2006,23(6):376,406.
    [7]Tatsuya T, Atsuomi K, Yong-Zhong D. Partition coefficients in a Liposome/Water system methods for determination and error analysis [J]. Analytical Science,1992,8: 761-765
    [8]陆彬.药物新剂型与新技术[M].北京:人民卫生出版社,1998,128.
    [9]Van Balen GP, Martinet CM, Caron G. et al. Liposomes/water lipophilicity:methods, information content, and pharmaceutical applications [J]. Med Res Rev,2004,24(3): 299-324.
    [10]高晓黎,季兴梅.葡聚糖凝胶柱色谱法测定脂质体包封率的条件筛选[J].中国药
    学杂志,2007,38(7):515-517.
    [11]Carneiro A, Andrade S. Production of liposomes in a multitubular system useful for scaling up of processes [J]. Progress in colloid & polymer science,2004,128: 273-277.
    [12]Wagner A, Vorauer-Uhl K, Kreismayr G, et al. The crossflow injection technique-an improvement of the ethanol injection method [J]. Journal of Liposome Research,2002, 12(3):259-270.
    [13]毛声俊,侯世祥,金辉,等.肝细胞靶向甘草次酸表面修饰脂质体的制备[J].中国中药杂志,2003,28(4):328-331.
    [14]李娟,陆洋,王广基.Box-Behnken效应面法优化甘草次酸长循环脂质体的处方[J].中国药科大学学报,2007,38(2):120-124.
    [15]Lu Y, Li J, Wang G. In vitro and in vivo evaluation of mPEG-PLA modified liposomes loaded glycyrrhetinic acid [J]. Int J Pharm,2008,356(1-2):274-281.
    [16]Maitani Y, Igarashi S, Sato M, et al. Cationic liposome (DC-Chol/DOPE=1:2) and a modified ethanol injection method to prepare liposomes, increased gene expression [J]. Int J Pharm,2007,342(1-2):33-39.
    [1]Winterhalter M, Lasic DD. Liposome Stability and Formation-Experimental Parameters and Theories on the Size Distribution [J]. Chemistry and Physics of Lipids,1993, 64(1-3):35-43.
    [2]Barbosa C, Stebbing D, Cheung E, et al. Determination of detailed liposome particle size distributions [J]. AAPS PharmSci Tech,2002,3(2):1-7.
    [3]Zheng-hong WU, Qi-neng PING, Yi WEI, et al. Hypoglycemic efficacy of chitosan-coated insulin liposomes after oral administration in mice [J]. Acta Pharmacol Sin,2004,25 (7):966-972.
    [4]Drummond DC, Meyer OM, Hong K, et al. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors [J]. Pharmacol Rev,1999,51:691-743.
    [5]Charrois GJR, Allen TM. Drug release rate influences the pharmacokinetics, biodistribution, therapeutic activity, and toxicity of pegylated liposomal doxorubicin formulations in murine breast cancer[J]. Biochim Biophys Acta,2004,1663:167-177.
    [6]Barenholz Y. Liposome application:problems and prospects [J]. Curr Opin Colloid Interface Sci,2001,6:66-77.
    [7]国家药典委员会.中华人民共和国药典(二部)[s].北京:化学工业出版社,2005,附录74.
    [8]Bac S J, Kim N H. A study of stabilization effect of a-tocopherol incorporated into liposomal phospholipid membrane [J]. Archives of Pharmacal Research,1990,13(1): 64-68.
    [9]国家药典委员会.中华人民共和国药典(二部)[S].北京:化学工业出版社,2005,附录50.
    [10]邓意辉,徐晖主译.脂质体(原著第二版)[M].北京:化学工业出版社,2007,37.
    [11]Chris L, Joellen B, Peter D. Liposomes enriched in oleic acid are less susceptible to oxidation and have less proinflammatory activity when exposed to oxidizing conditions [J]. The Journal of Lipid Research,1998,39(6):1239-1247.
    [12]邓英杰.脂质体技术[M].北京:人民卫生出版社,2007,102.
    [13]国家药典委员会.中华人民共和国药典(一部)[S].北京:化学工业出版社,2005,附录54.
    [14]Arias M J, Moyano J R, Munoz P, et al. Study of omeprazole-gamma-cyclodextrin complexation in the solid state [J]. Drug Development and Industrial Pharmacy,2000, 26(3):253.
    [15]Arias M J, Munoz P, Moyano J R, et al. Preliminary study of different omeprazole-y-cd co-grinded systems [J]. Intenational Journal of Pharrnaceutics,1996, 143:113.
    [16]Defrise Q, Chatelein FP, Delmelle M. et al. Model studies for drug entrapment and liposome stability [A]. Gregoriadis G. Liposome technology:incorporation of drugs, proteins, and genetic material [M]. Boca Raton:CRC Press,1984:1~17.
    [17]邓英杰,史淑芬,顾学裘.油酸脂质体(139)注射液包封率测定方法的研究[J].药学学报,1985,23(7):539-544.
    [18]Connollyd T, Townsendr R, Kawguch K, et al. Binding and endocytosis of cluster glycosides by rabbit hepatocytes[J]. J Biol Chem,1982,257(2):939-945.
    [19]Hattori Y, Kawakami S, Yamashitaf, et al. Controlled biodistribution of galactesylated liposomes and incorporated probucol in bepatocyte-seleetive drug targeting [J]. J Controlled Release,2000,69(3):369-377.
    [20]陈日南.药物中有机溶剂残留量测定方法评述[J].中国医药工业杂志,1997,28(6):275.
    [21]周海均.ICH药品注册的国际技术要求(质量部分)[M].北京:人民卫生出版社,2000.87.
    [1]Lu Y, Li J, WangG. In vitro and in vivo evaluation of mPEG-PLA modified liposomes loaded glycyrrhetinic acid [J]. Int J Pharm,2008,356(1-2):274-281.
    [2]沈圆圆,邱利焱,金一,等.洛莫司汀脂质体的制备及其在大鼠体内的药动学[J].中国药学杂志,2007,42(1):53-57.
    [3]项琪,程刚,陈济民.用高效液相色谱法测定大鼠血浆中甘草次酸浓度[J].沈阳药科大学学报,1999,16(2):107-109.
    [4]任平,张莉,王骊丽,等.甘草甜素在脾虚大鼠血浆中浓度测定的高效液相色谱法及其药动学研究[J].南京中医药大学学报,2000,16(6):345-346.
    [5]李好枝.体内药物分析[M].北京:中国医药科技出版社,2001,130.
    [6]Lin Z J, Qiu S X, Wufuer A, et al. Simultaneous determineation of glycyrrhizin, a marker component in Radix Glycyrrihizae, and its major metabolite glycyrretic acid in human plasma by LC-MS/MS [J]. J Chromatogr B,2005,814(2):201-207.
    [7]金悠,杨俊,魏磊,等.甘草酸二铵胶囊人体相对生物利用度研究[J].医药导报,2008,27(8):915-917.
    [8]赵文静,王本杰,魏春敏,等.高效液相色谱-质谱法测定人血浆中甘草次酸浓度及人体药代动力学研究[J].山东大学学报(医学版),2008,46(11):1110-1112,1114.
    [9]Zhao WJ, Wang BJ, Wei CM, et al. Determination of glycyrrhetic acid in human plasma by HPLC-MS method and investigation of its pharmacokinetics [J]. J Clin Pharm Ther,2008,33(3):289-94.
    [1]高界铭,邹文,明静,等.载药胶束在大鼠血液和组织中的分布[J].华西药学杂志,2008,23(2):138-140.
    [2]Lu Y, Li J, Wang G. In vitro and in vivo evaluation of mPEG-PLA modified liposomes loaded glycyrrhetinic acid [J]. Int J Pharm,2008,356(1-2):274-281.
    [3]梁文权.生物药剂学与药物动力学(第三版)[M].北京:人民卫生出版社,2008,325-326.
    [4]Hoetelmans RM, Profijt M, Mennhorst PL, et al. Quantitative determination of(-)-2'-deoxy-3'-thiacytidine in human plasma, saliva and cerebrospinal fluid by high-performance liquid chromatography with ultraviolet detection [J]. J Chromatogr B BiomedSci Appl,1998,713(2):387.
    [5]沈艳霞,高再荣,张永学.脂质体包^99 Tc^m标记Survivin反义寡核苷酸的制备和体外研究[J].中华核医学杂志,2006,26(3):177-179.
    [6]吕天润,曹晓建,刘军,等.99mTC示踪法初步研究注射用NGF脂质体药代动力学[J].南京医科大学学报:自然科学版,2005,25(1):1-4.
    [1]司徒镇强,吴军正主编.细胞培养[M].西安:世界图书出版西安公司,2000,134.
    [2]Metzler V, bienert H, Lehmann T, et al. A novel method for quantifying shape deformation applied to biocompatibility testing [J]. Asaioj,1999,45(4):264-271.
    [3]Nelson SK, Wataha JC, Neme AM, et al. Cytotoxicity of dental casting alloys pretreated with biologic solutions [J]. J Prosthet Dent,1999,81(5):591-596.
    [4]Tep K, Korb V, Richard C, et al. Ormulation and evaluation of ATP-containing' liposomes including lactosylated ASGPr ligand. J Liposome Res.2009,19(4):287-300.
    [5]Huang G, Diakur J, Xu Z, et al.Asialoglycoprotein receptor-targeted superparamagnetic iron oxide nanoparticles. Int J Pharm.2008,360(1-2):197-203.
    [6]Yourtee M D, Tong P Y, RoseL A, et al. Effect of spiroorthocarbonate volume modifier comonomers on the in vitro toxicology of trial non-shrinking dental epoxy copolymers. Res Commun Mol Pathol Pharmacol,1994,86(3):347.
    [7]Heuff G, Steenbergen J J, Van de Loosdrecht A A, et al. Isolation of cytotoxic Kupffer cells by a modified enzymatic assay:a methodological study [J]. J Immunol Methods, 1993,159:115-123.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.