轿车台车试验方法及侧面约束系统数学仿真技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对车辆台车试验方法和侧面约束系统的数学仿真技术开展了研究。本文:
     (1)基于对实车正碰车体减速度波形的研究,发现在较低频率等级滤波的情况下正碰车体减速度波形具有双台阶特征。在此基础上提出了将正碰车体减速度波形简化成等效双梯形波形进行正碰台车试验的双加速度平台正碰台车试验方法。仿真验证表明,在台车试验中用等效双梯形波代替相应的实车正碰车体减速度波形是完全可行的。针对这一正碰台车试验方法还设计出了一种利用金属棒材作为吸能件的减速型正碰台车试验装置。
     (2)基于对实车侧面碰撞车门内饰板速度波形的研究,找出了车门内饰板速度波形所具有的特征。在此基础上提出了一种将车门内饰板速度波形简化为双速度平台波形进行侧碰台车试验的双速度平台侧碰台车试验方法。仿真验证表明,利用简化后的双速度平台波形代替实车侧碰内饰板速度波形进行侧碰撞台车试验是完全可行的。
     (3)针对目前国内还没有关于侧气囊建模技术的完整论述的现状,以安装在X车型上的头胸组合侧气囊以及安装在Y车型上的帘式侧气囊和简单侧气囊为研究对象,详述了这三种典型的侧气囊的建模过程、建模过程中需要关注的地方、在建模过程中可能会出现的问题以及解决方法。
     (4)针对目前国内还没有关于侧碰撞台车试验数学仿真技术完整论述的现状,详述了基于车门不变形的和基于PSM的侧碰撞台车试验的数学仿真建模方法,并对这两种侧碰台车模型的优缺点以及使用范围进行了比较。
     (5)通过一车门扶手与侧碰假人腹部完全对应的侧碰台车仿真模型研究了座椅、车门内饰板、侧气囊以及车门内饰板速度波形对CNCAP中侧碰假人伤害值响应指标的影响。研究表明,座椅摩擦系数和刚度仅对假人背板力有较大影响;车门内饰板材料和形面对假人的各伤害评价指标有很大影响;车辆在增加了侧气囊后假人肋骨变形量以及VC指数均得到明显改善,但假人的某些指标如耻骨力可能会增大;假人与车门内饰板的接触时间、双速度平台上两平台间的过渡段斜率以及第二个速度平台对假人伤害评价指标特别是肋骨变形量以及VC指数有很大的影响。鉴于T12力矩M_x时间历程的特殊性,分析了接触时间差对M_x大小的影响。研究表明,车门扶手与假人腹部的接触时间和骨盆接触区域与骨盆接触时间两者之间的接触时间差越短,负向M_x值越小,正向M_x越大。
     本文的研究成果对提高车辆约束系统的开发效率、降低开发成本,以及提高车辆侧碰安全性、改善车辆在CNCAP侧碰试验中的评价效果有十分重要的意义。
Vehicle sled test method and the mathematical simulation technique of side restraint system are discussed in this doctoral dissertation. The following contents are included:
     (1) Based on research of the body deceleration pulse in full-scale vehicle frontal impact, the fact that the pulse has dual-level characteristic in lower frequency class filter is discovered. Simplify the deceleration of vehicle body of sled test in frontal impact into the equivalent dual-trapezia pulse. The frontal sled test method based on dual-acceleration level using the equivalent pulse will be proposed. The results of simulation validation have show that it is absolutely feasible to replace the deceleration pulse of the corresponding full-scale vehicle body in frontal impact with equivalent dual-trapezia pulse in sled test. A sled test device based on deceleration using metal sticks as absorbing energy parts has been designed about the method.
     (2) Based on research of the velocity pulse of door trim in full-scale vehicle side impact, get the characteristic of the velocity pulse of door trim. Simplify the velocity pulse of door trim into the dual-velocity pulse. The side sled test method using the pulse will be proposed. The results of simulation validation have show that it is absolutely feasible to replace the velocity pulse of door trim in full-scale vehicle side impact with simplified dual-velocity pulse in side sled test.
     (3) Whole discussion about the side airbag modeling technique has not existed so far in China. Side inflatable curtain and simple side airbag that are equipped on Y vehicle and side head-thorax airbag equipped on X vehicle are studied. Describe in detail about modeling process, attention points, problems and resolvents in the process.
     (4) Whole discussion about the side impact sled test mathematical simulation technique has not existed so far in China. Two mathematical simulation modeling methods of side impact sled test respectively based on the un-deformable door and PSM are discussed, and compare advantages and disadvantages as well as the usage field of two side impact sled model are compared.
     (5) The influence on the injury values of side dummy in CNCAP because of seat, door trim panel, side airbag and the velocity of door trim panel is studied, using a side impact sled simulation model with door armrest completely corresponding to side impact dummy abdomen. Research shows the friction coefficient of seat and the velocity of door trim panel have much effect on dummy backplate force; the material and shape of door trim influence on all dummy injury estimation index; both dummy rib deformation and VC will be improved obviously after adding side airbag, but some dummy injury index such as pubic force may increase probably; Contact time between dummy and door inner trim, the slope in transition period of two levels on dual-velocity level and the second level affect all dummy injury index especially rib deformation and VC index very much. Considering the time history particularity of T12 moment Mx, contact time difference's influence on the magnitude of Mx is analyzed. Research has show, the shorter two contact time difference of contact time between door rest and dummy abdomen and one between pelvis contact area and pelvis is, the smaller negative Mx is but the greater positive Mx is.
     Research results in this doctoral dissertation will play an important role in following aspect: improving the development efficiency of vehicle restraint system, lowering development cost, enhancing vehicle side safety and improving vehicle assessment capability in CNCAP side impact test.
引文
[1]http://auto.tom.com/1440/1441/2006630-96588.html
    [2]公安部交通管理局.中华人民共和国道路交通事故统计年报,1999
    [3]公安部交通管理局.中华人民共和国道路交通事故统计年报,2000
    [4]公安部交通管理局.中华人民共和国道路交通事故统计年报,2001
    [5]公安部交通管理局.中华人民共和国道路交通事故统计年报,2002
    [6]公安部交通管理局.中华人民共和国道路交通事故统计年报,2003
    [7]公安部交通管理局.中华人民共和国道路交通事故统计年报,2004
    [8]公安部交通管理局.中华人民共和国道路交通事故统计年报,2005
    [9]公安部交通管理局.中华人民共和国道路交通事故统计年报,2006
    [10]http://www.mps.gov.cn/n16/n1282/n3553/143942.html
    [11]赵文杰.汽车安全技术亟待提高.中国商报.汽车导报,2007.5.11
    [12]P.Michael Miller,et al.A 100G Frontal Crash Sled Test System.SAE2004-01-0473
    [13]Young-Ho,Byung-Wan Lee.A Device and Test Methodology for Side Impact Crash Simulation Using A Frontal Crash Simulator and Two Hydraulic Brake Systems.SAE2000-01-0047
    [14]Ian V.Lau,John P.Capp,et al.A Comparison of Frontal and Side Impact:Crash Dynamics,Countermeasures and Subsystem Tests.SAE912896
    [15]James W.Saunders Ⅲ,Shashi Kuppa.NHTSA's Frontal Offset Research Program.SAE2004-01-1169
    [16]Adrian K.Lurid,Joseph M.Nolan.Changes in Vehicles Designs from Frontal Offset and Side Impact Crash Testing.SAE2003-01-0902
    [17]K.Digges,A.Eigen,et al.Stiffness and Geometric Compatibility in Frontal-to-Side Crashes.SAE2002-01-1020
    [18]H,Steffan,B.C.Geigl,et al.HyperG-a New Hydro Pneumatic Catapult Type Sled.SAE2003-01-0496
    [19]Rodney W.Rudd,Jeff R.Crandall,et al.Response of the Thor-Lx and Hybrid Ⅲ Lower Extremities in Frontal Sled Tests.SAE2003-01-0161
    [20]Richard Kent,Greg Shaw,et al.Comparison of Belted Hybrid Ⅲ,THOR,and Cadaver Thoracic Responses in Oblique Frontal and Full Frontal Sled Tests.SAE2003-01-0160
    [21]王碹,李宏光等.现代汽车安全.北京:人民交通出版社,2001
    [22]陈晓东.轿车侧面碰撞试验方法与计算机仿真技术研究.江苏大学博士学位论文,2003
    [23]Honglu Zhang,et al.CAE-Based Side Curtain Airbag Design.SAE2004-01-0841
    [24] P. Balakrishnam, Storey, K. The Application of MADYMO in Side Airbag Development. 5th International MADYMO User's Meeting, Florida,1994
    [25] S. Vaidyarman. Modeling and Simulation of Sled & Barrier Test for Side Impact Application. 5th International MADYMO User's Meeting, Florida,1994
    [26] H. Steffan, A. Moser, et al. Validation of the coupled PC-CRASH-MADYMO occupant simulation model. SAE2000-01-0471
    [27] Douglas J. Stein. Apparatus and Method for Side Impact Testing. SAE970572
    [28] http://www.hyge.com/index.shtml
    [29] http://www.hyge.com/side.shtml
    [30] http://www.messring.com/html/products.html
    [31] Economic Commission for Europe(ECE). Regulation No. 94
    [32] 中华人民共和国国家标准.GB11551-2003.
    [33] NHTSA. Federal Register: 49 CFR Parts 571 and 598 Federal Motor Vehicle Safety Standards; Side Impact Protection; Side Impact Phase-In Reporting Requirements; Proposed Rule, 2004
    [34] B. R. Deshpande, T. J. Gunasekar, et al. Development of MADYMO Models of Passenger Vehicles for Simulating Side Impact Crashes. SAE1999-01-2885
    [35] P. Michael Miller, Hai Gu. Sled Testing Procedure for Side Impact Airbag Development. SAE970570
    [36] Jaekoo Chung, John M. Cavanaugh, et al. Development of a Sled-to-Sled Subsystem Side Impact Test Methodology. SAE970569
    [37] Jeff R. Crandall, Acen Jordan, et al. Reproducing the Structure Intrusion of Laboratory Sled Test Environment. SAE950643
    [38] S.Sundararajan, et al. Dynamic Door Component Test Methodology. SAE950877
    [39] C. Adrian Hobbs. Dispelling the Misconceptions about Side Impact Protection. SAE950879
    [40] Patrick M. Miller, P. Michael Miller. Evaluation Methodologies for Automobile Side Impact Development. SAE930488
    [41] J. Augenstein, J. Bowen, et al. Injury patterns in near-side collisions. SAE2000-01-0634
    [42] Jonathan M. Lawrence, Craig C. Wilkinson, et al. The Accuracy and Sensitivity of Event Data Recorders in Low-Speed Collisions. SAE2002-01-0679
    [43] G. G. Lim, C.C. Chou, et al. Development of a Door Test Facility for Implementing the Door Component Test Methodology. SAE970568
    [44] A. R. Payne, R. Mohacsi, et al. The Effects of Variability in Vehicle Structure and Occupant Position on Side Impact Dummy Response Using the MIRA M-SIS Side Impact Technique. SAE970571
    [45] Thomas F. Fugger, Bryan C. Randies, et al. Human Occupant Kinematics in Low Speed Side Impacts. SAE2002-01-0020
    [46]J.R.Hopton and A.R.Payne.Comparison Study of EuroSID,USSID,BioSID Performance Using MIRA's New M-SIS Side Impact Simulation Technique.SAE960103
    [47]Bernadette Allan-Stubbs.The Effect of Changes in Seating Position and Door Velocity Time History on Side Impact Dummy Response.SAE980911
    [48]Pascal Delannoy,Jacques Faure.New Barrier Test and Assessment Protocol to Control Compatibility.SAE2004-01-1171
    [49]Hui Wang,Zheng-Dong Ma,et al.Multi-Domain Multi-Step Topology Optimization for Vehicle Structure Crashworthiness Design.SAE2004-01-1173
    [50]Mehran Armand,Michael Kleinberger.Modeling the Effects of Pelvis/Hip/Femur Position on the Risk of Injury in Automotive Collisions.SAE2004-01-1623
    [51]John W.Melvin,Thomas Gideon.Biomechanical Principles of Racecar Seat Design for Side Impact Protection.SAE2004-01-3515
    [52]Mukul K.Verma,Robert C.Lange,et al.Relationship of Crash Test Procedures to Vehicle Compatibility.SAE2003-01-0900
    [53]http://www.seattlesafety.com/products/servo.html
    [54]http://www.seattlesafety.com/images/servosled_concept.gif
    [55]http://www.instron.cn/ist/products/passive_safety_overview.asp
    [56]http://www.instron.cn/ist/products/catapult.asp
    [57]http://80.123.144.74/dsd/index.php?option-com_content&taskfview&id=29&Itemid-31
    [58]http://80.123.144.74/dsd/index.php?option-com_content&task-section&id-7&Itemid=52
    [59]Richard Kent,Jeff Crandall,et al.Sled System Requirements for the Analysis of Side Impact Thoracic Injury Criteria and Qccupant Protection.SAE2001-01-0721
    [60]K.Aekbote,S.Sundararajan,et al.A New Component Test Methodology Concept for Side Impact Simulation.SAE1999-01-0427
    [61]Oh-Seong Kim,Sung-Tae Kim,et al.Sub-structure Vehicle Test and Analysis to Predict the Frontal Crash Performances of Full-scale Vehicle.SAE1999-01-0076
    [62]Naoki Kaneko,Masayuki Wakamatsu,et al.Study of BioRID-Ⅱs Sled Testing and MADYMO Simulation to Seek the Optimized Seat Characteristics to Reduce Whiplash Injury.SAE2004-01-0336
    [63]Suzanne Tylko,Dainius Dalmotas.SID-Ⅲ Response in Side Impact Testing.SAE2004-01-0350
    [64]Leonard Evans.How to Make a Car Lighter and Safer.SAE2004-01-1172
    [65]Nicholas J.Durisek,C.Brian Tanner,et al.Vehicle Characterization Through Pole Impact Testing,Part Ⅰ:Vehicle Response in Terms of Acceleration Pulses.SAE2004-01-1210
    [66]Leonard Evans.Airbag Benefits,Airbag Costs.SAE2004-01-0840
    [67]Yijung Chen,Ryan Craig,et al.Finite Element Modeling of the Frame for Body-on-Frame Vehicles:Part Ⅲ-Full Vehicle Crash.SAE2004-01-0689
    [68]P.Michael Miller Ⅱ,Todd Nowal,et al.A Compact Sled System for Linear Impact,Pole Impact,and Side Impact Testing.SAE2002-01-0695
    [69]Tom Gideon,John Melvin,et al.ATD Neck Tension Comparisons for Various Sled Pulses.SAE2002-01-3324
    [70]Abdullatif K.Zaouk,Ana Maria Eigen,et al.Occupant Injury Patterns in Side Crashes.SAE2001-01-0723
    [71]Hampton C.Gabler.The Evolution of Side Crash Compatibility Between Cars,Light Trucks and Vans.SAE2003-01-0899
    [72]Geoffrey J.Germane,Tyler S.Munson,et al.Side Impact Motor Vehicle Structural Characteristics From Crash Tests.SAE2003-01-0495
    [73]Gerd Winkler,Thomas Stierle,et al.Side-lmpact Restraint Activation System Combining Acceleration and Dynamic-Pressure Sensing.SAE2003-01-0197
    [74]Angela Trego,Bruce Enz,et al.A Scientific Approach to Tractor-Trailer Side Underride Analysis.SAE2003-01-0178
    [75]Ronnie Tornqvist,Burak Baser.Structural Modules with Improved Crash Performance Using Thermoplastic Composites.SAE2002-01-1038
    [76]David Nelson,Laurie Sparke.Improved Side Impact Protection:Design Optimisation for Minimum Harm.SAE2002-01-0167
    [77]Albert Roelfsema,Jan Theeuwes.European Side-Makers Effect on Traffic Safety.SAE1999-01-0091
    [78]Stephen Summers,Aloke Prasad,et al.NHTSA's Vehicle Compatibility Research Program.SAE1999-01-0071
    [79]Don Vander Lugt,Terry Connolly,et al.Vehicle Compatibility-Analysis of the Factors Influencing Side Impact Occupant Injury.SAE1999-01-0067
    [80]中华人民共和国国家标准.GB20071-2006
    [81]中国汽车技术研究中心.中国新车评价规程CNCAP.2006.7
    [82]http://www.c-ncap.org
    [83]TNO.MADYMO User's Application Manual,Version 6.3.2,2006
    [84]TNO.MADYMO User's Theory Manual,Version 6.3.2,2006
    [85]TNO.MADYMO User's Reference Manual,Version 6.3.2,2006
    [86]TNO.MADYMO User's Model Manual,Version 6.3.2,2006
    [87]TNO.MADYMO User's Human Model Manual,Version 6.3.2,2006
    [88]TNO.MADYMO User's Utilities Manual,Version 6.3.2,2006
    [89]TNO.MADYMO User's Programmer's Manual,Version 6.3.2,2006
    [90]朱西产.实车碰撞试验法规的现状和发展趋势.汽车技术,2001.4
    [91]朱西产.汽车正面碰撞试验法规及其发展趋势的分析.汽车工程,2002.1
    [92]Economic Commission for Europe(ECE).Regulation No.16
    [93]中华人民共和国国家标准.GB14166-2003
    [94]Economic Commission for Europe(ECE).Regulation No.17
    [95]中华人民共和国国家标准.GB15083-2006
    [96]Economic Commission for Europe(ECE).Regulation No.44
    [97]中华人民共和国国家标准.GB13057-2003
    [98]Economic Commission for Europe(ECE).Regulation No.80
    [99]黄早文,俞彦勤,李尚建.翻卷管的研制及其在吸能器中的应用.中国机械工程,1995(4).
    [100]罗云华,张海鸥,黄早文.翻卷管吸能特性及翻卷成形工艺的研究.锻压机械,2000(6)
    [101]罗云华,黄早文,张详林.材料向外翻卷变形机理的研究.锻压技术,2003(5)
    [102]俞彦勤,黄早文.翻卷管变形的分析.锻压技术,1998(6)
    [103]黄早文,俞彦勤.轴压翻卷力及其影响因素的分析,中国机械工程,1996(1)
    [104]Ralf Reuter.Achieving Design Targets through Stochastic Simulation.MADYMO USERS CONFERENCE,Paris,2000
    [105]Honglu Zhang,Madana M.Gopal,Roopesh Saxena.An Integrated Optimization System for Airbag Design and Modeling by Finite Element Analysis.SAE 2003-01-0506
    [106]Sey Bok Lee,Soon Gu Hong.Parametric Study on Mid-Mounted Passenger Airbag Cushion Using Design of Experiments.SAE 2003-01-0514
    [107]Seongjin Kim,Soongu Hong,Jeongkeun Lee.A Study of Driver Airbag Shape Design with Process Integration.SAE 2005-01-1299
    [108]W.A.van der Veen,W.M.P.Schrauwen.CFD Deployment of Multi—Compartmented,Folded Air Bags,using Zig-Zag and Roll Folds.SAE 2005-01-1308
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.